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CHAPTER 4

WALLPAPER PATTERNS

4.0  The Crystallographic Restriction

4.0.1 Planar repetition. Even if you don’t have one in your own 
room, you probably see one often at a friend’s place or your favorite 
restaurant: it fills a whole wall with the same motif repeated  all 
over in an ‘orderly  manner’ , creating various visual impressions 
depending on the particular motif(s) depicted, the background color, 
etc. And likewise you must have noticed the tilings  in many 
bathrooms you have been in: they typically consist of one square tile 
repeated all over the bathroom  wall , right? Well, as you are going 
to find out in this chapter, we can do much better than simply 
repeating square tiles (plain or not) all over: tilings (and other 
repeating  designs  as well), be it on Roman mosaics, African 
baskets, Chinese windows or Escher drawings, can be wonderfully 
complicated! 

You can certainly imagine the wall in front of which you are 
standing right now extended in ‘all  directions’  without a bound, 
thus turning the wallpaper or tiling you are looking at into an 
infinite  design ; for the sake of simplicity we call any and all such 
two-dimensional  (planar) infinite designs that repeat themselves 
in all directions and ‘in an orderly manner’ wallpaper  patterns . 
For example, the familiar beehive , consisting of hexagonal ‘tiles’, 
is still viewed here as a wallpaper pattern -- once extended to cover 
the entire plane, that is. More technically, a wallpaper pattern is a 
design that covers the entire plane and is invariant  under  
t ranslat ion  in  two  dist inct , non-oppos i te , direct ions ; check 
also our definition at the end of 4.0.7 and discussion in section 4.1. 
Notice at this point that motif repetitions, however ‘imperfect’ 
mathematically, are not that rare in nature: think of a leopard’s skin 
or certain butterflies’ wings, for example. Moreover, there are 
zillions of such repetitions and ‘orderly packings’ to be seen in three 



dimensions, and in particular when one looks at a crystal  through a 
microscope: although this is where this section’s title (but not 
content) comes from, we will not dare venture into three-
dimensional symmetry in this book!

4.0.2 Taming the infinite. As we have seen in 2.0.1, infinite 
border patterns may be ‘finitely represented’ by strips going around 
the lateral side of a ‘short ’  cyl inder . Notice at this point that, 
precisely because they do have a certain finite width, border 
patterns are, strictly speaking, ‘one-and-half ’  dimensional: a truly 
one-dimensional pattern would be something as dull as the infinite 
repetition of a M o r s e  s igna l  ( __ . __ .  _ _ _  _ . .  . ), while 
two-dimensional patterns could only be represented on the lateral 
side of a cylinder  of  infinite  height . But, in the same way an 
infinite strip can be ‘wrapped around’ into a ‘short’ cylinder (of 
finite height equal to the strip’s width), a cylinder of infinite height 
can be ‘wrapped around’ into a torus : before you get somewhat 
intimidated by this ‘abstract’ geometrical term, be aware that this 
is a familiar item on the breakfast table, be it in the form of a 
doughnut or a bagel! Yes, you could draw all the wallpaper patterns 
you will see in this book on a bagel!

Representations of wallpaper patterns by polyhedra may at least 
be considered. Think of the soccer  ball , for example, which looks 
like a beehive consisting of pentagonal and hexagonal ‘tiles’; known 
to chemists as “carbon molecule C60”, it does not correspond to a 

planar (wallpaper) pattern: it is in fact impossible  to tile the plane 
with such a combination of regular pentagons and hexagons! Another 
trick, familiar to map makers and crystallographers, is the 
stereographic  project ion , that is the representation of the entire 
plane on a sphere (as in figure 4.1); it clearly maps every point on 
the plane to a point on the sphere (hence every wallpaper pattern to 
a ‘spherical design’), but it leads to great distortion and problems 
around the ‘north  pole’ :



Fig. 4.1 

Well, our brief excursion into the three dimensions is over. From 
here on you will have to keep in mind that, unless otherwise stated, 
the finite-looking designs in this book are in fact infinite, extending 
in every direction around  the  page  you are looking at; it may not be 
easy at first, but sooner or later you will get used to the concept!

4.0.3 How about rotation? Let’s have a look at the beehive and 
bathroom wall patterns we mentioned in 4.0.1:

Fig. 4.2

Clearly, a sixfold (600) clockwise rotation about 6  maps the 
entire (infinite!) beehive to itself: B is mapped to itself, E to C, C to 
D, D to A, etc; every hexagonal tile is clearly mapped to another one, 



and, overall, the entire beehive remains invariant . Likewise, a 
threefold (1200) clockwise rotation about 3  leaves the beehive 
invariant, mapping B to C, C to D, D to B, A to E, etc; and, a twofold 
(1800) rotation about 2 does just the same, mapping D to B (again!), 
A to C, etc. We describe these facts by saying that the beehive has 
600 rotation (about 6  and all other hexagon centers), 1200 rotation 
(about 3 and all other hexagon vertices), and 1800 rotation (about 2 
and all other midpoints of hexagon edges). Notice that the existence 
of 600 rotation in a wallpaper pattern always implies the existence 
of 1200 and 1800 rotations about the same center: for example, 
applying twice  the 600 rotation centered at 6  yields a 1200 rotation 
(mapping E to D, C to A, etc), while a triple  application leads to a 
1800 rotation (mapping E to A, etc). Further, the existence of 600 
centers implies  the existence of ‘genuine’  1200 and 1800 centers 
(7.5.4). 

Visiting the bathroom wall now, we see that it has both 900 and 
1800 rotation. Indeed a clockwise fourfold (900) rotation about 4  
leaves it invariant (mapping A to B, B to C, C to D, D to A, E to F, 
etc), and so does a twofold (1800) rotation about 2 (mapping B to C, 
D to E, etc). In fact the middle of every square is also  the center of 
a 900 rotation (as well as a 1800 rotation via a double  application 
of the 900 rotation), while the midpoint of every square edge is the 
center of a 1800 rotation (but not  a 900 rotation!). 

So, we have just seen that wallpaper patterns can have twofold, 
threefold, fourfold, and sixfold rotations (by 1800, 1200, 900, and 
600, respectively). More precisely, we have seen examples of 
wallpaper patterns where the smallest  rotation  is 600 (beehive) 
or 900 (bathroom wall). As we will see in the rest of this chapter, 
there also exist wallpaper patterns with smallest rotation 1200 
(somewhat exotic) and 1800 (very common), as well as wallpaper 
patterns with no rotation at all. A very important question is: are 
there any other ‘smallest’ rotations besides those by 600, 900, 1200, 
and 1800? Are there any wallpaper patterns with f ivefold  rotation 
(720), for example? The answer to these questions is negative, and 
we devote the rest of this section to establish this important fact, 



known in the literature as the Crystal lographic  Restriction and 
central in proving that there exist precisely  seventeen  types of 
wallpaper  patterns . (We describe these types in the rest of 
chapter 4, but we defer their classification to chapter 8.) 

4.0.4 Rotation centers translated. In section 1.4 we defined 
glide reflection as the combination of a reflection and a translation 
parallel to each other, and we observed that the two operations 
commute with each other only when the reflection axis and the 
gliding vector are parallel to each other (1.4.2).  

Asking the same question about rotation and translation leads 
always  to a negative answer. We may confirm this in the context of 
the bathroom wall of figure 4.2 placed now in a coordinate axis 
(figure 4.3): consider for example R , the clockwise 900 rotation 
about (0, 0), and T, the translation by the vector <1, 1>; it can be 
verified, using techniques from either chapter 3 (see right below) or 
chapter 1, that R ∗∗∗∗ T  (T  followed by R ) is the clockwise 900 rotation 
about (−1, 0), while T ∗∗∗∗ R  (R  followed by T) is the clockwise 900 
rotation about (1, 0). 

                    
Fig. 4.3

Concerning the latter, notice that R  maps (−1, −1) to (−1, 1), and 
subsequently T maps (−1, 1) to (0, 2); likewise, (1, 1) is mapped by R  



to (1, −1), which is in turn mapped by T to (2, 0). So T ∗∗∗∗ R , which 
must  be a rotation (why?), maps (−1, −1) to (0, 2) and (1, 1) to      
(2, 0). With the perpendicular bisectors of the segments joining   
(−1, −1), (0, 2) and (1, 1), (2, 0) intersecting each other at (1, 0) 
(figure 4.3), it is easy from here on to verify that T ∗∗∗∗ R  is indeed the 
clockwise 900 rotation about (1, 0).    

At this point, you may ask: how come T ∗∗∗∗ R   is not  RT, the 

‘ translated’  clockwise 900 rotation  about (1, 1)? Shouldn’t the 
translation T  ‘translate’ the entire rotation R  the same way it 
translates  its center  (0, 0) to (1, 1)? Well, we already proved in 
the preceding paragraph, and may further confirm here, that this is 
not the case: for example, RT maps (0, 2) to (2, 2) instead of its 

image under T ∗∗∗∗ R , which is (3, 1). But observe  at this point that the 
one point that RT maps to (3, 1) is no other than the point (1, 3), 

which happens to be the image of (0, 2) under translation by T! 
Likewise, if we f irst  t ranslate  (0, 1) by  T  to (1, 2) and then  
rotate  (1, 2) by  RT we end up mapping (0, 1) to (2, 1), exactly as 

T∗∗∗∗ R does! And so on.

Putting everything together, it seems that R T ∗∗∗∗ T , that is T  

followed by RT, has the same effect as R  followed by T , that is T ∗∗∗∗ R : 

in the language of Abstract Algebra, RT∗∗∗∗ T = T∗∗∗∗ R . ‘Multiplying’ both 

sides by T−−−−1 (T ’s inverse , that is a translation by a vector 
opposi te  -- see 1.1.2 -- to that of T  that cancels  T ’s effect), we 
obtain RT = T∗∗∗∗ R ∗∗∗∗ T−−−−1; in even more algebraic terms, we have shown 

that RT is the conjugate  of R  by T . Switching to Geometry and 

moving away from the bathroom wall, we offer a ‘proof without 
words’ (figure 4.4) of the following fact: for every translation T  and 
every rotation R = (K, φφφφ), the ‘product’  T ∗∗∗∗ R ∗∗∗∗ T−−−−1 is indeed the 
rotation R T = (T(K), φφφφ), that is, R  ‘ translated’  by  T . (You may of 

course provide a rigorous geometrical proof, especially in case you 
are aware of the fact that any two isosceles triangles of equal 
bases and equal top angles must be congruent!)    



                
Fig. 4.4

Since compositions of isometries leaving a wallpaper pattern 
invariant leave it invariant, too, we conclude that we may indeed 
assume the following: in every wallpaper pattern, the image of the 
center of a rotation R  by a translation T  is the center for a new 
rotation (T ∗∗∗∗ R ∗∗∗∗ T−−−−1 rather than T ∗∗∗∗ R  or R ∗∗∗∗ T) by the same  angle . This 
follows from the more general fact depicted in figure 4.4, was 
empirically confirmed in the case of the bathroom wall, and may be 
further verified in the cases of the beehive and the other wallpaper 
patterns you are going to see in this chapter.  

It follows that the existence of a single rotation center in a 
wallpaper pattern implies the existence of infinitely many rotation 
centers all over the plane! Indeed, there exist two distinct, non-
opposite translations in our pattern, say <p, q> and <r, s>, hence 
translating the rotation center by the four distinct translations    
<p, q>, <r, s>, <−p, −q>, and <−r, −s> -- notice that if a translation 
leaves a wallpaper pattern invariant then so does its opposite -- we 
produce four new rotation centers around the old one. Repeating this 
process to all new centers again and again we end up with an 
inf inite  latt ice  of rotation centers, shown in figure 4.5 below for 
the cases of the beehive and the bathroom wall. Observe that there 
exist in fact three  latt ices  in  one  in the case of the beehive, 
consisting of 600, 1200, and 1800 centers, and two  lattices  in  one  



in the case of the bathroom wall, consisting of 900 centers and 1800 
centers. (There is more than meets the eye here: there really are two 
kinds of 900 centers in the bathroom wall -- only one of which was 
shown in figure 4.2 -- the translations of which may transport us 
from one kind to another only in a rather ‘indirect’ manner (7.6.3); 
and similar remarks apply to the beehive’s 1200 centers and to the 
1800 centers of both the beehive and the bathroom wall.)  

Fig. 4.5

Notice the lack of rotation centers other than the ones shown in 
figure 4.5: in a wallpaper pattern rotation centers cannot be 
arbitrarily close to each other, in the same way that translation 
vectors cannot  be  arbitrar i ly  smal l  -- this is what Arthur L. 
Loeb calls Postulate  of  Closest  Approach  in his Concepts  and  
Images  (Birkhauser, 1992). For a challenge to this principle and 
further discussion you may like, if adventurous enough, to have a 
look at 4.0.7. It seems in fact that there is an interplay between 
translation vectors and distances between rotation centers, to the 
extend that you might venture to guess that every vector starting at 
a rotation center and ending at a center for a rotation by the same  
angle  is in fact a translation vector for the entire pattern: this is 
true for 600 centers but not for 900, 1200, or 1800 centers, as you 
may verify for yourself (and has been hinted on at the end of the 
preceding paragraph); still, there are interesting facts relating the 
distances  between rotation centers to the lengths  of translation 
vectors that you should perhaps explore on your own!    



4.0.5 Rotation centers rotated. Let’s have another look at the 
beehive pattern and its various rotation centers, as featured in 
figure 4.2 (entire pattern) or figure 4.5 (centers only). It seems 
clear that the rotation about a randomly chosen center (be it for 600, 
1200, or 1800) of every  other center (be it for 600, 1200, or 1800) 
moves it to another center (for a rotation by the same  angle ); for 
example, rotating a 1200 center about a 600 center (by 600, of 
course) we get another 1200 center, rotating a 600 center about a 
1800 center (by 1800) we get another 600 center, etc. Similar 
observations may be made for the bathroom wall and, in fact, every 
wallpaper pattern that has one, therefore infinitely many, rotation 
centers: wallpaper patterns are indeed wonderful!

Moving away from the harmonious world of wallpaper patterns, 
we must ask: is it true in general that rotations always rotate 
rotation centers to rotation centers? To be more specific, consider 
two rotations, R 1 = (K1, φφφφ1) and R 2 = (K2, φφφφ2): is it true that 

R 1(K 2), that is K 2 rotated about K 1 by  φφφφ1, is a center for a rotation 

by φφφφ2? The answer is “yes”, and the rotation in question is no other 

than R1∗∗∗∗ R2∗∗∗∗ R1
−−−−1, the conjugate  of R2 by R1: the same algebraic 

operation employed in 4.0.4 to express the translation of a rotation 
works here for the rotation  of  a  rotation ! While a computational 
proof using the rotation formulas of section 1.3 certainly works, the 
easiest way to demonstrate this wonderful fact is a geometr ical  
‘proof without words’ (figure 4.6 below) in the spirit of figure 4.4; 
we take both φφφφ1 and φφφφ2 to be clockwise, but you may certainly verify 

that this is an unnecessary restriction. 

We should note in passing that 4.0.4 and 4.0.5 (and figures 4.4 & 
4.6 in particular) are special cases of a broader phenomenon that we 
will encounter again and again in chapter 6 (starting at 6.4.4) and 
section 8.1 (and the rest of chapter 8): the ‘ image’  of  an  isometry  
by another isometry is again an isometry; we should probably 
remember this fact under a name like Mapping  Principle , but we 
will later call it Conjugacy  Principle  on account of the algebraic 
realities discussed above. 



Fig. 4.6

As in 4.0.4, we must stress that the rotations R1∗∗∗∗ R2, R2∗∗∗∗ R1, and 

R1∗∗∗∗ R2∗∗∗∗ R1
−−−−1 are all distinct: we will thoroughly examine such 

compositions of rotations and other isometries in chapter 7.

4.0.6 Only four angles are possible! At long last, we are ready to 
establish  the Crystallographic Restriction. Assume that a certain 
wallpaper pattern remains invariant under rotation by an angle φ, and 
pick two centers at the shortest  possible  distance  (4.0.4) from 
each other, K0 and K1. Let us also assume that 00 < φφφφ ≤≤≤≤  1800: in case        

φ > 1800 we can work with the angle 3600 − φ, which also leaves the 
wallpaper pattern invariant. We may now (4.0.5) rotate  K 1 by a 

counterclockwise φ about  K 0 in order to get a new center K2, and 

then rotate K2 (about K0 and by counterclockwise φ always) to obtain 

yet another center K3, and so on. For how long can we continue this 

way, producing new centers on the ‘rotation  center  circle’  (figure 
4.7) of center K0 and radius |K0K1|? In theory (and absence of the 

assumption that |K0K1| is the minimal possible distance between any 

two distinct rotation centers) for ever; in practice not for too long, 
as no  center is allowed to fall within an ‘arc  distance’  of less  



than  600 from K1, unless it returns to K1: otherwise we would have 

two rotation centers at a distance  smaller  than  |K 0K 1| from each 

other! (Think of an isosceles triangle K0K1K where K is the multi-

rotated K1 and |K0K1| = |K0K|; if the angle ∠ K1K0K is smaller than 600 

then the other two angles are bigger than 600, therefore |KK1| would 

be smaller than |K0K1|.) 

 

                         
   
Fig. 4.7

Let now N be the unique integer such that N××××φφφφ ≤≤≤≤  3600 < (N+1)××××φφφφ: 
that is, N records how many rotations are required for K1 to either 

return  to K1 (N×φ = 3600) or bypass  K1 (N×φ < 3600 < (N+1)×φ). 

In the latter case (N××××φφφφ < 3600) we must also assume, in order to 
avoid the ‘ forbidden  arc’ , the inequalities 3600 −−−−  N××××φφφφ ≥≥≥≥  600 and 
(N+1)××××φφφφ −−−−  3600 ≥≥≥≥  600; these inequalities lead to 3000/N ≥  φ and     
φ ≥  4200/(N+1), respectively. It follows that 300/N ≥  420/(N+1), so 
300×(N+1) ≥ 420×N and 300 ≥ 120×N; we end up with N ≤≤≤≤  2.5, hence 
either N = 1 or N = 2. The case N = 1 is ruled out by φ ≤ 1800, while in 
the case N = 2 the inequalities 3000/N ≥ φ and φ ≥ 4200/(N+1) yield 
1400 ≤≤≤≤  φφφφ ≤≤≤≤  1500. But if K2 lies on the arc [1400, 1500] then K3 lies 

on the arc [2800, 3000], K4 on the arc [600, 900], K5 on [2000, 2400], 

and K6 on [3400, 3900] = [−−−−200, 300] , which is part of the ‘forbidden 

arc’: K1’s trip ends up in a disaster, unless  perhaps φφφφ = 1440 (the 



solution of the ‘return  equation’  5×φ = 2×360), in which case K1 

quietly returns to itself with K6 ≡ K1 (figure 4.8). But in that case a 

(counterclockwise) rotation by 1440 applied twice certainly yields a 
(counterclockwise) rotation by 2880, hence a (clockwise) rotation by 
3600 − 2880 = 720, a rotation that will be ruled out further below.  

                      

Fig. 4.8

In the former case (N××××φφφφ =  3600) we substitute φ = 3600/N into 
the inequality (N+1)×φ − 3600 ≥ 600 to get (N+1)×360/N − 360 ≥ 60 
and, eventually, N ≤≤≤≤  6; more intuitively, we must have φφφφ ≥≥≥≥  600 or 
else K2 would fall into that ‘forbidden arc’ discussed above. After 

discarding the case N = 1 (φ = 3600 -- no rotation), we are left with 
the cases N = 2 (φ = 1800), N = 3 (φ = 1200), N = 4 (φ = 900), N = 5      
(φ = 720), and N = 6 (φ = 600); ‘global rotations’ by all these angles 
are possible and familiar to you by now, except  for  φφφφ = 720 (the 
angle that tormented many artists only a few centuries ago!). To 
render a rotation by 720 impossible for a wallpaper pattern, we 
simply rotate K 0 about  K 1 by clockwise  720 to a rotation center 

K 0′  (figure 4.9): it is obvious now that |K 2K 0′′′′ |  is  smal ler  than  

|K 0K 1|, thus violating the assumption on the minimality of |K0K1|! (To 

be precise, trigonometry yields |K2K0′ | = (sin180/sin540) × |K0K1| ≈  
.38 × |K0K1|.)



                          

Fig. 4.9

We conclude that a wallpaper pattern either has no rotation at 
all or that the smallest rotation that leaves it invariant can only be 
by one of the four angles that we couldn’t rule out: 600, 900, 1200, 
1800. Based on this fact, we naturally split wallpaper patterns into 
f ive  famil ies : those that have no rotation at all (or, equivalently, 
smallest rotation 3600), and those of smallest rotation 600, 900, 
1200, and 1800, respectively; this greatly facilitates their 
classification into seventeen  dist inct  types  (chapter 8), as well 
as their descriptions in this chapter (sections 4.1 through 4.17).

4.0.7* An ‘exotic’ pattern and a definition. Most available proofs 
of the crystallographic restriction seem to follow, in one way or 
another, W. Barlow ’s proof, published in Philosophical Magazine in 
1901; such is the case, for example, with both H. S. M. Coxeter’s 
Introduction to Geometry  (Wiley, 1961) and David W. Farmer’s 
Groups and Symmetry: A Guide to Discovering Mathematics  
(American Mathematical Society, 1996). These proofs assume both  
Loeb’s Postulate of Closest Approach (4.0.4), which guarantees a 
minimum distance between rotation centers, also assumed in our 
proof, and the fact that a wallpaper pattern’s smallest rotation 
angle is of the form 3600/n  (where n is an integer), which we did 
not  assume. Our example below presents a clear challenge to both 
these assumptions.

Let S  be the set of all rational  points  in the plane, that is, the 



set of all points both coordinates of which are rational numbers; 
notice that S is dense  in the plane, in the sense that every circular 
disk, no matter how small, contains infinitely  many  elements of S. 
What if we consider S to be a wallpaper pattern? It certainly has 
t rans lat ions  in  inf ini tely  m a n y  di rect ions : for every pair of 
rational numbers, a and b, T(x, y) = (a+x, b+y) defines a translation 
<a, b> that leaves S invariant! Observe also that S has 1800 rotation 
about every point (c, d) in S, defined by R(x, y) = (2c−x, 2d−y); this 
already shows that rotation centers of S can indeed be arbitrarily 
close to each other. Moreover, S has rotation  about  each  point  of  
S  by  infinitely  many  angles : every angle both the sine and the 
cosine of which are rational would map a rational point to a rational 
point, as the rotation formulas of 1.3.7 would demonstrate; and for 
every pair of integers m, n, such an angle is actually defined via sinφ 

= 
2mn

m2+n2
 and cosφ = 

m2−n2

m2+n2
, thanks to |2mn| ≤ m2+n2, |m2−n2| ≤ m2+n2, 

and the Pythagorean  identity  (2mn) 2 + (m2−n2)2 = (m2+n2)2!

So, S is indeed a pattern invariant under rotation by angles other 
than 3600/n that has rotation centers at arbitrarily small distances 
from each other. In case you protest the fact that S consists of 
single points, we can easily modify it to look more ‘pattern-like’. 
For example, we can augment every rational point (a, b) to a square 
‘frame’ defined by the points (a−r, b−r), (a−r, b+r), (a+r, b−r), and 
(a+r, b+r), where r is an arbitrary rational  number. As each such 
‘frame’ contains many points with one or two irrational coordinates, 
you may protest that the union of all the ‘frames’ (over all (a, b) and 
all r) is no other than the entire plane: that turns out not to be the 
case, because each ‘frame’ is ‘thin’  (in the sense that it contains no 
full disks) and a theorem in Topology  -- many thanks to Robert  
Israel , who helped this former topologist recall his first love by 
way of a sci.math discussion! -- called Baire  Category  Theorem  
states that the plane cannot be a countably  infinite  union of such 
‘thin’ sets. This much you could perhaps see even without this 
heavy-duty theorem -- the union of all ‘frames’ contains no points 
both  coordinates of which are irrational! -- but you would need the 
theorem in case our ‘extended pattern’ contains not only the ‘frames’ 
described above but their images by all  rotations of S described in 
the preceding paragraph as well: yes, this extended pattern S#  that 
inherits all the translations and rotations of S and seems to be 



everywhere is still  a  countable  union  of  ‘thin’  sets , hence not 
the entire plane! (There is of course a bit more to this Baire 
Category Theorem, as you may find out by checking any 
undergraduate Topology book; one suggestion is George F. Simmons’ 
Introduction to Topology and Modern Analysis  (McGraw-Hill, 
1963).)

‘In practical terms’ now, exotic wallpaper patterns such as S and 
S# cannot quite exist (as art works) in the real world: for every bit 
of paint (or even ink) contains a miniscule full disk -- recall 
Buckminster  Fuller ’s statements about “every line having some 
width and structure” and “every circle being a polygon with 
enormously many sides” (Loeb , p. 126) -- and, ‘reversing’  the 
Baire Category Theorem, we easily conclude that every pattern 
containing such disks and  having arbitrarily small translations must 
equal/blacken the entire plane! That is, art works -- which cannot be 
infinite to begin with -- cannot have arbitrarily small translations, 
hence, less obviously, must also satisfy that Postulate of Closest 
Approach  (no arbitrarily small distances between rotation centers): 
indeed, as we will see in 7.5.2, one can always ‘combine’ two 
rotations (by the same angle but of opposite orientations) to produce 
a translation (of vector length not exceeding twice the distance 
between the two centers).

A broader way of ruling out arbitrarily small translations is the 
following definition (certainly satisfied by art works): a wallpaper 
pattern S is a countable  union  of  congruent  sets  Sn  that is 

invariant under translation in two distinct, non-opposite directions, 
and has also the property that every  disk  intersects  at  most  
finitely  many  Sns. (In the case of the beehive and the bathroom 

wall the Sns  are (boundaries of) regular hexagons and squares, 

respectively; and in the case of the sets S and S# -- not accepted as 
wallpaper patterns under this definition due to failure of the f inite  
intersection  property  -- the Sns are rational points and rational 

points surrounded by those rationally rotated concentric rational 
square frames, respectively.)



4.1  3600 , translations only (p1)

4.1.1 Stacking p111 s. What happens when we fill the plane with 
copies of a p111  border pattern placed right above/below each other 
in ‘orderly’  fashion, whatever that means? We obtain wallpaper 
patterns like the ones shown below:

Fig. 4.10

Fig. 4.11



While looking different from each other, these two wallpaper 
patterns are ‘mathematically identical’: they both have translation 
in two, thus infinitely  many  directions, and no other isometries.  
It is only their minimal  t ranslat ion  vectors  that separate them: 

horizontal u
→

 and vertical v
→

 (figure 4.10) versus horizontal u
→

 and 

diagonal w
→

 (figure 4.11); notice that the two patterns share many 

translation vectors, like u
→

, u
→

+2v
→

 = 2w
→

, -u
→

+2w
→

 = 2v
→

, etc. (Vectors 
are added following the paral lelogram  rule  familiar from Physics, 
see figures 4.10 & 4.11; and it is this addition’s nature that leads to 
the infinitude of translations alluded to right above.) Such wallpaper 
patterns are denoted by p1  and are the simplest of all.

Is it possible to stack copies of the “p ”  border pattern in some 
kind of ‘disorderly’  fashion so that the end result is not  a 
wallpaper pattern? The answer is “yes”, and here is an example:

Fig. 4.12 



What went wrong with the design in figure 4.12? To answer this 
question you have to know, if you have not guessed it already, what 
the rest of the design is! Recall that all wallpaper patterns are 
infinite, and you must always be able to imagine their extension 
beyond the page you are reading! This ‘extension’ is normally not that 
difficult to see (as long as you remember that you have to, of 
course), but in the case of the ‘pathological’ pattern of figure 4.12 
you may need some help: we start with a copy of the “p ”  border 
pattern, then place one  ‘shifted’ copy right below it, continue with 
two  ‘straight’ copies underneath, then one  shifted copy below them, 
then three  straight copies again, then one  shifted copy, and so on; 
the same process applies to all rows above the top one in figure 
4.12. We leave it to you to verify that this ...32123...-like design is 
not  a wallpaper pattern: all you have to do is to verify that it has 
translations  in  only  one  direction , the horizontal one.

4.1.2 Pis all the way! Below you find another design that fails to 
be a wallpaper pattern by having translation in only one direction, in 
this case the vertical one; unlike the one in figure 4.12, built by 
disorderly stacking of a border pattern, this one is built by orderly 
stacking of an one-dimensional design that is not  a border pattern:

Fig. 4.13

In case you haven’t noticed, the protagonist here is no other than  
ππππ ≈≈≈≈  3.141592654... , well known to have an infinite, non-repeating 
decimal expansion: don’t be fooled, one  reflection alone (right in the 
middle) cannot produce a translation!



4.1.3 From the land of the Incas. Here is a very geometrical Inca 
design that, in spite of its geometrical beauty and complexity, has 
no isometries other than translations, therefore it is classified as a 
p1  wallpaper pattern (Stevens , p. 180):
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Fig. 4.14

4.2  3600  with reflection (pm)

4.2.1 Straight stacking of pm11 s. You have certainly noticed 
that the design in figure 4.13 has mirror symmetry. Due to the lack 
of horizontal translation, however, there exists one and only one 
reflection axis that works. To obtain a wallpaper pattern with 
infinitely many reflection axes (all parallel  to each other), we can 
resort to the process of 4.1.1, stacking copies of a pm11  border 



pattern this time:

Fig. 4.15

You recognize of course the “p q ”  border pattern of 2.2.2 and 
figure 2.6. The wallpaper pattern in figure 4.15 has automatically 
inherited all its symmetries (like vertical reflection and horizontal 
translation) in a rather obvious manner; in addition to those, 
‘straight’  stacking -- every  p  straight  above  a  p  and  every  q 
straight  above  a  q  -- has created vertical translation.

Such wallpaper patterns generated by straight stacking of a 
pm11  border pattern and having reflection in one direction (and no 
rotation of course) are denoted by pm . 

4.2.2 Two kinds of mirrors. Just like pm11  border patterns, all 
pm  wallpaper patterns have two kinds of reflection axes; this is for 
example the case with the wallpaper pattern of figure 4.15. We 
illustrate this phenomenon with a more geometrical example, 
stressing once again the fact that reflection axes are allowed to go 
through  the motifs (in this case being identical to the trapezoids’ 
own reflection axes):



  
Fig. 4.16

4.2.3 Ancient Egyptian oxen. The following example of a pm  
pattern (Stevens , p. 193) is dominated by the stillness that tends 
to characterize the pm  patterns (as well as oxen in general):

             
                                                                         ©  MIT Press, 1981

Fig. 4.17 



Thanks to the cascading  spires  between the oxen, there are 
still two  kinds  of reflection axes, even though they all ‘dissect’ 
the oxen!

4.3  3600  with glide reflection (pg)

4.3.1 Shifted stackings of pm11 s. What happens when we stack 
the “p q ”  pattern in a ‘disorderly’ manner, as shown right below?

Fig. 4.18

Clearly, the shift ing  of  every  other  row  has eliminated any 
possibility for reflection, but it has generated two  kinds  of 
vertical glide  reflection , as shown in figure 4.18. Such 
rotationless wallpaper patterns with glide reflection are denoted by 
pg ; they may be obtained either as a shifted stacking of a pm11  
border pattern (figure 4.18) or by shifting every other row in a pm  
wallpaper pattern, as the following modification of figure 4.16 (and 



determination of glide reflection axes based on chapter 3 methods) 
demonstrates:

Fig. 4.19

4.3.2 Straight stackings of p1a1 s. Can we get a pg  wallpaper 
pattern by stacking copies of a border pattern with glide reflection? 

Fig. 4.20

As figure 4.20 illustrates, this is certainly possible: our pattern 
inherits the horizontal  glide reflection from the p1a1  border 
pattern of figure 2.15 (crossing right through  the stacks, like lines 
A  and C ), and it has its own, ‘stack-gluing horizontal glide 
reflection (with axes running right between  the stacks, like line B ) .



4.3.3 Between pg  and p1 . What kind of wallpaper pattern is the 
one obtained via a shifted  stacking of copies of “p b ” ?

Fig. 4.21

The wallpaper pattern shown in figure 4.21 is a ‘complicated’ 
one: it has glide reflection along the lines A  and C , exactly as the 
pattern in figure 4.20, but not  along lines B  or D ! Indeed line B  (or 
D ) fails to be a glide reflection axis for the same reason that the 
border pattern in figure 2.16 does not have glide reflection: it would 
require two  dist inct  vectors  -- short vector sending C-letters to 
A-letters, long vector sending A-letters to C-letters -- in order to 
work as a glide reflection axis! So, and unless one checks only  axes 
like B  or D , our pattern is classified as a pg  rather than a p1 . 
Interestingly, this pg  pattern may be viewed as a straight stacking 
of a p111  border pattern (consisting of the strip between two     B-
like axes, for example)!

How does one ‘see’ glide reflection in a wallpaper pattern where 
not  all motifs are homostrophic , distinguishing between pg  and 
p1? One trick is suggested by our observation in 2.4.2 that remains 



valid for wallpaper patterns, too: the glide reflection vector is 
always equal to half  of a translation vector -- but not vice versa, 
as the pg  has glide reflection in only  one  direction and translation 
in infinitely  many  directions... So, first you use your intuition to 
pick the ‘r ight’  direct ion , next you translate a motif by half the 
minimal translation vector in that direction, and finally you look for 
a reflection axis that maps it to another motif: for example, 
trapezoid ABCD in figure 4.19 is first vertically translated right 
across the reflection axis from trapezoid A′B ′C ′D ′ . 

4.3.4 Peruvian birds. We conclude this section with an example 
of a Peruvian pg  pattern from Stevens  (p. 188): 

              
                                                                         © MIT Press, 1981  
Fig. 4.22

Clearly, there are two flocks of birds ‘flying’ in opposite 
directions, and that feeling of ‘opposite’ movements perpendicular  
to the direction of the glide reflection is quite common in pg  
patterns; you can see that in the wallpaper pattern of figure 4.20, 
for example (especially if you turn the page sideways), but not quite 
in those of figures 4.18 or 4.19 -- can you tell why?   



4.4  3600  with reflection and glide reflection (cm)

4.4.1  A ‘perfectly shifted’ stacking of pm11 s. What if we shift 
every other row in the pattern of figure 4.18 a bit further, pushing 
every  p  straight  above  a  q  and  vice  versa ? Here is the result:

Fig. 4.23 

The wallpaper pattern in figure 4.23 looks like ‘both’  a pm  and a 
pg , as reflection axes alternate with glide reflection axes: it is in 
fact a ‘new’ type, known as cm .

4.4.2 More perfectly shifted stackings. What has made the 
patterns of figures 4.15, 4.18, and 4.23 different? Well, a straight 
stacking of the pm11  “p q ”  border pattern simply preserved the 
border pattern’s reflection and created a pm  wallpaper pattern in 



figure 4.15; a ‘ random’  shifting of every other row ‘replaced’ the 
reflection of the pm  pattern by glide reflection and created a pg  
pattern in figure 4.18; and, finally, a ‘perfect’  shifting of every 
other row ‘preserved’ the glide reflection of the pg  pattern and  
‘revived’ the lost reflection, creating a cm  pattern. But, what do we 
mean by “perfect shifting”? Well, the following example may help 
you answer this question:

Fig. 4.24

We just obtained another cm  wallpaper pattern, this one with 
horizontal reflection and glide reflection, stacking copies of the    
“p b ”  p1a1  border pattern: just as in figure 4.23, placing every p  
straight below a b  and vice versa allows for some reflection that we 
couldn’t possibly have in the patterns of figures 4.20 & 4.21 
(consisting of straight stackings and randomly shifted stackings of 
that “p b ”  border pattern, respectively). A closer look reveals that 
it was crucial to shift every other row by a vector equal to half  the  
minimal  t ranslat ion  vector  of the original border pattern! That’s 
what we mean by “perfect shifting”, as opposed to “random 
shifting” (by a vector of length either strictly smaller or strictly 
bigger than half the minimal translation vector’s length). By the 



way, the pattern in figure 4.11 is the result of a perfect shifting! 

We leave it to you to check that perfectly shifted stackings of  
p1m1  border patterns are cm  wallpaper patterns, while their 
randomly shifted stackings are pm  wallpaper patterns: you may of 
course use the D -pattern of figure 2.8 to verify this. 

4.4.3 In-between glide reflection. Consider the following 
trapezoid-based wallpaper pattern:

Fig. 4.25

Many students will typically see either all the reflections or 
half of them and quickly classify it as a pm  pattern. Having just 
gone through 4.4.2, you are of course likely to recognize it as either 
a perfectly shifted version of the pm  pattern of figure 4.16 or a 
perfectly shifted stacking of a pm11  border pattern: either way, it 
is clearly a cm  pattern!

Are there any ways of seeing the glide reflection ‘directly’ ? 
One could employ the machinery of chapter 3, as we did in 4.3.1, or 
resort to the idea discussed in 4.3.3. An easier approach takes 
advantage of the very structure of the cm  type and the fact that its 
glide reflection axes always run half  way  between two nearest 
reflection axes: once you have determined the reflection axes in 
what seems to be a pm  pattern, draw a line half way between them 
and check whether or not there is a vector that makes it work: if yes 



your pattern is a cm , if not your pattern ‘remains’ a pm . In short, 
every time you see reflections in a wallpaper pattern check  
whether or not there exists in -between  gl ide  ref lect ion .

4.4.4 Phoenician funerary ‘crowns’. The following design from a 
Phoenician tomb in Syria (Stevens , p. 202) shows that the cm  type 
has been with us for a very long time; but this is the case with 
most, if not all, types of wallpaper patterns...
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Fig. 4.26

The Phoenicians were a naval superpower more than twenty five 
centuries ago, but the cm  remains popular with our times’ 
superpower: next time you stand close  to the Star-Spangled Banner, 
have a careful  look at its stars!

4.4.5 Diagonal axes. Reflection and glide reflection axes do not 
always have to be ‘vertical’ or ‘horizontal’; they may certainly run in 
every possible direction, and the concept of direction is a relative  
one, as it changes every time you rotate the page a bit! Here we 
present an interesting example of a cm  pattern with easy-to-see 
‘diagonal’  reflection and more subtle in-between glide reflection: 



Fig. 4.27

Under glide reflection G1, for example, A  is mapped to B , while 

glide reflection G2 maps A  to D  and B  to C , etc.

4.4.6 Only one kind of axes! While our examples in sections 4.2 
and 4.3 show that there are always two kinds of reflection and glide 
reflection axes in pm  and pg  wallpaper patterns, respectively (both 
in the same direction, of course), all the examples in this section 
clearly indicate that every cm  wallpaper pattern has only one  kind 
of reflection axes and only one  kind of glide reflection axes as well. 
We elaborate on this observation in 6.4.4 and 8.1.5, as well as in 
4.11.2. For the time being we would like to point out that, in the 
case of the cm , it seems that whatever we gained  in terms of 
symmetry we lost  in terms of diversity! In other words, whenever 
all vertical reflection axes look the same to you, look out for that 



in-between glide reflection: your pattern is probably not a pm  but a 
cm ! Likewise, if all the glide reflection axes in a seemingly pg  
pattern look the same to you, then either you have missed  the  
‘other  half’  of the glide reflection or you have achieved  the  
impossible : you saw the glide reflection without seeing the 
reflection ... and your pattern is probably a cm  rather than a pg ! 

4.5  1800 , translations only (p2)

4.5.1 Stacking p112 s. Replacing the “p ”  border pattern of 4.1.1 
by the “p d ” border pattern, we obtain the following wallpaper 
patterns, direct analogues of the p1  patterns in figures 4.10 & 4.11:

Fig. 4.28



Fig. 4.29

Such patterns, having nothing but half  turn  -- in addition to 
translation, always -- are known as p2 . As you can see, there exist 
four  kinds  of rotation centers, nicely arranged at the vert ices  of  
rectangles (and numbered 1, 2, 3, 4). These rectangles are usually 
mere paral lelograms  -- as in figure 8.18, think for example of a 
p2  til ing  of the plane by copies of a single parallelogram -- but 
they may on occasion be rhombuses or even squares:

Fig. 4.30



4.5.2 When is the twofold rotation there? How could you tell 
that the wallpaper pattern in figure 4.28 has 1800 rotation without 
some familiarity with the p112  border pattern that created it? 
Well, the easiest way is to turn the page upside down and decide 
whether or not the pattern still looks the same ... keeping always in 
mind the fact that all patterns are inf inite . It is always better, on 
the other hand, to be able to determine some 1800 rotation centers: 
this you can do either based on your intuition and experience or 
following methods from chapter 3, as shown in figure 4.30; and then 
you can always confirm your findings using tracing paper!

As we will see in the next four sections, it is easier to find the 
twofold rotation centers when the given pattern happens to have 
some (glide) reflection: then the location of the rotation centers is, 
more or less, predictable . Within the p2 , once you have found one  
center, you can use the pattern’s translations  to locate all  the 
others: indeed a look at figures 4.28-4.31 will convince you that the 
lengths of the sides of those ‘center parallelograms’ are equal to 
half  the  length  of the pattern’s min imal  t ranslat ion  vectors  
(to which the sides themselves are parallel ); more on this in 7.6.4!

4.5.3 Italian curves. How about finding all four kinds of 1800 
rotation centers in this modern Italian ceramic (Stevens , p. 213)?
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Fig. 4.31



4.6  1800 , reflection in two directions (pmm)

4.6.1 Stacking pmm2 s. Rather predictably in view of what we 
saw in earlier sections, straight stackings of pmm2  border patterns 
have both 1800 rotation and reflection in two  directions:

Fig. 4.32 

There is nothing too tricky about this new type of wallpaper 
pattern, known as pmm : it has reflection axes (of two kinds) in two  
perpendicular  directions  and four kinds of 1800 rotation centers, 
all of them located at the intersect ions  of  ref lect ion  axes . This 
last observation gives you a chance to practice your geometry a bit 
and try to explain why, as first noticed in 2.7.1, the intersection of 
two perpendicular reflection axes yields a 1800 rotation center: this 
is a special case of a more general fact discussed in 7.2.2!

4.6.2 Native American ‘gates’. Here is a Nez Perce′  pmm  pattern 
from Stevens  (p. 244), not quite dominated by the pmm ’s stillness:
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Fig. 4.33

4.6.3 More examples. While the ‘building blocks’ in the wallpaper 
patterns of figures 4.32 & 4.33 had a lot of symmetry themselves 
(D 2 sets), it is certainly possible to build pmm  patterns employing 

less symmetrical motifs (still creating D 2 fundamental regions 

though), as figures 4.34 & 4.35 demonstrate:

Fig. 4.34



Fig. 4.35

4.7  1800 , reflection in one direction 
             with perpendicular glide reflection (pmg)

4.7.1 Shifted stackings of pmm2 s. Let’s look at a randomly 
shifted stacking of the “H ”  border pattern employed in figure 4.32:

Fig. 4.36



4.7.2 Straight stackings of pma2 s. Let’s also look at a straight 
stacking of a pma2  border pattern similar to the one in figure 2.24: 

 

Fig. 4.37

4.7.3 What is going on? As we have indicated above, both 
wallpaper patterns created have 1800 rotation, reflection in one 
direction (horizontal in figure 4.36, vertical in figure 4.37), and 
glide reflection in one direction as well (vertical in figure 4.36, 
horizontal in figure 4.37). In both cases, the directions of reflection 
and glide reflection are perpendicular  to each other, with all  the  
rotat ion  centers  on  gl ide  ref lect ion  axes , half  way  between  
two  reflection  axes : this type of 1800 wallpaper pattern is known 
as pmg . Here are two more examples employing, once again, 
trapezoids:



Fig. 4.38

Fig. 4.39

While all four wallpaper patterns in figures 4.36-4.39 belong to 
the same type (pmg ), they do not necessarily ‘look’ the same; for 
example, the ones in figures 4.36 & 4.39 (randomly  shifted 
stackings of a pmm2  border pattern) create a feeling of a wave-like 
motion, while the ones in figures 4.37 & 4.38 (straight stackings of 
a pma2  border pattern) create an impression of two flows in 
opposite directions. More significantly, there are glide  reflection  
axes  of  two  kinds in all four examples. It is tempting to say the 
same about reflection axes (especially in figures 4.37 & 4.38), but 
not quite so if we are ‘cautious’ enough to turn  the patterns upside 
down: we elaborate further on this in 4.11.2. (Likewise concerning 
the numbering  of half turn centers in figures 4.36-4.39!) 



How does one recognize a pmg  pattern? Basically, look for a 
1800 pattern with ref lect ion  in  only  one  direct ion  -- as we are 
going to see the pmg  is the only  1800 wallpaper pattern with 
reflection in only one direction -- and then use all the other 
observations made in this section for confirmation.

4.7.4 Chinese pentagons. The following pmg  example of a 
Chinese window lattice (Stevens , p. 221) comes close to a famous 
impossibi l i ty  (tiling the plane with regular  pentagons):
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Fig. 4.40

4.8  1800 , glide reflection in two directions (pgg)

4.8.1 Shifted stackings of pma2 s. In the same way that going 
from straight to shifted stackings of p m m 2 s substituted reflection 
by glide reflection in one  of the two directions (and ‘reduced’ the 
symmetry type from pmm  to pmg ), going from straight to shifted 
stackings of pma2 s replaces the reflection by glide reflection and 
‘reduces’ the symmetry type from pmg  to pgg :



Fig. 4.41

A brief review of figures 4.18 & 4.21 would make it easier for 
you to realize that the wallpaper pattern in figure 4.41 has the 
indicated glide reflections, in two  perpendicular  direct ions . It 
should also be easy for you by now to locate the 1800 rotation 
centers (of two  kinds, actually) and confirm that each of them lies 
r ight  between  four  gl ide  ref lect ion  axes . There is no reflection. 
Wallpaper patterns of this type are known as pgg .

4.8.2 Between p2  and pgg . Distinguishing between p2  and 
pgg  -- especially in the presence of ‘ rectangularly  ruled’  half 
turn centers characteristic of glide reflection (8.2.2) -- is not that 
easy. Reversing our advice in 4.8.1, we suggest that every time you 
determine all  the 1800 rotation centers in a wallpaper pattern you 
should subsequently check the lines passing right  between  rows  
or  columns  of  rotation  centers : those could  be glide reflection 
axes! In general, the presence of heterostrophic  motifs  in a 
pattern (such as p  and q  in figures 4.18 & 4.41) is a major indication 
in favor of glide reflection (4.3.3). Things can get a bit trickier in 



case the pattern’s ‘building blocks’ are D1 (rather than C1) sets:

Fig. 4.42

4.8.3 Two kinds of axes? Observe that the pgg  patterns in 
figures 4.41 & 4.42 appear  to have two kinds of vertical glide 
reflection axes: we must stress at this point that remarks similar 
to the ones made in 4.7.3 do apply! Anyway, returning now to C1 

motifs, or cutting the trapezoids of the pattern in figure 4.42 in half 
if you wish, here is a pgg  pattern that appears  to have two kinds of 
glide reflection axes in both  directions:

    

Fig. 4.43



4.8.4 Congolese parallelograms. The following pgg  example 
from Stevens  (p. 236), full of heterostrophic  paral le lograms , 
should allow you to practice your skills in determining glide 
reflection axes:
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Fig. 4.44

4.9  1800 , reflection in two directions 
             with in-between glide reflections (cmm)

4.9.1 Perfectly shifted stackings of pma2 s and pmm2 s. In the 
same way perfectly shifted stackings of pm11 , p1a1 , and p1m1  
border patterns created a ‘new’ type of wallpaper pattern (cm ) in 
section 4.4, perfectly shifted stackings of pma2  and pmm2  border 
patterns create a two-directional analogue of cm  as shown below:



Fig. 4.45

Fig. 4.46



There is nothing too surprising about this new type of wallpaper 
pattern to those familiar with the cm  and pmm  patterns: there is 
reflection and in-between glide reflection in two  perpendicular  
directions ; within each direction, both reflection and glide 
reflection axes are of one  kind  only ; 1800 rotation centers are 
found at the intersections of reflection axes and -- the only new 
element -- at the in tersect ions  of  gl ide  ref lect ion  axes  as 
well. This new type, very rich in terms of symmetry, is known as 
cmm , and its last property is perhaps the easiest way to distinguish 
it from the p m m  type: in the p m m  pattern all  rotation centers lie 
on reflection axes, in the cmm  pattern half  of them do not . Since 
locating the rotation centers can at times be trickier than finding 
the glide reflection axes, another obvious way of distinguishing 
between pmm  and cmm  is the latter’s in-between glide reflection. 
Either way, once all  reflection axes have been determined, you know 
where to look for both glide reflection axes and rotation centers! 

4.9.2 Shifting back and forth to other types. Quite clearly, the 
cmm  pattern of figure 4.45 is a close relative, or a ‘shifted 
version’, if you wish, of the pmg  pattern in figure 4.37 and the pgg  
pattern in figure 4.41. Likewise, the cmm  pattern of figure 4.46 is 
related to the pmm  pattern of figure 4.32 and the pmg  pattern of 
figure 4.36. Here are two more, trapezoid-based, cmm  patterns the 
‘shifting relations’ of which to previously presented examples you 
may like to investigate:

Fig. 4.47



Fig. 4.48

4.9.3 Turkish arrows. Here comes our long-awaited real-world 
example of a cmm  pattern, a 16th century Turkish design from 
Stevens  (p. 250); make sure you can find all the rotation centers!
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Fig. 4.49



4.9.4 The world’s most famous cmm  pattern ... is no other than 
the all-too-familiar br i ck  wal l :

       

Fig. 4.50

We have already discussed the bathroom  wall  in section 4.0:  as 
you will see right below, the two walls are  mathematically 
d is t inct !

4.10  900 , four reflections, two glide reflections (p4m)

4.10.1 The bathroom wall revisited. How would one classify the 
bathroom wall in case he or she misses its 900 rotation, already 
discussed in 4.0.3? It all depends on which reflections one goes by! 
Indeed, looking at its vertical and horizontal reflections only, the 
bathroom wall would certainly look like a pmm : two kinds of axes, 
no in-between glide reflection... If, on the other hand, one focuses 
only on the diagonal reflections, then the bathroom wall looks like a 
cmm : for there does indeed exist some ‘unexpected’ (yet in-
between ) glide reflection, as demonstrated in figure 4.51:    



Fig. 4.51

Well, our 1800 dreams are over! The bathroom wall is clearly full 
of 900 rotation centers, as pointed out in 4.0.3 and shown in figures 
4.5 & 4.51. Moreover, 1800 patterns may have reflection in at most 
two directions, and, as we will see in section 7.2, the intersection 
point of two reflection axes intersecting each other at a 450 angle 
is always a center for a 900 rotation. On the other hand, the 
bathroom wall has many 1800 rotation centers, too: again, we first 
noticed that in 4.0.3, where it was also pointed out that there are 
two  kinds  of fourfold (900) centers, as opposed to only one  kind  of 
1800 centers; notice also the 900-450-450 triangles formed by two 
fourfold centers (one of each kind) and one twofold center (figure 
4.51), something that will be further analysed in 6.10.1 and 7.5.1. 
Finally, observe that 900 and 1800 centers are always at the 
intersection of four  and two  reflection axes, respectively. 
Wallpaper patterns having all these remarkable properties are known 
as p4m , and they are the only ones having reflection  in  precisely  
four  direct ions .



4.10.2 The role of the squares. Do we always get 900 rotation in 
wallpaper patterns formed by square motifs? The answer is a flat 
“no”, as demonstrated by a familiar floor tiling:

Fig. 4.52

The pattern in figure 4.52 is somewhere between the bathroom 
wall and the brick wall of 4.9.4, a perfectly shifted version of the 
former yet much closer to the latter mathematically: they both 
belong to the cmm  type. Other shiftings of the bathroom wall will 
easily produce pmg  patterns, and you should also be able to produce 
the other 1800 (or even 3600) wallpaper patterns using square 
motifs by being a bit more imaginative!

Reversing the question asked two paragraphs above, can we say 
that p4m  patterns are always formed by square motifs? The answer 
is again “no”, and the following modification of the cmm  pattern of 
figure 4.48 provides an easy counterexample: 



Fig. 4.53 

4.10.3 Byzantine squares. The following example from Stevens  
(p. 308) stresses the p4m ’s glide reflections: 
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Fig. 4.54



4.11  900 , two reflections, four glide reflections (p4g)

4.11.1 Similar processes, different outcomes. In 4.10.2 we 
rotated the motifs in every  other  column  of the ‘squarish’ cmm  
pattern of figure 4.48 by 900 and ended up with the p4m  pattern in 
figure 4.53. Here is what happens when we rotate the motifs in 
every  other  ‘diagonal’  of the p m m  pattern of figure 4.34:

Fig. 4.55

The derived pattern looks very much like a cmm , having vertical 
and horizontal reflection and in-between glide reflection. There are, 
as  always  (4.6.1), 1800 rotation centers at the intersections of 
perpendicular reflection axes. What happens at the much  less  
predictable  intersections of perpendicular glide  reflection axes? 



Well, those intersections are centers for 900, rather than just 1800, 
rotations: no chance for a cmm , which has by definition a smallest  
rotation of 1800! And the surprises are not over yet: as in figure 
4.53, every pair of trapezoids is a ‘square’  D2 set, hence (3.6.3) 

there exist two rotations and  two glide reflections between every 
two adjacent, perpendicular pairs of trapezoids (such as ABCD/EFGH 
and A′B ′C ′D ′/E′F ′G ′H ′); we already know the two 900 rotations that do 
the job, but where are the glide reflections? Using methods from 
chapter 3 once again (figure 4.55), we see that our new pattern has  
gl ide  ref lect ion  in  two  diagonal  direct ions ; these are the 
‘subtle’ glide reflections we were looking for, passing half way 
through two adjacent rotation centers (for 900 and 1800, 
alternatingly) in  every  single  row  and  column  of  centers !

Wallpaper patterns with the properties discussed above are 
known as p4g ; they are the only 900 patterns with reflection  in  
precisely  two  directions . They are easy to distinguish from the 
p4m  patterns: one has to simply look at the number of directions of 
reflection (or even glide reflection, if adventurous enough).

4.11.2 How about rotation centers? Although there seem to be 
two kinds of 900 rotation centers in figure 4.55, marked by 1  and 1 ′′′′ , 
we still declare that, unlike p4m  patterns, every p4g  pattern has 
just one  kind  of fourfold centers: indeed every 900 rotation center 
of type  1 ′′′′  is the image  of a type  1  900 rotation center under one of 
the pattern’s isometries (glide reflection or reflection), and vice 
versa; and, for reasons that will become clear in 6.4.4, but have also 
been discussed in 4.0.5, we tend to view any two isometries that are 
images of each other as ‘equivalent’ (read “conjugate” ).

 
Likewise, we view all the 1800 centers in either a p4g  or a p4m  

pattern as being of the same kind: any two of them are images of 
each other by either a 1800 rotation (possibly about a 900 center) or 
a 900 rotation! This also confirms that the cm  has only ‘one kind’ of 
reflection axes (4.4.6): every two adjacent reflection axes are 
images of each other under the cm ’s glide reflection or translation! 
More subtly, all reflections in the pmg  (4.7.3) and all the glide 
reflections (of same direction) in the pgg  (4.8.3) are ‘of the same 



kind’: indeed every two adjacent pmg  reflection axes and every two 
adjacent, parallel pgg  glide reflection axes are, as we indicated in 
4.7.3, images of each other under a 1800 rotation! Finally, we leave 
it to you to confirm that there exist two , rather than four, kinds of 
1800 centers in the pgg  and pmg  types, and three  kinds of 1800 
centers in the cmm .  

4.11.3 More on ‘diagonal’ glide reflections. The p4g  wallpaper 
pattern in figure 4.56 should be compared to the pgg  pattern of 
4.8.4, which may be viewed as a ‘compressed’ version of it. On the 
other hand, every p4g  pattern may be viewed, with some forgiving 
imagination, as a ‘special  case’  of a pgg  pattern: just ‘overlook’ 
the 900 rotation and all reflections and in-between glide reflections 
... and focus on the 1800 rotations and the diagonal glide reflections! 

     
Fig. 4.56

Every p4g  pattern may also be viewed as the union of two 
disjoint, ‘perpendicular’  cmm  patterns  mapped to each other by 
any and all of the p4g ’s diagonal glide reflections; this is best seen 
in the following ‘relaxed’ version of the previous p4g  pattern (where 
the two c m m s consist of the vertical and the horizontal motifs, 
respectively): 



Fig. 4.57

4.11.4 Roman semicircles. In the following p4g  example from 
Stevens  (p. 294), every two nearest 900 centers are nicely placed 
at the centers of heterostrophic C4 sets:
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Fig. 4.58



4.12  900 , translations only (p4)

4.12.1 Still the same centers! Let’s have a look at the following 
‘distorted’ version of the p4g  pattern of figure 4.57, obtained via an 
‘up and down, left and right’ process:

Fig. 4.59

In terms of rotations, the wallpaper pattern in figure 4.59 is 
identical to a p4m  pattern: two  kinds  of 900 centers, one  kind  of 
1800 centers, and exactly the same lattice of rotation centers that 
we first saw in figure 4.5. What makes this new pattern different is 
that it has no reflections or glide reflections: the absence of the 
former is obvious, some candidates for the latter would require two 
or more gliding vectors each in order to work. Such patterns, having 
only 900 (and 1800, of course) rotation (plus translation, always), 
are known as p4 . 



4.12.2 On the way back to p4m . Pushing the ‘process’ that led 
from the p4g  pattern of figure 4.57 to the p4  pattern of figure 4.59 
one more step we obtain the following p4  pattern:

Fig. 4.60

You can probably guess at this point the next step in the 
process, a step that will result into a p4m  pattern: all these 900 
types are close relatives indeed!

4.12.3 Two kinds of Egyptian ‘flowers’. In this remarkable p4  
design from ancient Egypt (Stevens , p. 284), the two kinds of 900 
centers are cleverly placed inside two slightly different types of 
flower-like D 4 figures; were the two kinds of ‘flowers’ one and the 

same, this design would still be a p4 , except that the other kind of 
900 centers would have to move to the ‘swastikas’: 
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Fig. 4.61

4.13  600 , six reflections, six glide reflections (p6m)

4.13.1 Bisecting the beehive. We have already discussed the 
lattice of rotation centers of the beehive (figure 4.5), and are aware 
of its three rotations (600, 1200, 1800). Figure 4.62 stresses some  
of its rather obvious reflections (of two kinds and in six directions), 
as well as its in-between  glide reflections (again, of two kinds 
and in six directions):

 



  

Fig. 4.62

So, while some reflection axes (#1) pass through sixfold and 
twofold centers only, others (#2) pass through all three kinds of 
centers. As for glide reflection axes, they all pass through twofold  
centers  only , but they are of two kinds as well, having gliding 
vectors of different length (figure 4.62). Wallpaper patterns with 
these properties are denoted by p6m , a type that can justifiably be 
branded “the king of wallpaper patterns”: indeed not only is p6m  
very rich in terms of symmetry, but, as we will see in the coming 
sections, many other types are ‘contained’ in it or ‘generated’ by it. 
(The downside of this is that some times one may miss the 600 
rotation and underclassify a p6m  as a cmm  or even cm ).



4.13.2 From hexagons to rhombuses. It is easy to get a ‘dual’  of 
the pattern in figure 4.62 that features rhombuses  instead of 
hexagons and yet preserves all its isometries:

              
Fig. 4.63

4.13.3 Arabic rectangles. Here are two complex, ‘rectangular’ 
p6m  patterns from Stevens  (p. 330); can you see how to derive 
them from the beehive by attaching rectangles  to the hexagons?  
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Fig. 4.64



4.14  600 , translations only (p6)

4.14.1 ‘Adorning’ the rhombuses. What happens when one starts 
‘enriching’ the ‘plain’ rhombuses in the p6m  pattern of figure 4.63? 
The following Arabic design (Stevens , p. 318) provides an answer:
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Fig. 4.65

The T-like figures inside the rhombuses have turned them from 
D 2 sets into homostrophic C 2 sets, destroying all possibilities for 

(glide) reflection, and yet preserving the rotations: the lattice of 
centers from figure 4.5 remains intact, with twofold, threefold, and 
sixfold centers placed at the vertices of 900-600-300 triangles (on 
which you may read more in 6.16.1 and 7.5.4). Such multi-rotational, 
rotation-only patterns are denoted by p6 .  



4.14.2 Hexagons with ‘blades’. One can get a p6  pattern directly 
from the beehive by cleverly turning the hexagons from D6 sets into 

homostrophic C6 sets; here is one of many ways to do that, turning 

three out of every four old sixfold centers into twofold centers (and 
eliminating three quarters of the old threefold centers as well): 

        
Fig. 4.66

4.15  1200 , translations only (p3)

4.15.1 Further rhombus ‘ornamentation’. Let’s have a look at the 
following Arabic design from Stevens  (p. 260), similar in spirit to 



the p6  pattern of figure 4.65:
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Fig. 4.67

Both patterns create a three-dimensional  feeling, consisting 
of cube-like  hexagons split into three rhombuses rotated to each 
other via 1200 rotation, but that’s where their similarities end. 
Indeed, while the rhombuses in figure 4.65 are homostrophic C2 sets 

(allowing for two  rotations  between any two adjacent rhombuses, 
one by 600 and one by 1200), the rhombuses in figure 4.67 are 
homostrophic C1 sets allowing for only  one  rotation  between any 

two adjacent ones, the 1200 rotation already mentioned: there goes 
our 600 rotation, with the old 600 centers reduced  to 1200 centers! 



It seems that we will have to settle for a wallpaper pattern having 
no other isometries than 1200 rotations and translations: such 
patterns are known as p3 . 

4.15.2  Three kinds of rotation centers. There is a little bit of 
compensation for this reduction of symmetry: unlike p6m  or p6  
wallpaper patterns, every p3  pattern has three  kinds  of 1200 
rotation centers; this is perhaps easier to see in the following 
direct modification of the beehive than in the pattern of figure 4.67: 

   

Fig. 4.68



4.16  1200 , three reflections, three glide reflections,
          some rotation centers off reflection axes (p31m)

4.16.1 Regaining the reflection. All the p6  and p3  patterns we 
have seen so far may be viewed as modifications of the beehive, 
with D6 sets (hexagons) replaced by homostrophic C6 and C3 sets, 

respectively: twelve (or just six) rhombuses ‘build’ a C 6 set in 

figure 4.65, while only three suffice for a C 3 set in figure 4.67. 

What happens when D6 sets turn into D3 sets? Here is an answer:

Fig. 4.69

Rather luckily, the reflections of the D3 sets (hexagons with an 

inscribed  equilateral  tr iangle ) have survived, producing a 



wallpaper pattern with reflection and in-between glide reflection in 
three directions; notice that these reflections are precisely the 
type  1  reflections of the original p6m  pattern, passing through its 
sixfold and twofold, but not threefold, centers (4.13.1).

Which other isometries of the original p6m  pattern (beehive) 
have survived, and how? Well, all sixfold centers have turned into 
threefold centers, and all threefold centers have remained intact! 
One may say that there are two  kinds  of 1200 rotation centers: 
those -- denoted by 1 in figure 4.69 and always mappable to each 
other by translation -- at  the  in tersect ions  of  th ree  re f lect ion  
axes  (old sixfold centers); and those -- denoted by 2  or 2 ′′′′  in figure 
4.69 and mappable to each other by either (glide) reflection (2 to 2 ′′′′ ) 
or translation/rotation (2  to 2  or 2 ′′′′  to 2 ′′′′ ) -- o n  n o  ref lect ion  
axis  (old threefold centers). All type  2  reflections and glide 
reflections are gone -- in this example at least (see also 4.17.4). 
Wallpaper patterns of this type are known as p31m .  

4.16.2 Japanese triangles. In our next example from Stevens  (p. 
274) the off-axis 1200 centers are hidden inside curvy triangles:
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Fig. 4.70



4.17  1200 , three reflections, three glide reflections,
                  all rotation centers on reflection axes (p3m1)
 

4.17.1 Thinning things out a bit. Consider the following diluted 
version of the wallpaper pattern in figure 4.69:

Fig. 4.71

This new pattern is of course very similar to that of figure 4.69: 
they both have rotation by 1200 only, and they both have reflection 
and in-between glide reflection in three directions. What, if 
anything, makes them different in that case? To simply say that the 
one in figure 4.69 is ‘denser’ than the one in figure 4.71 is certainly 
not that precise or acceptable mathematically! (See also 4.17.4 
below.) Well, a closer look reveals that, unlike in the case of the 
p31m  type, all  the 1200 centers in the new pattern were 600 



centers in the beehive and lie at the intersection of three reflection 
axes: such patterns are known as p3m1 , our ‘last’ type.

4.17.2 How many kinds of threefold centers? In a visual sense, 
the pattern in figure 4.71 has three kinds of 1200 rotation centers: 
one at the center of a triangle (1), one between three vertices (2), 
and one between three sides (3). From another perspective, all 
rotation centers are the same: they are all old sixfold centers, lying 
on reflection axes, and at  the  same  distance  f rom  the  closest  
glide  ref lection  axis . More significantly though, and in the spirit 
of 4.11.2, the three kinds of centers are distinct because no 
isometry maps centers of any kind to centers of another kind. Either 
way, p3m1  patterns (three  or  one  kinds of centers, depending on 
how you look at it) are distinguishable from p31m  patterns (two  
kinds of centers)!

4.17.3 Persian stars. In the following p3m1  example from 
Stevens  (p. 267), six-pointed stars and hexagons give the illusion 
of a p6m  pattern, but you already know too much to be fooled (and 
miss the ‘tripods’ that turn the D 6 sets into D 3 sets):
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Fig. 4.72



4.17.4 More on (glide) reflection. The reflections and in-
between glide reflections in both figures 4.69 (p31m ) and 4.71 
(p3m1 ) are none other than those type  1  (glide) reflections 
inherited from the beehive pattern in figure 4.62. This may give you 
the impression that the beehive’s type  2  (glide) reflections can 
never survive in a 1200 pattern. But as figure 4.73 demonstrates, it 
is possible to ‘build’ a p3m1  pattern ‘around’ type  2  (glide) 
reflection; and we leave it to you to demonstrate the same for p31m  
patterns -- a simple way to do that would be to modify figure 4.71 
so that the vertices of the triangles would be each hexagon’s 
vertices rather than edge midpoints!

Fig. 4.73



As we indicate in 8.4.3 (and figure 8.41 in particular), and as you 
may verify in figures 4.69-4.73, the real difference between p3m1  
and p31m  has to do with the placement  of their (glide) reflection 
axes with respect to their lattice of rotation centers; for example 
the ratio  of the glide reflection vector’s length to the distance 
between two nearest rotation centers equals 3 /2 in the case of 
the p31m  as opposed to 3/2 in the case of the p3m1 .   

A medieval design very similar to the pattern in figure 4.73 was 
actually at the center of a famous controversy regarding whether or 
not all  seventeen  types of wallpaper patterns (and the p3m1  in 
particular) appear in the Moorish Alhambra  Palace  in Spain: indeed 
the pattern in figure 4.73 may be viewed as a two-colored  pattern 
of p6m  (rather than p3m1 ) type, more specifically a p6 ′′′′m m ′′′′  
(described, among other two-colored p6m  types, in section 6.17)! 
This can be avoided simply by starting with a ‘sparse’  beehive (i.e., 
one from which two thirds of the hexagons have been removed, in 
such a way that no two hexagons touch each other): see figures 6.132 
& 6.133, as well as the 600 & 1200 examples in Crystallography  
Now (http://www.oswego.edu/~baloglou/103/seventeen.html, a web 
page devoted to a geometrical classification of wallpaper patterns 
in the spirit of chapters 7 and 8).   

4.18  The seventeen wallpaper patterns in brief 

(I)  Patterns with no rotation (360 0 ) 

p1    : nothing but translation (common to all seventeen types)

pg    : glide reflection in one direction; no reflection

pm    : reflection in one direction; no in-between glide reflection
         
cm    : reflection in one direction, in-between glide reflection
         



(II)  Patterns with smallest rotation of 180 0

p2    : 1800 rotation only

pgg   : glide reflection in two perpendicular directions, no  
          reflection; no rotation centers on glide reflection axes

pmm  : reflection in two perpendicular directions, no in-between         
                glide reflection; all rotation centers at the intersection  

   of two perpendicular reflection axes

cmm  : reflection in two perpendicular directions, in-between 
                glide reflection; all rotation centers either at the     

  intersection of two perpendicular reflection axes or at   
           the intersection of two perpendicular glide reflection 
           axes

pmg  : reflection in one direction (with no in-between glide    
                reflection), glide reflection in a direction perpendicular to 
                that of the reflection; all rotation centers on glide            

     reflection axes, none of them on a reflection axis

(III)  Patterns with smallest rotation of 90 0

p4   : 900 rotation only; distinct 1800 rotation, too

p4m  : reflection in four directions; in-between glide reflection 
               in two out of those four directions; all 900 rotation     
                centers at the intersection of four reflection axes; all      

         1800 rotation centers at the intersection of two reflection
          axes and two glide reflection axes

p4g  : reflection in two directions; in-between glide reflection in         
               both of those directions; additional glide reflection in two                      
               more (diagonal) directions; all 900 rotation centers at the                    
               intersection of two perpendicular (vertical and horizontal)                     



               glide reflection axes, none of them on a reflection axis or    
               a diagonal glide reflection axis; all 1800 rotation centers                

         at the intersection of two perpendicular reflection axes

(IV)  Patterns with smallest rotation of 120 0

p3      : 1200 rotation only

p3m1 : reflection in three directions with in-between glide          
                 reflection; all rotation centers at the intersection of                     

           three reflection axes; no rotation center on a glide
            reflection axis                                                              

p31m : reflection in three directions with in-between glide
            reflection; some rotation centers at the intersection of
            three reflection axes; some rotation centers on no
            reflection axis; no rotation center on a glide reflection
            axis

(V)  Patterns with smallest rotation of 60 0

p6    : 600 rotation only; distinct 1200 and 1800 rotations, too

p6m  : reflection in six directions with in-between glide       
                reflection; all 600 (1200) rotation centers at the       

         intersection of six (three) reflection axes, none of them 
          on a glide reflection axis; all 1800 rotation centers at the
          intersection of two reflection axes and four glide 
          reflection axes 
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