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TOTALLY REAL SURFACES IN THE COMPLEX 2-SPACE

REIKO AIYAMA

Introduction

LetM be an immersed oriented surface in the complex 2-space C2 = (R4, 〈 , 〉, J),
where C2 is identified with the real 4-space R4, and 〈 , 〉 denotes the standard in-
ner product and J the standard almost complex structure on R4. A point p in M
is called a complex point if the tangent space TpM is J-invariant. If there is no
complex point on M , the surface M is said to be totally real, and we obtain that
TpM ⊕ JTpM = C2 at each point p ∈ M . Especially, if TpM ⊥ JTpM at each
point p ∈M , the surface M is said to be Lagrangian.

In this article, we prove that any totally real conformal immersion from M
into C2 can be given merely by an algebraic combination of the components of a
solution of a linear system of first order differential equations, which system is a
specific Dirac-type equation on M . This equation and the combination are given
by means of the Kähler angle function α : M → (0, π) and the Lagrangian angle
function β : M → R/2πZ for the constructed totally real immersed surface M in
C2. Moreover, the pair of α and β describes the self-dual part of the generalized
Gauss map of the immersed surface M in the Euclidean 4-space (R4, 〈 , 〉).

This representation formula for the totally real surfaces in C2 gives a new method
of constructing surfaces in R4. The particular known methods are the Weierstrass-
Kenmotsu formulas for surfaces with prescribed mean curvature in R3 and R4

([Ke1, Ke2]) and their spin versions ([Ko, KL]) (cf. [AA]). The spin versions
of Weierstrass-Kenmotsu formulas represent conformal immersions of surfaces by
integrating a combination of the components of solutions of a similar Dirac-type
equation to ours. In [HR], Hélein and Romon have given such a Weierstrass type
representation formula for Lagrangian surfaces in C2. We note that their method
does not directly imply the following known result in [CM1]: Minimal Lagrangian
orientable surfaces in C2 can be represented as holomorphic curves by exchanging
the orthogonal complex structure on R4, however ours implies this fact as a simple
corollary.
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1. Angle functions on a surface in C2 and the generalized Gauss map

We consider C2 as the Euclidean 4-space (R4, 〈 , 〉) with the orthonormal com-
plex structure J(x1, x2, x3, x4) = (−x3,−x4, x1, x2), that is, a complex vector
x = (x1 + ix3, x2 + ix4) ∈ C2 is identified with the real vector (x1, x2, x3, x4) ∈ R4.
Let f : M → C2 be a conformal immersion from a Riemann surface M into C2.
For a given oriented orthonormal basis {e1, e2} of the tangent space f∗TpM , we
put

α(TpM) = cos−1〈Je1, e2〉.
Then α(TpM) ∈ [0, π] is independent of the choice of the oriented orthonormal
basis of f∗TpM . α(p) = α(TpM) is called the Kähler angle at p ∈ M . f is totally
real if and only if 0 < α < π at all point of M , and in this case α : M → (0, π) is
a smooth function. f is Lagrangian if and only if α ≡ π/2. Regarding e1 and e2

as the complex column vectors in C2, we can obtain that |det(e1, e2)| = | sinα|.
Then, if f is totally real, we can define a function β : M → R/2πZ by, at p ∈M ,

e1 ∧ e2 = eiβ(p) sinα(p) eC
1 ∧ eC

2 ,

where eC
1 = (1, 0), eC

2 = (0, 1) ∈ C2. We call β the Lagrangian angle function for
f .

Regarding e1 and e2 as the real vectors in R4, we can define the normalization
of the real wedge product e1 ∧ e2 and identify it with the real 2-subspace G(p)
parallel to the tangent plane f∗TpM in R4. So we obtain the generalized Gauss map
G : M → G2,2 of the immersed surface in R4, where G2,2 stands for the Grassmann
manifold of oriented 2-planes in R4. According to the direct sum decomposition of
the real wedge product space

∧2(R4) between the self-dual subspace
∧2

+ and the
anti-self-dual subspace

∧2
−, G can be decomposed into the self-dual part G+ and the

anti-self dual part G−. We consider each of the real 3-spaces
∧2
± as the Euclidean

3-subspace R3 in C2 ∼= R4 defined by x1 = 0, identifying the basis {E±
1 , E

±
2 , E

±
3 }

of
∧2
± with the standard basis {e2, e3, e4} of R3, where

E±
1 =

1
2
(e1 ∧ e2 ∓ e3 ∧ e4), E±

2 =
1
2
(e1 ∧ e3 ± e2 ∧ e4),

E±
3 =

1
2
(e1 ∧ e4 ± e3 ∧ e2),

e1 = (1, 0, 0, 0), · · · , e4 = (0, 0, 0, 1) ∈ R4.

Then G+ and G− are maps from M to the unit 2-sphere S2 in the real 3-space R3.

Proposition 1. For a totally real immersed oriented surface M in C2, the self-dual
part G+ of the generalized Gauss map can be represented in terms of the Kähler
angle function α and the Lagrangian angle function β as follows:

G+ = (i cosα, eiβ sinα) : M → S2 ⊂ C2.

This proposition follows from the framing method below.
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Assume f : M → C2 is totally real conformal immersion with the Kähler angle
α : M → (0, π) and the Lagrangian angle β : M → R/2πZ. Let {e1, e2} be an
oriented orthonormal tangent frame defined on a neighborhood U in the immersed
surface M in R4. Then we can choose a local orthonormal normal frame {e3, e4}
on U such that

(1.1) e3 =
1

sinα
(
Je1 − (cosα)e2

)
, e4 =

1
sinα

(
Je2 + (cosα)e1

)
.

Since the identity component Isom0(R4) of the isometry group of R4 acts transi-
tively also on the oriented orthonormal frame bundle on R4, we can take a smooth
map E : U → Isom0(R4) such that f = E ·0, ea = E ·ea − f (a = 1, 2, 3, 4). We call
this map E the adapted framing of f . Making the most of the complex structure
on C2 and M , we will use the Lie group G = R4 o (SU(2)×SU(2)) instead of
Isom0(R4) = G/Z2. Identify C2 with the linear hull R·SU(2) of the special unitary
group SU(2) by the map

x = (xC
1 , x

C
2 ) = (x1 + ix3, x2 + ix4) 7→ x =

(
xC

1 −xC
2

xC
2 xC

1

)
.

So the standard vectors ea (a = 1, 2, 3, 4) in R4 corresponds the following matrices:

e1 =
(

1 0
0 1

)
=: I, e2 =

(
0 −1
1 0

)
, e3 =

(
i 0
0 −i

)
=: J, e4 =

(
0 i
i 0

)
.

G acts isometrically and transitively on C2 by

g·x = g1xg∗2 + v (g = (v, (g1, g2)) ∈ G = R4o(SU(2)×SU(2)) ).

Now we can take the adapted framing E : U → G = R4o(SU(2)×SU(2)) of f as
follows:

(1.2) E =
(
f, (E−, E+)

)
such that ea = E−eaE∗+ (a = 1, 2, 3, 4).

The complex structure J(∈ Isom0(R4)) corresponds the action of (0,±(I,J)) ∈ G.
We remark that ei+2 = J ·(E ·ei) = E ·(J ·ei) (i = 1, 2). This fact implies that E+

can be written as follows and hence it is defined globally:

E+ =
(
e−iβ/2 cos(α/2) −ie−iβ/2 sin(α/2)
−ieiβ/2 sin(α/2) eiβ/2 cos(α/2)

)
T,(1.3)

where

T :=
1√
2

(
1 i
i 1

)
∈ SU(2),

and moreover (0, (T, T )) ∈ G acts on C2 as

Te1T
∗ = e1, Te2T

∗ = e3, Te3T
∗ = −e2, Te4T

∗ = e4.
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Now, we can show that the generalized Gauss map G = (G+,G−) : M → S2×S2

of f is represented as

G± = [(e1 ∧ e2)±] = (E±T ∗)e3(E±T ∗)∗ : M → S2 ⊂ R3 ∼= su(2).

Moreover, regarding S2 as the extended complex plane Ĉ by the stereographic
projection from the north pole e3 ∈ S2, we represent them as

G± =
P±
Q±

: M → Ĉ, where E±T ∗ =
(
P± −Q±
Q± P±

)
(|P±|2 + |Q±|2 = 1).

Then we can obtain G+ = ieiβ cot(α/2).
We also represent G± by means of the complex projective line CP 1 ∼= S2 as

G± = [P±;Q±] : M → CP 1.

Remark. For a totally real immersed surface M in C2, we can define a map G0 :
M → S1 by G0 = eiβ , where β is the Lagrangian angle. Let Ω be the volume
form of S1. The Maslov form defined in [CM2] and [B] coincides with the 1-form
Φ = (G0)∗Ω = (1/2π)dβ. The Maslov class is the first cohomology class defined by
[Φ] ∈ H1(M ; Z).

2. Representation formula for totally real surfaces in C2

Now we give the representation formula of the totally real surfaces in C2.

Theorem. Let M be a Riemann surface with an isothermal coordinate z = x+ iy.
Given two smooth functions α : M → (0, π) and β : M → R/2πZ, put

U± =
1
2
(iαz ± βz sinα), V =

1
2
iβz cosα.

Let F = (F1, F2) : M → C2 be a solution of the Dirac-type equation

(2.1)
(

0 ∂z

−∂z 0

)(
F1

F2

)
=
(
U+ V
−V U+

)(
F1

F2

)
,

and define a smooth map S = (S1, S2) : M → C2 as follows:(
S1

S2

)
=
[(

0 ∂z

−∂z 0

)
+
(
U− V
−V U−

)](
F1

F2

)
.

If S does not vanish on M , the following functions

f1 + if3 = exp(iβ/2)
[
cos(α/2)F1 − i sin(α/2)F2

]
,

f2 + if4 = exp(iβ/2)
[
cos(α/2)F2 + i sin(α/2)F1

]
define a conformal immersion f = (f1 + if3, f2 + if4) : M → C2 with the Kähler
angle α and the Lagrangian angle β. The induced metric on M by f takes the form

f∗ds2 = e2λ|dz|2, e2λ = |S1|2 + |S2|2,
and the anti-self-dual part G− of the generalized Gauss map is given by

G− = [−S2;S1]
(
= −S2/S1

)
: M → S2 ∼= CP 1(∼= Ĉ).
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Conversely, every totally real conformal immersion f : M → C2 with the Kähler
angle α and the Lagrangian angle β is congruent with the one constructed as above.

Proof. For a totally real conformal immersion f : M → C2 with the Kähler angle α
and the Lagrangian angle β, we can define the smooth map F = (F1, F2) : M → C2

by

(2.2) F =
(
F1 −F2

F2 F1

)
:= f(E+T

∗),

where E+ is given by (1.3).
Let {ω1, ω2} be the dual coframe for {e1, e2}, and put φ = ω1 + iω2. Locally

we choose the isothermal coordinate z = x + iy on M such that fx = eλe1 and
fy = eλe2. Hence φ = eλdz and the induced metric on M by f is given by
f∗ds2 = φ·φ = e2λ|dz|2. We compute that

df = e1ω
1 + e2ω

2 = E−e1E∗+ω1 + E−e2E∗+ω2 = E−T ∗(e1ω
1 + e3ω

2)TE∗+

= E−T ∗
(

1 0
0 0

)
TE∗+φ+ E−T ∗

(
0 0
0 1

)
TE∗+φ,

(df)E+T
∗ =

(
P− 0
Q− 0

)
φ+

(
0 −Q−
0 P−

)
φ,

dF =
(

(F1)z ∗
(F2)z ∗

)
dz +

(
(F1)z ∗
(F2)z ∗

)
dz

= df(E+T
∗) + fd(E+T

∗) = df(E+T
∗) + F (E+T

∗)−1d(E+T
∗),

(E+T
∗)−1d(E+T

∗) = −
(
V U+

U− −V

)
dz +

(
V U−
U+ −V

)
dz, and(2.3)

dF =
(
P−e

λ − V F1 + U−F2 ∗
Q−e

λ − V F2 − U−F1 ∗

)
dz +

(
V F1 − U+F2 ∗
V F2 + U+F1 ∗

)
dz.

Then we obtain that

(F1)z = V F1 − U+F2, (F2)z = U+F1 + V F2,

(F1)z = P−e
λ − V F1 + U−F2, (F2)z = Q−e

λ − U−F1 − V F2.

Put S1 = Q−e
λ and S2 = −P−eλ, then we have

S1 = (F2)z + U−F1 + V F2

(
= e−iβ(f2 + if4)z/ cos(α/2)

)
,

S2 = −(F1)z − V F1 + U−F2

(
= −e−iβ(f1 + if3)z/ cos(α/2)

)
.

(2.4)

This completes the proof of Theorem.

Moreover, we obtain the following
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Proposition 2. The spinor representation S = (S1, S2) : M → C2 of G− : M →
S2, which is defined by (2.4), satisfies the Dirac-type equation

(2.5)
(

0 ∂z

−∂z 0

)(
S1

S2

)
=
(
U− V
−V U−

)(
S1

S2

)
.

Remark. For a Lagrangian conformal immersed surface in C2 with the Lagrangian
angle β, we obtain that V ≡ 0 and U± = ±βz/2. Hence the Dirac-type equations
(2.1) and (2.5) are the same as the Davey-Stewartson linear problem appeared
in the Konopelchenko’s representation for surfaces in R4 ([KL]). For the explicit
representation formula of Lagrangian immersed surfaces in C2, see also [A]. The
Hélein-Romon’s representation formula for Lagrangian surfaces in C2 ([HR]) cor-
responds to the method of constructing a surface by integrating a combination of
the components of a solution S of the Dirac-type equation (2.5).

Here we give a simple example.

Example (Clifford torus). The rectangular torus T = C/(a1Z⊕ia2Z) is conformally
embedded in C2 as the product of circles by the map

f(x+ iy) =
(
ia1e

2πix/a1 , ia2e
2πiy/a2

)
.

(When a1 = a2 = 1, it is called the Clifford torus.) It is well known that this torus
in R4 is flat and has parallel mean curvature vector. Moreover, it is a Lagrangian
surface with the Lagrangian angle β = 2π(x/a1 + y/a2), and hence the Maslov
class (1, 1) ∈ H1(T ; Z) ∼= Z2. So this immersion f corresponds to the solution

F = (F1, F2) = (1/
√

2)(a2 + ia1)
(
eπi(x/a2−y/a1), ie−πi(x/a2−y/a1)

)
of the Dirac-type equation(

0 ∂z

−∂z 0

)(
F1

F2

)
=
(π

2 ( 1
a1
− i 1

a2
) 0

0 π
2 ( 1

a1
+ i 1

a2
)

)(
F1

F2

)
.

3. Curvatures of totally real surfaces in C2

Let f : M → C2 be a totally real conformal immersion with the Kähler angle α
and the Lagrangian angle β, and let E = (f, (E−, E+)) : M → G = R4o(SU(2)×
SU(2)) be the adapted framing of f as in (1.2) and (1.3). The Gauss-Weingarten
equation of the immersed surface in R4 is given by the pull-back of the Maurer-
Cartan form on the Lie group G by E , and hence described as follows:

E−1
− dE− =

1
2

(
i(ω3

1 − ω4
2) −(ω4

3 + ω2
1) + i(ω3

2 + ω4
1)

(ω4
3 + ω2

1) + i(ω3
2 + ω4

1) −i(ω3
1 − ω4

2)

)
,

E−1
+ dE+ =

1
2

(
−i(ω3

1 + ω4
2) −(ω4

3 − ω2
1) + i(ω3

2 − ω4
1)

(ω4
3 − ω2

1) + i(ω3
2 − ω4

1) i(ω3
1 + ω4

2)

)
,

where ωa
b are the connection forms on M defined by ωa

b = 〈ea,∇eb〉 for the Levi-
Civita connection of (R4, 〈 , 〉). Moreover, from (1.1), we obtain that

(3.1) ω4
3 = ω2

1 − cotα(ω3
1 + ω4

2), ω3
2 = ω4

1 − dα.
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Hence the Gauss-Weingarten equation of the totally real immersed surface in C2

is written as the following matrix equation

E−1
− dE− = T ∗

(
i(ρ− cotαη) −ψ

ψ −i(ρ− cotαη)

)
T,(3.2)

E−1
+ dE+ = T ∗

(
−i cotαη −η − (i/2)dα
η − (i/2)dα i cotαη

)
T,(3.3)

where ρ = ω2
1 , ψ = (1/2){(ω4

2−ω3
1)+i(ω4

1+ω3
2)} and η = (1/2)(ω3

1+ω4
2). Combining

(2.3) with (3.3), we obtain

(3.4) η =
1
2

sinαdβ.

The second fundamental form of f is given by

Π = h3
ijω

i ⊗ ωj ⊗ e3 + h4
ijω

i ⊗ ωj ⊗ e4,

where h3
ij = ω3

i (ej) = ω3
j (ei) and h4

ij = ω4
i (ej) = ω4

j (ei) (i, j = 1, 2). Moreover,
from the second equation in (3.1), these components satisfy

h4
11 = h3

12 + dα(e1), h4
12 = h3

22 + dα(e2).

Put h3 = (1/2)(h3
11 + h3

22) and h4 = (1/2)(h4
11 + h4

22). The mean curvature vector
−→
H of f is given by

−→
H = h3e3 + h4e4 =

1
2
(h3 + ih4)(e3 − ie4) +

1
2
(h3 − ih4)(e3 + ie4).

The 1-form η is also given by

η =
1
2
(h3

11 + h4
21)ω

1 +
1
2
(h3

12 + h4
22)ω

2

= h3ω1 + h4ω2 +
1
2
{dα(e2)ω1 − dα(e1)ω2}

=
1
2
{(h3 − ih4)φ+ (h3 + ih4)φ}+

i
2
{αzdz − αzdz}.

(3.5)

From (3.4) and (3.5), we obtain that h3 − ih4 = −2e−λU−. Namely, the mean
curvature vector

−→
H has the representation of
−→
H = ie−2λ{−U− cot(α/2)fz + U− tan(α/2)fz},

and the mean curvature H = |
−→
H | is given by

H = 2e−λ|U−|.
It follows from (3.2) combined with

E+T
∗ = e−λ

(
−S2 −S1

S1 −S2

)
that

ψ = e−2λ(S1dS2 − S2dS1),
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ρ =
1
2
{(cosα)dβ − ie−2λ(S1dS1 + S2dS2 − S1dS1 − S2dS2)},

dρ = −1
2
(sinα)dα ∧ dβ + iψ ∧ ψ.

We note that the (0, 1)-part ψ′′dz of ψ = ψ′dz + ψ′′dz coincides with −(1/2)(h3 −
ih4)φ = U−dz. The Gauss curvature K of f is given by dρ = −(i/2)Kφ ∧ φ, and
hence

K = −e−2λ{i(αzβz − αzβz) sinα+ 2(|ψ′|2 − |ψ′′|2)}.

Proposition 3. If a totally real immersed oriented surface M in C2 is minimal,
the Kähler angle α and Lagrangian angle β satisfies the partial differential equation

iαz − βz sinα = 0,

and hence the Gauss curvature is given by

K = −2e−2λ(|αz|2 + |ψ′|2).

Corollary. If a totally real immersed oriented surface M in C2 with either constant
Kähler angle or constant Lagrangian angle is minimal, then the other angle is also
constant and the map F = (F1, F2) : M → C2 defined as in (2.2) is holomorphic.
Namely, such a surface can be represented as a holomorphic curve by exchanging
the orthogonal complex structure on R4.

So, this corollary implies the known result for minimal Lagrangian surfaces in
C2 mentioned as in Introduction (Chen-Morvan [CM1]).
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