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TOTALLY REAL SURFACES IN THE COMPLEX 2-SPACE

REIKO AIYAMA

INTRODUCTION

Let M be an immersed oriented surface in the complex 2-space C? = (R%, (, ), J),
where C? is identified with the real 4-space R*, and (, ) denotes the standard in-
ner product and .J the standard almost complex structure on R*. A point p in M
is called a complex point if the tangent space T, M is J-invariant. If there is no
complex point on M, the surface M is said to be totally real, and we obtain that
T,M & JT,M = C? at each point p € M. Especially, if T,M L JT,M at each
point p € M, the surface M is said to be Lagrangian.

In this article, we prove that any totally real conformal immersion from M
into C2 can be given merely by an algebraic combination of the components of a
solution of a linear system of first order differential equations, which system is a
specific Dirac-type equation on M. This equation and the combination are given
by means of the Kéhler angle function « : M — (0, 7) and the Lagrangian angle
function 8 : M — R/27Z for the constructed totally real immersed surface M in
C2. Moreover, the pair of a and 3 describes the self-dual part of the generalized
Gauss map of the immersed surface M in the Euclidean 4-space (R*, ( , )).

This representation formula for the totally real surfaces in C? gives a new method
of constructing surfaces in R*. The particular known methods are the Weierstrass-
Kenmotsu formulas for surfaces with prescribed mean curvature in R3 and R*
([Kel, Ke2]) and their spin versions ([Ko, KL]) (cf. [AA]). The spin versions
of Weierstrass-Kenmotsu formulas represent conformal immersions of surfaces by
integrating a combination of the components of solutions of a similar Dirac-type
equation to ours. In [HR], Hélein and Romon have given such a Weierstrass type
representation formula for Lagrangian surfaces in C2. We note that their method
does not directly imply the following known result in [CM1]: Minimal Lagrangian
orientable surfaces in C? can be represented as holomorphic curves by exchanging
the orthogonal complex structure on R*, however ours implies this fact as a simple
corollary.
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1. ANGLE FUNCTIONS ON A SURFACE IN C2 AND THE GENERALIZED (GAUSS MAP

We consider C2 as the Euclidean 4-space (R*, (, )) with the orthonormal com-
plex structure J(z1,xo,x3,24) = (—x3, —24,21,22), that is, a complex vector
x = (w1 +ixs, 2 +ivy) € C? is identified with the real vector (w1, 1o, x3,24) € R%.
Let f : M — C? be a conformal immersion from a Riemann surface M into C2.
For a given oriented orthonormal basis {e1,e2} of the tangent space f.T,M, we
put

a(T,M) = cos™(Jey, e2).
Then a(T,M) € [0,7] is independent of the choice of the oriented orthonormal
basis of f.T,M. a(p) = a(T,M) is called the Kdhler angle at p € M. f is totally
real if and only if 0 < a < 7 at all point of M, and in this case o : M — (0,7) is
a smooth function. f is Lagrangian if and only if & = 7/2. Regarding e; and eq
as the complex column vectors in C?, we can obtain that |det(e1, es)| = [sinal.
Then, if f is totally real, we can define a function 8 : M — R/27Z by, at p € M,

e1 Ney = PP sina(p) el nef,

where e{' = (1,0),eS = (0,1) € C2. We call 3 the Lagrangian angle function for
I

Regarding e; and e, as the real vectors in R*, we can define the normalization
of the real wedge product e; A es and identify it with the real 2-subspace G(p)
parallel to the tangent plane f.7, M in R*. So we obtain the generalized Gauss map
G : M — Ga of the immersed surface in R*, where G2 stands for the Grassmann
manifold of oriented 2-planes in R*. According to the direct sum decomposition of
the real wedge product space A*(R*) between the self-dual subspace /\i and the
anti-self-dual subspace /\277 G can be decomposed into the self-dual part G4 and the
anti-self dual part G_. We consider each of the real 3-spaces /\i as the Euclidean
3-subspace R3 in C? 22 R* defined by z; = 0, identifying the basis {Efc7 Ezi, EBi}
of /\2jE with the standard basis {es, e3,e;} of R3, where

1 1
EljE = i(el Ney Fes ey, E2i = §(e1 NesEesAey),

1
E3jE = i(el NestesAes),
e1 = (1,0,0,0),--- ,e, = (0,0,0,1) € R*.
Then G, and G_ are maps from M to the unit 2-sphere S? in the real 3-space R®.

Proposition 1. For a totally real immersed oriented surface M in C2, the self-dual
part Gy of the generalized Gauss map can be represented in terms of the Kdhler
angle function « and the Lagrangian angle function (8 as follows:

G, = (icosa,ePsina) : M — S% ¢ C2.

This proposition follows from the framing method below.



TOTALLY REAL SURFACES IN THE COMPLEX 2-SPACE 17

Assume f : M — C? is totally real conformal immersion with the Kéhler angle
a: M — (0,7) and the Lagrangian angle 5 : M — R/27Z. Let {e1,e2} be an
oriented orthonormal tangent frame defined on a neighborhood U in the immersed
surface M in R*. Then we can choose a local orthonormal normal frame {es3,e4}
on U such that

1

sin o

(J61 — (cos a)ez), €4 = (J62 + (cos a)el).

sin «v
Since the identity component Isomg(R*) of the isometry group of R* acts transi-
tively also on the oriented orthonormal frame bundle on R*, we can take a smooth
map & : U — Isomg(R*) such that f = £-0, e, = E-e, — f (a =1,2,3,4). We call
this map & the adapted framing of f. Making the most of the complex structure
on C? and M, we will use the Lie group G = R*x (SU(2) x SU(2)) instead of
Isomg(R*) = G/Zs. Identify C? with the linear hull R-SU(2) of the special unitary
group SU(2) by the map

. C _C\ __ . . o 17? 7503
x=(z7,23) = (z1 +izz,z2 +izs) — x=|" —F |-
Ty X

So the standard vectors e, (a = 1,2,3,4) in R* corresponds the following matrices:

_ (10 _ g /0 -1 (i 0)_ g OB
S=1p 1)7% 271 o) 887\ i) 7" &7\ o)

G acts isometrically and transitively on C? by
gx=gixgs +v  (g=(v.(g1,8)) € G =R'x(SU(2)xSU(2)) ).

Now we can take the adapted framing € : U — G = R*x (SU(2) x SU(2)) of f as
follows:

(1.2) E=(f,(E-,€4)) suchthat e, =E_e.Lf (a=1,2,34).

The complex structure J(€ Isomg(R*)) corresponds the action of (0,+(I,J)) € G.
We remark that e; 4o = J-(£-€;) = £-(J-€;) (i = 1,2). This fact implies that &4
can be written as follows and hence it is defined globally:

e /2 cos(ar/2)  —ie /2 sin(a/2)
(1.3) & = (_ieim sin(a/2) /2 cos(a/2) )T’

where

T = % <} ;) € SU(2),

and moreover (0, (T,T)) € G acts on C? as

TeiT" = e, Te)T™ =e3, TesT" = —ey, TesT™ =ey.



18 REIKO AIYAMA

Now, we can show that the generalized Gauss map G = (G4,G_) : M — S? x §?
of f is represented as

Gr =[(ex Aea)®] = (ExT)es(ExT™)* : M — S C R® = su(2).

Moreover, regarding S? as the extended complex plane C by the stereographic
projection from the north pole e3 € S%, we represent them as

Py Py _Qj:> 2 2
== s P+ =1).
= OF ) PP 1QeP =)
Then we can obtain Gy = iel” cot(a/2).

We also represent G+ by means of the complex projective line CP! =2 S? as

G+ =[Ps;Q+]: M — CP",

G+ :M — C, where E.T*= <

Remark. For a totally real immersed surface M in C2, we can define a map Gy :
M — S' by Gy = €, where § is the Lagrangian angle. Let Q be the volume
form of S*. The Maslov form defined in [CM2] and [B] coincides with the 1-form
@ = (Go)*Q = (1/27m)dp. The Maslov class is the first cohomology class defined by
[®] € HY(M; 7).

2. REPRESENTATION FORMULA FOR TOTALLY REAL SURFACES IN C?

Now we give the representation formula of the totally real surfaces in C2.

Theorem. Let M be a Riemann surface with an isothermal coordinate z = x + iy.
Given two smooth functions o : M — (0,7) and 8: M — R/277Z, put
1 1
Uy = §(iaz + 3, sina), V= §iﬂz cos .

Let F = (Fy, Fy) : M — C? be a solution of the Dirac-type equation

(2.1) 0 0. i - Ui L i
' - 0)\®) " \-v ;) \&)
and define a smooth map S = (S1,S2) : M — C? as follows:
SOy [0 o), (U= V Fy
S2)  [\-9z O -V U_) |\ )"
If S does not vanish on M, the following functions
f1+1ifs =exp(iB/2) [Cos(a/Q)Fl — isin(a/Q)E,
f2+ifs = exp(iB/2)[cos(a/2) F> + isin(a/2) F}]

define a conformal immersion f = (f1 + ifs, fo +ifs) : M — C? with the Kdihler
angle a and the Lagrangian angle 8. The induced metric on M by f takes the form

f*d32=62/\|d2|2, 62)\:|Sl|2+|52|2,
and the anti-self-dual part G_ of the generalized Gauss map is given by
G- =[S;S1](= —S2/81) : M — S = CP (= C).
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Conversely, every totally real conformal immersion f : M — C? with the Kihler
angle a and the Lagrangian angle 3 is congruent with the one constructed as above.

Proof. For a totally real conformal immersion f : M — C? with the Kihler angle «
and the Lagrangian angle 3, we can define the smooth map F = (Fy, F,) : M — C?
by

(2.2)

=y

F —F .
_ (F; F12> = f(E4T™),

where &, is given by (1.3).

Let {w!,w?} be the dual coframe for {ej,es}, and put ¢ = w! + iw?. Locally
we choose the isothermal coordinate z = = + iy on M such that f, = e’e; and
fy = erey. Hence ¢ = e*dz and the induced metric on M by f is given by
frds? = ¢-¢ = e**|dz|?>. We compute that

df = gwl + @wg = Z’ngiwl + E,gé'j;wQ = fLT*(gwl +$w2)T(€i

=T (0 o) TE G+ E-T (0 1) TE S,

wer=(5 or (s F)e
= () D)o () )
= df(E4T7) + fA(ELT7) = df (E,T7) + F(E.T7) 7 d(E4T™),

*\—1 *\ V U+ V i
23)  (ELT)d(ELT") = (U Tv)at (g Zp)dm and

(P VIR +U_F * VF -UF o\ _
dEi <Q_6)\—VF2—U_F11 * dZ+ VF2+U+F1 * dz.

Then we obtain that
(F1)
1)

(F:
Put S; = Q_e* and Sy = —P_e*, then we have

z VFl—U+F2, (F2)§:U+F1 +VF2,
=P -VE+U.F, (F).=Q. -U_F —VF.

S1=(F), +U_F +VF, (: e B (fy + if4)z/cos(oz/2)),

24 So=—(F),—-VF + U_E(: —e_w(fl + if3)z/cos(a/2)).

This completes the proof of Theorem. O

Moreover, we obtain the following
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Proposition 2. The spinor representation S = (S1,52) : M — C? of G_ : M —
S?, which is defined by (2.4), satisfies the Dirac-type equation

(2.5) (_%L %) (gl) = (EIV g) (2)

Remark. For a Lagrangian conformal immersed surface in C? with the Lagrangian
angle 3, we obtain that V' = 0 and Uy = £+./2. Hence the Dirac-type equations
(2.1) and (2.5) are the same as the Davey-Stewartson linear problem appeared
in the Konopelchenko’s representation for surfaces in R* ([KL]). For the explicit
representation formula of Lagrangian immersed surfaces in C2, see also [A]. The
Hélein-Romon’s representation formula for Lagrangian surfaces in C2 ([HR]) cor-
responds to the method of constructing a surface by integrating a combination of
the components of a solution S of the Dirac-type equation (2.5).

Here we give a simple example.

Ezample (Clifford torus). The rectangular torus T' = C/(a1Z®iasZ) is conformally
embedded in C? as the product of circles by the map
flz+1iy) = (iale%iw/a1 , iage%iy/‘“).

(When a1 = az = 1, it is called the Clifford torus.) It is well known that this torus
in R?* is flat and has parallel mean curvature vector. Moreover, it is a Lagrangian
surface with the Lagrangian angle § = 2w(xz/a1 + y/az2), and hence the Maslov
class (1,1) € HY(T;Z) = Z?. So this immersion f corresponds to the solution

F = (Fy, Fy) = (1/v2) (a2 + i) (7/a2=w/) e=milo/az=v/an))
of the Dirac-type equation

(5 9004 1) @)

3. CURVATURES OF TOTALLY REAL SURFACES IN C?

Let f: M — C? be a totally real conformal immersion with the Kihler angle «
and the Lagrangian angle 3, and let & = (f,(£_,€4)) : M — G = R*x(SU(2) x
SU(2)) be the adapted framing of f as in (1.2) and (1.3). The Gauss-Weingarten
equation of the immersed surface in R* is given by the pull-back of the Maurer-
Cartan form on the Lie group G by &, and hence described as follows:

e-lge :1( i(wf - wp) —(w§+w%>+i(w3+wi‘>>
T T 2 \(ws W) +i(wd + W) —i(w} — wj) ’
e-lge. — 1( —i(w} + W) —(wé—w%)+i(w§—wi‘)>
BT o (W —wf) +i(wd —wh) i(wf 4 w3) ’

where w{ are the connection forms on M defined by wi = (e,, Vep) for the Levi-
Civita connection of (R4, (, )). Moreover, from (1.1), we obtain that

(3.1) wi = w? — cot a(w? + w3), Wi = wi —da.
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Hence the Gauss-Weingarten equation of the totally real immersed surface in C2
is written as the following matrix equation

3 o [i(p — cot an) —¢

(3.2) EldE_ =T < " —i(p — cot an)) T
_ o [ —icotan —n—(i/2)do

(3.3) EMdEL =T (,7 — (i/2)da i cot an ) T

where p = w}, ¥ = (1/2){(wj—w})+i(wi+w3)} and n = (1/2)(wi+wj). Combining
(2.3) with (3.3), we obtain
1
(3.4) n=; sin adf3.
The second fundamental form of f is given by
II= h?jwi Qw! ®ez+ h;ljwi ®w ® ey,

where hl; = w}(e;) = wi(e;) and h; = wi(e;) = wi(e;) (4,5 = 1,2). Moreover,
from the second equation in (3.1), these components satisfy

hiy = hiy +daer), hiy = h3, +daes).
Put A3 = (1/2)(h3, + h3,) and h* = (1/2)(h}, + h3,). The mean curvature vector
-
H of f is given by

. 1, . 1, .
H = h3es + hiey = 5(hd +ih?*)(es — ieq) + 5(hd — ih*)(eg + iey).
The 1-form 7 is also given by
1 1, .
n= 5(}1?1 + hyy)w' + 5(”%2 + hip)w®
1
(3.5) = 3wl + htw? + é{da(eg)wl —da(e))w?}
1 o
= A = ih)o + (0 +ih")9} + {audz — azdz}.
From (3.4) and (3.5), we obtain that h® — ih* = —2e~*U_. Namely, the mean
—
curvature vector H has the representation of
H =ie 2 [~TU_ cot(a/2)f. + U_ tan(a/2) f=},
and the mean curvature H = |ﬁ| is given by
H =2e"MU_|.
It follows from (3.2) combined with

* = 7S2 *Sil
5+T =€ (Sl —Sz)

’(/) = 6_2>\(Sld52 - SQdSl),

that
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p= %{(cos a)dp — ie_Q’\(SildSH + S2dSy — S1dST — S2dSs)},

dp = —%(sina)da AdB+ iy Nip.

We note that the (0, 1)-part 9" dz of ¢ = ¢/dz + 1" dz coincides with —(1/2)(h® —
ih*)¢ = U_dz. The Gauss curvature K of f is given by dp = —(i/2)K¢ A ¢, and
hence

K = —e Mi(a.fz — azf)sina + 2([¢' > — [¢"?)}.

Proposition 3. If a totally real immersed oriented surface M in C? is minimal,
the Kahler angle o and Lagrangian angle (8 satisfies the partial differential equation

ia, — B, sina =0,
and hence the Gauss curvature is given by
K = —2¢ P (Jaz|? + [¢'%).

Corollary. If a totally real immersed oriented surface M in C? with either constant
Kahler angle or constant Lagrangian angle is minimal, then the other angle is also
constant and the map F = (F1, Fy) : M — C? defined as in (2.2) is holomorphic.
Namely, such a surface can be represented as a holomorphic curve by exchanging
the orthogonal complex structure on R*.

So, this corollary implies the known result for minimal Lagrangian surfaces in
C? mentioned as in Introduction (Chen-Morvan [CM1]).
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