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HAMILTONIAN FIELD THEORY REVISITED: A GEOMETRIC
APPROACH TO REGULARITY

OLGA KRUPKOVÁ

Abstract. The aim of the paper is to announce some recent results con-

cerning Hamiltonian theory for higher order variational problems on fibered
manifolds. A reformulation, generalization and extension of basic concepts

such as Hamiltonian system, Hamilton equations, regularity, and Legendre

transformation, is presented. The theory is based on the concept of Lepagean
(n+1)-form (where n is the dimension of the base manifold). Contrary to the

classical approach, where Hamiltonian theory is related to a single Lagrangian,

within the present setting a Hamiltonian system is associated with an Euler–
Lagrange form, i.e., with the class of all equivalent Lagrangians. Hamilton

equations are introduced to be equations for integral sections of an exterior

differential system, defined by a Lepagean (n + 1)-form. Relations between
extremals and solutions of Hamilton equations are studied in detail. A revi-

sion of the concepts of regularity and Legendre transformation is proposed,
reflecting geometric properties of the related exterior differential system. The

new look is shown to lead to new regularity conditions and Legendre trans-

formation formulas, and provides a procedure of regularization of variational
problems. Relations to standard Hamilton–De Donder theory, as well as to

multisymplectic geometry are studied. Examples of physically interesting La-

grangian systems which are traditionally singular, but regular in this revised
sense, are discussed.

1. Introduction

Hamiltonian theory belongs to the most important parts of the calculus of vari-
ations. The idea goes back to the first half of the 19th century and is due to Sir
William Rowan Hamilton and Carl Gustav Jacob Jacobi who, for the case of clas-
sical mechanics, developed a method to pass from the Euler–Lagrange equations
to another set of differential equations, now called Hamilton equations, which are
“better adapted” to integration. This celebrated procedure, however, is applicable
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only to a certain class of variational problems, called regular. Later the method
was formally generalized to higer order mechanics, and both first and higher order
field theory, and became one of the constituent parts of the classical variational
theory (cf. [8], [4]). In spite of this fact, it has been clear that this generaliza-
tion of Hamiltonian theory suffers from a principal defect: allmost all physically
interesting field Lagrangians (gravity, Dirac field, electromagnetic field, etc.) are
non-regular, hence they cannot be treated within this approach.

Since the second half of the 20’th century, together with an increasing interest to
bring the more or less heuristic classical variational theory to a modern framework
of differential geometry, an urgent need to understand the geometric meaning of
the Hamiltonian theory has been felt, in order to develop its proper generalizations
as well as global aspects. There appeared many papers dealing with this task
in different ways, with results which are in no means complete: from the most
important ones let us mention here at least Goldschmidt and Sternberg [14], Aldaya
and Azcárraga [1], Dedecker [5], [7], Shadwick [37], Krupka [21]–[23], Ferraris and
Francaviglia [9], Krupka and Štěpánková [26], Gotay [16], Garcia and Muñoz [10],
[11], together with a rather pessimistic Dedecker’s paper [6] summarizing main
problems and predicting that a way-out should possibly lead through some new
understanding of such fundamental concepts as regularity, Legendre transformation,
or even the Hamiltonian theory as such.

The purpose of this paper is to announce some very recent results, partially pre-
sented in [30]–[32] and [38], which, in our opinion, open a new way for understanding
the Hamiltonian field theory. We work within the framework of Krupka’s theory
of Lagrange structures on fibered manifolds where the so called Lepagean form is
a central concept ([18], [19], [21], [24], [25]). Inspired by fresh ideas and inter-
esting, but, unfortunately, not very wide-spread “nonclassical” results of Dedecker
[5] and Krupka and Štěpánková [26], the present geometric setting means a direct
“field generalization” of the corresponding approach to higher order Hamiltonian
mechanics as developed in [27] and [28] (see [29] for review). The key point is the
concept of a Hamiltonian system, which, contrary to the usual approach, is not re-
lated with a single Lagrangian, but rather with an Euler–Lagrange form (i.e., with
the class of equivalent Lagrangians), as well as of regularity, which is understood to
be a geometric property of Hamilton equations. It turns out that “classical” results
are incorporated as a special case in this scheme. Moreover, for many variational
systems which appear singular within the standard approach, one obtains here a
regular Hamiltonian counterpart (Hamiltonian, independent momenta which can
be considered a part of certain Legendre coordinates, Hamilton equations equivalent
with the Euler–Lagrange equations). This concerns, among others, such important
physical systems as, eg., gravity, electromagnetism or the Dirac field, mentioned
above.
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2. Notations and preliminaries

All manifolds and mappings throughout the paper are smooth. We use standard
notations as, eg., T for the tangent functor, Jr for the r-jet prolongation functor,
d for the exterior derivative of differential forms, iξ for the contraction by a vector
field ξ, and ∗ for the pull-back.

We consider a fibered manifold (i.e., surjective submersion) π : Y → X, dimX =
n, dimY = m + n, its r-jet prolongation πr : JrY → X, r ≥ 1, and canonical jet
projections πr,k : JrY → JkY , 0 ≤ k < r (with an obvious notation J0Y = Y ). A
fibered chart on Y is denoted by (V, ψ), ψ = (xi, yσ), the associated chart on JrY
by (Vr, ψr), ψr = (xi, yσ, yσ

j1
, . . . , yσ

j1...jr
).

A vector field ξ on JrY is called πr-vertical (respectively, πr,k-vertical) if it
projects onto the zero vector field on X (respectively, on JkY ). We denote by V πr

the distribution on JrY spanned by the πr-vertical vector fields.
A q-form ρ on JrY is called πr,k-projectable if there is a q-form ρ0 on JkY such

that π∗r,kρ0 = ρ. A q-form ρ on JrY is called πr-horizontal (respectively, πr,k-
horizontal) if iξρ = 0 for every πr-vertical (respectively, πr,k-vertical) vector field ξ
on JrY .

The fibered structure of Y induces a morphism, h, of exterior algebras, defined
by the condition Jrγ∗ρ = Jr+1γ∗hρ for every section γ of π, and called the hor-
izontalization. Apparently, horizontalization applied to a function, f , and to the
elements of the canonical basis of 1-forms, (dxi, dyσ, dyσ

j1
, . . . , dyσ

j1...jr
), on JrY

gives

hf = f ◦ πr+1,r, hdxi = dxi, hdyσ = yσ
l dx

l, . . . , hdyσ
j1...jr

= yσ
j1...jrldx

l.

A q-form ρ on JrY is called contact if hρ = 0. On JrY , behind the canonical
basis of 1-forms, we have also the basis (dxi, ωσ, ωσ

j1
, . . . , ωσ

j1...jr−1
, dyσ

j1...jr
) adapted

to the contact structure, where in place of the dy’s one has the contact 1-forms

ωσ = dyσ − yσ
l dx

l, . . . , ωσ
j1...jr−1

= dyσ
j1...jr−1

− yσ
j1...jr−1l dx

l.

Sections of JrY which are integral sections of the contact ideal are called holonomic.
Apparently, a section δ : U → JrY is holonomic if and only if δ = Jrγ where
γ : U → Y is a section of π.

Notice that every p-form on JrY , p > n, is contact. Let q > 1. A contact
q-form ρ on JrY is called 1-contact if for every πr-vertical vector field ξ on JrY
the (q − 1)-form iξρ is horizontal. Recurrently, ρ is called i-contact, 2 ≤ i ≤ q, if
iξρ is (i− 1)-contact. Every q-form on JrY admits a unique decomposition

π∗r+1,rρ = hρ+ p1ρ+ p2ρ+ · · ·+ pqρ,

where piρ, 1 ≤ i ≤ q, is an i-contact form on Jr+1Y , called the i-contact part of ρ.
It is helpful to notice that the chart expression of piρ in any fibered chart contains
exactly i exterior factors ωσ

j1...jl
where l is admitted to run from 0 to r. For more

details on jet prolongations of fibered manifolds, and the calculus of horizontal and
contact forms the reader can consult eg. [18], [19], [24], [25], [29], [33], [34].
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Finally, throughout the paper the following notation is used:

ω0 = dx1 ∧ dx2 ∧ ... ∧ dxn, ωi = i∂/∂xi ω0, ωij = i∂/∂xj ωi, etc.

3. Hamiltonian systems

In this section we discuss the concept of a Hamiltonian system and of a La-
grangian system as introduced in [30], and the relation between Hamiltonian and
Lagrangian systems.

Let s ≥ 0, and put n = dimX. A closed (n + 1)-form α on JsY is called a
Lepagean (n+ 1)-form if p1α is πs+1,0-horizontal. If α is a Lepagean (n+ 1)-form
and E = p1α we also say that α is a Lepagean equivalent of E. By definition, in
every fiber chart (V, ψ), ψ = (xi, yσ), on Y ,

E = Eσω
σ ∧ ω0,

where Eσ are functions on Vs+1 ⊂ Js+1Y . A Lepagean (n+1)-form α on JsY will
be also called a Hamiltonian system of order s. A section δ of the fibered manifold
πs will be called a Hamilton extremal of α if

(3.1) δ∗iξα = 0 for every πs-vertical vector field ξ on JsY .

The equations (3.1) will be then called Hamilton equations.
Hamiltonian systems are closely related with Lagrangians and Euler–Lagrange

forms. The relation follows from the properties of Lepagean n-forms (see eg. [21],
[24], [25] for review). Recall that an n-form ρ on JsY is said to be a Lepagean
n-form if hiξdρ = 0 for every πs,0-vertical vector field ξ on JsY [18], [21]. Thus,
every Lepagean (n + 1)-form locally equals to dρ where ρ is a Lepagean n-form.
Consequently, if α is a Lepagean (n+ 1)-form then its 1-contact part E is a locally
variational form. In other words, there exists an open covering of Js+1Y such
that, on each set of this covering, E coincides with the Euler–Lagrange form of a
Lagrangian of order r ≤ s, i.e.,

E =
( ∂L

∂yσ
−

r∑
l=1

(−1)ldp1dp2 . . . dpl

∂L

∂yσ
p1p2...pl

)
ωσ ∧ ω0.

This suggests the following definition of a Lagrangian system: Lepagean (n + 1)-
forms (possibly of different orders) are said to be equivalent if their one-contact
parts coincide (up to a possible projection). In what follows, we denote the equiv-
alence class of a Lepagean (n+ 1)-form α by [α], and call it a Lagrangian system.
The minimum of the set of orders of the elements in the class [α] will then be called
the (dynamical) order of the Lagrangian system [α].

Every Lagrangian system is locally characterized by Lagrangians of all orders
starting from a certain minimal one, denoted by r0, and called the minimal order
for [α].

The Euler–Lagrange equations corresponding to a Lagrangian system [α] of order
s now read

(3.2) Jsγ∗iJsξα = 0 for every π-vertical vector field ξ on Y ,
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where α is any representative of order s of the class [α]. Notice that (3.2) are PDE
of order s+ 1 for sections γ of the fibered manifold π, their solutions are extremals
of E = p1α.

Let us stop for a moment to discuss relations between Hamiltonian systems and
Lagrangian systems.

Every Hamiltonian system α of order s has a unique associated Lagrangian
system [α]; its order is r ≤ s, and it is represented by the locally variational form
E = p1α (or, alternatively, by the family of all, generally only local, Lagrangians
whose Euler–Lagrange forms locally coincide with E). Comparing the Hamilton
equations (3.1) with the Euler–Lagrange equations (3.2) one can see immediately
that the sets of extremals and Hamilton extremals generally are not in one-to-one
correspondence, in other words, Hamilton equations need not be equivalent with the
Euler–Lagrange equations. However, the s-jet prolongation of every extremal is a
Hamilton extremal; in this sense there is an inclusion of the set of extremals into
the set of Hamilton extremals. More precisely, there is a bijection between the set
of extremals and the set of holonomic Hamilton extremals.

On the other hand, a Lagrangian system [α] of order r has many associated
Hamiltonian systems, each of an order s ≥ r. Consequently, to a given set of
Euler–Lagrange equations one has many sets of Hamilton equations. Behind the
given Euler–Lagrange expressions (respectively, a Lagrangian), Hamilton equations
depend also upon “free functions” which come from the at least 2-contact part of
π∗s+1,sα. Since α is locally the exterior derivative of a Lepagean n-form, it is
convenient to discuss different possibilities on the level of Lepagean equivalents of
a corresponding Lagrangian. To this purpose, let us first recall an important result,
due to Krupka [25]: ρ is a Lepagean n-form of order s iff in any fibered chart (V, ψ),
ψ = (xi, yσ), on Y ,

(3.3) π∗s+1,s ρ = θλ + dν + µ,

where

(3.4) θλ = Lω0 +
r−1∑
k=0

(r−k−1∑
l=0

(−1)ldp1dp2 . . . dpl

∂L

∂yσ
j1...jkp1...pli

)
ωσ

j1...jk
∧ ωi,

ν is an arbitrary contact (n − 1)-form, and µ is an arbitrary at least 2-contact
n-form; in the formula (3.4), r denotes the order of hρ. It should be stressed that
the decomposition (3.3) is generally not invariant with respect to transformations
of fibered coordinates. θλ is called the local Poincaré–Cartan equivalent of the
Lagrangian λ = hρ, each of the (invariant) forms Θ = θλ + p1dν is then called the
Poincaré–Cartan form. Now, let α be a Hamiltonian system. If locally α = dρ
where the Lepagean n-form ρ is at most i-contact (1 ≤ i ≤ n) we speak about
Hamilton pi-theory and call the corresponding Hamilton equations (3.1) Hamilton
pi-equations [30].
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In particular, Hamilton p1-equations are based upon the Poincaré–Cartan form
Θ. In an usual approach to Hamiltonian field theory only these equations are con-
sidered (cf. [1], [3], [7]–[17], [21]–[23], [26], [33], [35]–[37] and references therein);
they are often called Hamilton–De Donder equations. Obviously, behind a La-
grangian, they depend upon ν. (With the exception of the case of first order La-
grangians when ν = 0, i.e., θλ is invariant, and the Hamilton–De Donder equations
are unique and completely determined by the Lagrangian).

Hamilton p2-equations are based upon a Lepagean form ρ = Θ + ν where ν is
2-contact; for first order Lagrangians they have been studied in [31], [32], a second
order generalization is due to [38]. Hamilton pn-equations are based upon a general
Lepagean n-form; the first oder case was considered by Dedecker [5].

Each of these Hamiltonian systems can be viewed as a different extension of the
original variational problem. In this way, in any concrete situation, one can utilize
a possibility to apply additional (geometric or physical) requirements to choose
from many alternative Hamiltonian systems the “best one”. A deeper insight into
this question is subject of the next sections.

Comments 1. Let us mention main differences between the presented approach
and the usual one.

(i) Hamiltonian systems, Hamilton equations. Roughly speaking, there are two
main geometric ways approaching Hamiltonian field theory. One, close to the clas-
sical calculus of variations, declares the philosophy to assign a unique Hamiltonian
system to a single Lagrangian. This task is represented by the Hamilton–De Don-
der theory, based upon the Poincaré–Cartan form of a (global) Lagrangian λ, which
gives “good” results for first order Lagrangians, and is considered problematic in the
higher order case (cf. eg. [6]). The second approach is more or less axiomatic, and
is based upon the so called multisymplectic form (eg., [3] and references therein).
(Recall that an (n + 1)-form Ω on a manifold M is called multisymplectic if it is
closed, and the “musical map” ξ → iξΩ, mapping vector fields on M to n-forms,
is injective.)

Our approach is close to both of them, but different. This can be seen im-
mediately if the definitions of the multisymplectic and Lepagean (n+ 1)-form are
compared. For the “zero order” case one gets that every multisymplectic form
on Y is a Lepagean (n + 1)-form, however, a Lepagean (n + 1)-form need not be
multisymplectic. For higher order the difference becomes even sharper, since a
multisymplectic form on JsY , s ≥ 1, need not be Lepagean. Apparently, our moti-
vation was to define a Hamiltonian system to be, contrary to the multisymplectic
definition, sufficiently general on the one hand (covering all Lagrangians without
any a priori restriction), and, on the other hand, directly related with a variational
problem (defined by a locally variational form). Among others, this also means
that our Hamiltonian system is assigned not to a particular Lagrangian (as al-
ways done), but to the whole class of all equivalent Lagrangians corresponding to a
given Euler–Lagrange form. Other differences are connected with the concepts of
regularity and Legendre transformation, and will be discussed in the next sections.
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(ii) Lagrangian systems. One should notice that also in the definition of a La-
grangian system and of the order of a Lagrangian system we differ from other
authors. While usually by a “Lagrangian system of order r” one means a global
Lagrangian on JrY , by our definition a Lagrangian system is the equivalence class
of Lagrangians giving rise to an Euler–Lagrange form; the order of a Lagrangian
system is then, as a property of the whole equivalence class, determined via the
order of the Euler–Lagrange form. In this way, only properties directly connected
with dynamics, hence common to all the equivalent Lagrangians, enter in this def-
inition, while distinct properties of particular Lagrangians which are not essential
for the dynamics are eliminated (the latter are namely connected with the fact
that the family of equivalent Lagrangians contains Lagrangians of all orders start-
ing from a minimal one, which, as functions, may look completely different from
each other, and whose domains usually are open subsets of the corresponding jet
prolongations of the underlying fibered manifold; a global Lagrangian often even
does not exist at all, obstructions lie in the topology of Y ). In the sense of our
definition, for example, the Dirac field is a Lagrangian system of order zero (and
not of order one); indeed, in this case the class [α] is represented by the global form
dθλ projectable onto Y , since the corresponding Lagrangian λ is a global first order
Lagrangian affine in the first order derivatives. Similarly, the Einstein gravitational
field, which is usually defined by the scalar curvature Lagrangian (global second
order Lagrangian), is a Lagrangian system of order one, since the corresponding
Poincaré–Cartan form is projectable onto J1Y .

4. Regular Hamiltonian systems

A section δ of πs is called a Dedecker’s section [30] if δ∗µ = 0 for every at least
2-contact form µ on JsY .

Consider a Hamiltonian system α on JsY . Denote E = p1α, F = p2α, G =
π∗s+1,sα− E − F (i.e., G is the at least 3-contact part of π∗s+1,sα), and

(4.1) α̂ = E + F.

We shall call the form α̂ the principal part of α.
A Dedecker’s section which is a Hamilton extremal of π∗s+1,sα will be called

Dedecker–Hamilton extremal of α.
It is easy to obtain the following relation between the sets of extremals, Hamilton

extremals, and Dedecker–Hamilton extremals of a Hamiltonian system α on JsY
[30]:

If γ is an extremal of E = p1α then for every Lepagean equivalent α of E, α
defined on JsY (s ≥ 0), the section δ = Jsγ is a Hamilton extremal of α, and
δ̂ = Js+1γ is its Dedecker–Hamilton extremal.

For every α ∈ [α], defined on JsY (s ≥ 0), and for every its Dedecker–Hamilton
extremal δ̂, the section δ = πs+1,s ◦ δ̂ is a Hamilton extremal of α.

Denote by Ds
α and Ds+1

α̂ the family of n-forms iξα and iξα̂ respectively, where
ξ runs over all πs-vertical vector fields on JsY , respectively, over all πs+1-vertical
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vector fields on Js+1Y . Notice that the rank of Ds+1
α̂ is never maximal, since

i∂/∂yν
P
α̂ = 0 for all multiindices P of the lenght s+ 1.

Apparently, Hamilton extremals and Dedecker–Hamilton extremals of α are in-
tegral sections of the ideal generated by the family Ds

α and Ds+1
α̂ , respectively.

Hence, “regularity” can be understood to be a property of the ideal Ds+1
α̂ as follows

[30]. For convenience, let us consider the cases s = 0 and s > 0 separately.
We call a Hamiltonian system α on Y regular if rankD1

α̂ is constant and equal
to rankV π = m. Let s ≥ 1 and r ≥ 1. A Hamiltonian system α on JsY will be
called regular of degree r if the system of local generators of Ds+1

α̂ contains all the
n-forms

(4.2) ωσ ∧ ωi, . . . , ωσ
j1...jr−1

∧ ωi,

and rankDs+1
α̂ = n rankV πr−1 + rankV πs−r.

We refer to (4.2) as local canonical 1-contact n-forms of order r.
Roughly speaking, regularity of degree r means that the system Ds+1

α̂ contains all
the canonical contact n-forms on JrY , and the rank of the “remaining” subsystem
of Ds+1

α̂ is the greatest possible one.
Notice that by this definition, every Dedecker–Hamilton extremal of a regular

Hamiltonian system with degree of regularity r is holonomic up to the order r, i.e.,

πs+1,r ◦ δ̂ = Jr(πs+1,0 ◦ δ̂).
Moreover, we have the following main theorem (for the proof we refer to [30]).

Theorem 4.1. [30] Let α be a Hamiltonian system on JsY , r0 the minimal order
for E = p1α. Suppose that α is regular of degree r0. Then every Dedecker–Hamilton
extremal δ̂ of α is of the form

πs+1,r0 ◦ δ̂ = Jr0γ

where γ is an extremal of E.

Taking into account this result, a Hamiltonian system of order s ≥ 1 which is
regular of degree r0 will be called simply regular. Thus, regular Hamilton equations
and the corresponding Euler–Lagrange equations are almost equivalent in the sense
that extremals are in bijective correspondence with classes of Dedecker–Hamilton
extremals, γ → [Js+1γ], where δ̂ ∈ [Js+1γ] iff πs+1,r0 ◦ δ̂ = Jr0γ.

We shall call a regular Hamiltonian system strongly regular if the Hamilton and
Euler–Lagrange equations are equivalent in the sense that extremals are in bijective
correspondence with classes of Hamilton extremals, γ → [Jsγ], where δ ∈ [Jsγ] iff
πs,r0 ◦ δ̂ = Jr0γ. (Clearly, for s = 1 this precisely means a bijective correspondence
between extremals and Hamilton extremals).

The concept of regularity of a Lagrangian system is now at hand: regularity can
be viewed as the property that there exists at least one associated Hamiltonian
system which is regular; obviously, the order of this Hamiltonian system may differ
from the order of the Lagrangian system. Hence, in accordance with [30], we call
a Lagrangian system [α] regular if the family of associated Hamiltonian systems
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contains a regular Hamiltonian system. Similarly, we call a Lagrangian system
strongly regular if the family of associated Hamiltonian systems contains a strongly
regular Hamiltonian system.

5. Regularity conditions

The above geometric definition of regularity enables one to find explicit regularity
conditions. Keeping notations introduced so far, we write α̂ = E + F , where
E = Eσω

σ ∧ ω0, and

(5.1) F =
s∑

|J|,|P |=0

F J,P,i
σν ωσ

J ∧ ων
P ∧ ωi, F J,P,i

σν = −FP,J,i
νσ ;

here J, P are multiindices of the lenght k and l, respectively, J = (j1j2 . . . jk),
P = (p1p2 . . . pl), where 0 ≤ |J |, |P | ≤ s, i.e., 0 ≤ k, l ≤ s, and, as usual, 1 ≤ i ≤ n,
1 ≤ σ, ν ≤ m. Since dα = 0, E is an Euler–Lagrange form of order s+ 1, i.e., the
functions Eσ satisfy the identities

(5.2)
∂Eσ

∂yν
p1...pl

−
s+1∑
k=l

(−1)k

(
k

l

)
dpl+1dpl+2 . . . dpk

∂Eν

∂yσ
p1...pl

= 0, 0 ≤ l ≤ s+ 1,

called Anderson–Duchamp–Krupka conditions for local variationality of E [2], [20].
The condition dα = 0 means that, in particular,

(5.3) p2dα = p2dE + p2dF = 0.

In fibered coordinates this equation is equivalent with the following set of identities

(5.4)
∂Eσ

∂yν
− ∂Eν

∂yσ
− diF

,i
σν = 0,

(5.5)
(F 0,S,i

σν )sym(Si) =
1
2
∂Eσ

∂yν
Si

,

(F 0,P,i
σν )sym(Pi) =

1
2
∂Eσ

∂yν
Pi

− djF
0,P i,j
σν , 0 ≤ |P | ≤ s− 1,

and

(5.6)
(F J,S,i

σν )sym(Si) = 0, 1 ≤ |J | ≤ s,

(F Jj,P,p
σν )sym(Pp) + (F J,Pp,j

σν )sym(Jj) + diF
Jj,Pp,i
σν = 0, 0 ≤ |J |, |P | ≤ s− 1,

where sym means symmetrization in the indicated indices, and S = (p1p2 . . . ps).
Denote

(5.7) fJ,P,i
σν = F J,P,i

σν − (F J,P,i
σν )sym(Pi).
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Then from (5.5) we easily get

(5.8)
(F ,p1...pl−1,pl

σν )sym(p1...pl−1pl) =
1
2

s+1−l∑
k=0

(−1)kdi1di2 . . . dik

∂Eσ

∂yν
p1...pli1i2...ik

− dif
,p1...pl,i

σν , 1 ≤ l ≤ s+ 1,

and the recurrent formulas (5.6) give us the remaining F ’s expressed by means of
the (F 0,P,i

σν )sym(Pi)’s and the above f ’s. As a result, one gets F (5.1) determined
by the Euler–Lagrange expressions Eσ and the (free) functions fJ,P,i

σν . Moreover,
(5.4), and the antisymmetry conditions for the F J,P,i

σν ’s, lead to the identities (5.2),
as expected.

Now, we are prepared to find explicit regularity conditions for α. By definition,
Ds+1

α̂ is locally spanned by the following n-forms:

(5.9)

ηP
ν = −i∂/∂yν

P
α̂ =

s∑
|J|=0

2F J,P,i
σν ωσ

J ∧ ωi, 1 ≤ |P | ≤ s,

ην = −i∂/∂yν α̂ = −Eνω0 +
s∑

|J|=0

2F J,0,i
σν ωσ

J ∧ ωi.

One can see from (5.6) that the functions F J,P,i
σν where |J |+ |P | ≥ s+ 1, depend

only upon the f ’s (5.7). The (invariant) choice

(5.10) fJ,P,i
σν = 0, |J |+ |P | ≥ s+ 1

then leads to

(5.11) F J,P,i
σν = 0, |J |+ |P | ≥ s+ 1,

and we obtain

(5.12)

ηS
ν = 2F 0,S,i

σν ωσ ∧ ωi,

ηP
ν = 2F 0,P,i

σν ωσ ∧ ωi + 2F j1,P,i
σν ωσ

j1 ∧ ωi, |P | = s− 1,

. . .

ηP
ν =

r0−2∑
|J|=0

2F J,P,i
σν ωσ

J ∧ ωi + 2F
j1...jr0−1,P,i
σν ωσ

j1...jr0−1 ∧ ωi, |P | = s− r0 + 1,

. . .

ηp1
ν =

s∑
|J|=0

2F J,p1,i
σν ωσ

J ∧ ωi,

ην = −Eνω0 +

s∑
|J|=0

2F J,0,i
σν ωσ

J ∧ ωi.
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where

(5.13)
F Jj,P,i

σν = (−1)|J|+1(F 0,JjP,i
σν )sym(JjPi) − (fJ,Pi,j

σν )sym(Jj) + fJj,P,i
σν ,

= (−1)|J|+1 1

2

∂Eσ

∂yν
JjPi

− (fJ,Pi,j
σν )sym(Jj) + fJj,P,i

σν , |J |+ |P | = s− 1.

The results can be summarized as follows.

Theorem 5.1. [30] Let α be Hamiltonian system of order s, let r0 denote the
minimal order of the corresponding Lagrangians. Suppose that

(5.14) fJ,P,i
σν = 0, |J |+ |P | ≥ s+ 1,

and

(5.15)

rank(F p1...ps,0,i
νσ ) = mn,

rank(F
p1...ps−1,j1,i
νσ ) = mn2,

. . .

rank(F
p1...ps−r0+1,j1...jr0−1,i
νσ ) = nm

(
n + r0 − 2

r0 − 1

)
,

rank

 0 F P,J,i
νσ

−Eν 2F 0,J,i
νσ

 = maximal, 0 ≤ |J | ≤ s, 1 ≤ |P | ≤ s− r0,

where in the above matrices, the (ν, P ) label rows, and the (σ, J, i) label columns.
Then α is regular.

For the most frequent cases of second and first order locally variational forms
this result is reduced to the following:

Corollary 5.1. [30] Let s = 1. The following are necessary conditions for α be
regular:

(5.16) r0 = 1,

(5.17) f j,p,i
σν = 0, f i,0,j

σν = f j,0,i
νσ ,

(5.18) det
(∂Eσ

∂yν
ij

− 2f i,0,j
σν

)
6= 0,

where in the indicated (mn×mn)-matrix, (ν, j) label the rows and (σ, i) the columns.
Then

(5.19)
α̂ = Eσω

σ ∧ ω0 +
(1

4

(∂Eσ

∂yν
i

− ∂Eν

∂yσ
i

)
− djf

i,0,j
σν

)
ωσ ∧ ων ∧ ωi

+
(∂Eσ

∂yν
ij

− 2f i,0,j
σν

)
ωσ ∧ ων

j ∧ ωi.
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In terms of a first order Lagrangian λ = Lω0 the regularity conditions (5.17)
and (5.18) read

(5.20) det
( ∂2L

∂yσ
j ∂y

ν
k

− gij
σν

)
6= 0,

where

(5.21) gij
σν = −gji

σν = −gij
νσ,

and (in the notations of (3.3)) it holds

(5.22) α̂ = dθλ + p2dµ, p2µ =
1
4
gij

σνω
σ ∧ ων ∧ ωij .

If, in particular, E is projectable onto J1Y , i.e.,

(5.23)
∂Eσ

∂yν
ij

= 0

for all (σ, ν, i, j), we can consider for E either a first order Hamiltonian system
(s=1), or a zero order Hamiltonian system (s=0) (the latter follows from the fact
that variationality conditions imply that Eσ are polynomials of order n in the first
derivatives). Taking into account the above corollary for s = 1, and the definition of
regularity for s = 0, we obtain regularity conditions for first order locally variational
forms as follows.

Corollary 5.2. [30] Every locally variational form E on J1Y is regular.
(1) Let W ⊂ J1Y be an open set, and gij

σν be functions on W such that

(5.24) −gij
σν = gji

σν = gij
νσ, det(gij

σν) 6= 0.

Then every closed (n+ 1)-form α on W such that

(5.25) α̂ = Eσω
σ ∧ ω0 +

1
2

(∂Eσ

∂yν
i

+ djg
ji
σν

)
ωσ ∧ ων ∧ ωi + gji

σνω
σ ∧ ων

j ∧ ωi

is a regular first order Hamiltonian system related to E.
(2) Suppose that

(5.26) rank
(∂Eσ

∂yν
i

)
= rank

( ∂2L

∂yσ∂yν
i

− ∂2L

∂yσ
i ∂y

ν

)
= m,

where in the indicated (m × mn)-matrices, (σ) label the rows and (ν, i) the
columns, and λ = Lω0 is any (local) first order Lagrangian for E. Then there
exists a unique regular zero order Hamiltonian system related to E; it is given
by the (n+ 1)-form α on Y which in every fibered chart (V, ψ), ψ = (xi, yσ)
is expressed as follows:

(5.27)

π∗1,0α = Eσω
σ ∧ ω0

+
n∑

k=1

1
(k + 1)!

∂kEσ

∂yν1
i1
. . . ∂yνk

ik

ωσ ∧ ων1 ∧ · · · ∧ ωνk ∧ ωi1...ik
.
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6. Legendre transformation

Let α be a regular Hamiltonian system of order s ≥ 1. Then all the canonical
1-contact n-forms

(6.1) ωσ ∧ ωi, . . . , ωσ
j1...jr0−1

∧ ωi,

where r0 is the minimal order for the locally variational form E = p1α, belong
to the exterior differential system generated by Ds+1

α̂ . However, the generators
of Ds+1

α̂ naturally associated with the fibered coordinates (i.e., (5.9)), are of the
form of linear combinations of (6.1), and, moreover, for s > 1, nonzero generators
are not linearly independent. In this sense the generators associated with fibered
coordinates are not canonical. In what follows we shall discuss the existence of
coordinates on JsY , canonically adapted to the system Ds+1

α̂ , i.e., such that a
part of the naturally associated generators coincides with the forms (6.1), and
all superfluous generators vanish. More precisely, we shall be interested in the
existence of local charts, (W,χ), χ = (xi, yσ

J , p
J,i
σ , zL), on JsY such that (xi, yσ

J )
are local fibered coordinates on Jr0−1Y , and the generators of Ds+1

α̂ naturally
associated with the coordinates pJ,i

σ coincide with the n-forms (6.1), and those
associated with zL vanish. Hence,

(6.2)
i∂/∂zL α̂ = 0, ∀L,
i∂/∂pJ,i

σ
α̂ = ωσ

J ∧ ωi, 0 ≤ |J | ≤ r0 − 1.

Consequently, the nonzero generators are linarly independent. We shall call such
“canonical” cordinates on JsY Legendre coordinates associated with the regular
Hamiltonian system α.

In the following theorem we adopt the notations of (3.3) and (3.4).

Theorem 6.1. [30] Let α be a regular Hamiltonian system on JsY , let x ∈ JsY
be a point. Suppose that in a neighborhood W of x

(6.3) α = dρ, ρ = θλ + dν + µ,

where λ is a Lagrangian of the minimal order, r0, for E = p1α, defined on πs,r0(W ),
and µ is such that

(6.4) p2µ =
r0−1∑

|J|,|K|=0

gJ,K,i1i2
σν ωσ

J ∧ ων
K ∧ ωi1i2 ,

where gJ,K,i1i2
σν are functions on πs,r0−1(W ), satisfying the antisymmetry conditions

gJ,K,i1i2
σν = −gJ,K,i2i1

σν = −gK,J,i1i2
νσ . Put

(6.5) pJ,i
σ =

r0−|J|−1∑
l=0

(−1)ldp1dp2 . . . dpl

∂L

∂yσ
Jp1...pli

+ 4gJ,K,il
σν yν

Kl, 0 ≤ |J | ≤ r0 − 1.

Then for any suitable functions zL on W , (W,χ), where χ = (xi, yσ
J , p

J,i
σ , zL), is a

Legendre chart for α.
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Using (6.5) we can write

(6.6) ρ = −Hω0 +
r0−1∑
|J|=0

pJ,i
σ dyσ

J ∧ ωi + η + dν + µ3,

where

(6.7) η =
r0−1∑

|J|,|K|=0

gJ,K,i1i2
σν dyσ

J ∧ dyν
K ∧ ωi1i2 ,

µ3 is at least 3-contact, and

(6.8) H = −L+ pJ,i
σ yσ

Ji + 2gJ,K,i1i2
σν yσ

Ji1y
ν
Ki2 .

We call the functions H (6.8) and pJ,i
σ (6.5) a Hamiltonian and momenta of α.

Now,

(6.9) α̂ = −dH ∧ ω0 +
r0−1∑
|J|=0

dpJ,i
σ ∧ dyσ

J ∧ ωi + dη − p3dη,

and computing i∂/∂zL α̂, i∂/∂pJ,i
σ
α̂, and i∂/∂yσ

J
α̂ we get that Ds+1

α̂ is spanned by
the following nonzero n-forms:

(6.10)

− ∂H

∂pJ,i
σ

ω0 + dyσ
J ∧ ωi = ωσ

J ∧ ωi,( ∂H

∂yσ
J

− 4
∂gJK,i1i2

σν

∂xi2
yν

Ki1 − 2
(∂gKP,i1i2

νρ

∂yσ
J

+
∂gJK,i1i2

σν

∂yρ
P

+
∂gPJ,i1i2

ρσ

∂yν
K

)
yν

Ki1yρ
Pi2

)
ω0

+ dpJ,i
σ ∧ ωi,

where 0 ≤ |J | ≤ r0 − 1. Notice that if dη = 0 we get Ds+1
α̂ spanned by

(6.11) ωσ
J ∧ ωi,

∂H

∂yσ
J

ω0 + dpJ,i
σ ∧ ωi, 0 ≤ |J | ≤ r0 − 1.

Hamilton equations in Legendre coordinates thus take the following form.

Theorem 6.2. [30]

(1) A section δ : U → W is a Dedecker–Hamilton extremal of α (6.3), (6.6) if,
along δ,

(6.12)

∂yσ
J

∂xi
=
∂H

∂pJ,i
σ

,

∂pJ,i
σ

∂xi
=− ∂H

∂yσ
J

+ 4
∂gJK,i1i2

σν

∂xi2

∂H

∂pK,i1
ν

+ 2
(∂gKP,i1i2

νρ

∂yσ
J

+
∂gJK,i1i2

σν

∂yρ
P

+
∂gPJ,i1i2

ρσ

∂yν
K

) ∂H

∂pK,i1
ν

∂H

∂pP,i2
ρ

.
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If, in particular, dη = 0, (6.12) take the “classical” form

(6.13)
∂yσ

J

∂xi
=

∂H

∂pJ,i
σ

,
∂pJ,i

σ

∂xi
= − ∂H

∂yσ
J

, 0 ≤ |J | ≤ r0 − 1.

(2) If µ3 is πs,r0−1-projectable then (6.12) (resp. (6.13)) are equations for Hamil-
ton extremals of α.

As a consequence of (2) we obtain that extremals are in bijective correspondence
with classes of Hamilton extremals (with the equivalence in the sense of Sec. 4, i.e.,
that δ1 is equivalent with δ2 iff πs,r0 ◦ δ1 = πs,r0 ◦ δ2). In other words,

Corollary 6.1. [30] Hamiltonian systems satisfying the condition (2) of Theorem
6.2 are strongly regular.

The above result shows another geometrical meaning of Legendre transforma-
tion: Hamiltonian systems which are regular and admit Legendre transformation
according to Theorem 6.1 either are strongly regular, or can be easily brought to
a stongly regular form (by modifying the term µ3).

Comments 2. Let us compare our approach to regularity and Legendre transfor-
mation with other authors.

(i) Standard Hamilton–DeDonder theory. In the usual formulation of Hamilton-
ian field theory Legendre transformation is a map associated with a Lagrangian,
defined by the following formulas:

(6.14) pi
σ =

∂L

∂yσ
i

if L = L(xi, yν , yν
j ),

and

(6.15) pj1...jki
σ =

r−k−1∑
l=0

(−1)ldp1dp2 . . . dpl

∂L

∂yσ
j1...jkp1...pli

, 0 ≤ k ≤ r − 1,

for a Lagrangian of order r ≥ 2 ([8], [7], [16], [33], [35], [37], etc.). These formulas
have their origin in the (noninvariant) decomposition of the Poincaré–Cartan form
θλ (3.4) in the canonical basis (dxi, dyσ

J ), 0 ≤ |J | ≤ r − 1, i.e.,

(6.16) θλ = (L−
r−1∑
|J|=0

pJi
σ y

σ
Ji)ω0 +

r−1∑
|J|=0

pJi
σ dy

σ
J ∧ ωi.

However, for global Lagrangians of order r ≥ 2 the form (3.4) is neither unique
nor globally defined. It is replaced by Θ = θλ + p1dν (cf. notations of (3.3)), and,
consequently, (6.15) are replaced by more general formulas

(6.17) pj1...jki
σ =

r−k−1∑
l=0

(−1)ldp1dp2 . . . dpl

( ∂L

∂yσ
j1...jkp1...pli

+ cj1...jkp1...pli
σ

)
,

0 ≤ k ≤ r − 1, where cj1...jkp1...pli
σ are auxiliary (free) functions (Krupka [23],

Gotay [16]). In the Hamilton–De Donder theory, a Lagrangian is called regular if
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the Legendre map defined by (6.15), resp. (6.17) is regular. In the case of a first
order Lagrangian this means that λ satisfies the condition

(6.18) det
( ∂2L

∂qσ
j ∂q

ν
k

)
6= 0

at each point of J1Y . Since for higher order Lagrangians the Legendre transfor-
mation (6.17) depends upon p1dν, one could expect that the corresponding regu-
larity condition conserves this property. Surprizingly enough, it has been proved
in [23] and [16] that the regularity conditions do not depend upon the functions
cj1...jkp1...pli
σ , and are of the form [37], [23], [16]

(6.19) rank

(
1

[j1 . . . j2r−s(pr+1 . . . ps] [p1 . . . pr)]

∂2L

∂yσ
j1...j2r−s(pr+1...ps

∂yν
p1...pr)

)
= max

where [j1 . . . j2r−spr+1 . . . ps] and [p1 . . . pr] denotes the number of all different se-
quences arising by permuting the sequence j1 . . . j2r−spr+1 . . . ps and p1 . . . pr, re-
spectively; as usual, r ≤ k ≤ 2r − 1, and, in the indicated matrices, σ, j1 ≤ · · · ≤
j2r−k label columns and ν, p1 ≤ · · · ≤ pk label rows, and the bracket denotes sym-
metrization in the corresponding indices. (Notice that within the present approach,
by (6.3), the nondependence of regularity conditions upon the c’s is trivial). As a
result one obtains that if a Lagrangian satisfies (6.18) (respectively, (6.19)) then
every solution δ of the Hamilton–De Donder equations δ∗iξdθλ = 0 (respectively,
δ∗iξdΘ = 0), is of the form δ = J1γ (respectively, π2r−1,r ◦ δ = Jrγ) where γ is an
extremal of λ. However, while in the Legendre coordinates defined by (6.15) the lo-
cal Hamilton–De Donder equations, i.e., δ∗iξdθλ = 0, take the familiar “canonical”
form,

∂yσ
J

∂xi
=

∂H

∂pJ,i
σ

,
∂pJ,i

σ

∂xi
= − ∂H

∂yσ
J

,

for the global Hamilton–De Donder equations, i.e., δ∗iξdΘ = 0, using the “Le-
gendre transformation” defined by (6.17), one does not generally obtain a similar
“canonical” representation.

(ii) A generalization of the concepts of regularity and Legendre transformation
within the Hamilton–De Donder theory. In the paper [26] second order Lagrangians,
affine in the second derivatives, and admitting first order Poincaré–Cartan forms
were studied. Notice that in the sense of the regularity condition (6.19), La-
grangians of this kind are apparently singular. In [26], the definition of a regular
Lagrangian is extended in the following way: a Lagrangian is called regular if the
solutions of the Euler–Lagrange and Hamilton–De Donder equations are equiva-
lent (in the sense that the sets of solutions are in bijective correspondence). The
following results were proved:

Theorem 6.3. [26] Consider a Lagrangian of the form λ = Lω0 where, in fibered
coordinates, L admits an (obviously invariant) decomposition

(6.20) L = L0(xi, yσ, yσ
j ) + hpq

ν (xi, yσ) yν
pq.
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Then θλ is projectable onto J1Y , and, consequently, Hamilton–De Donder equa-
tions are equations for sections δ : U → J1Y . If the condition

(6.21) det
( ∂2L0

∂yσ
i ∂y

ρ
k

− ∂hik
σ

∂yρ
−
∂hik

ρ

∂yσ

)
6= 0

is satisfied then λ is regular, i.e., the Euler–Lagrange and the Hamilton–De Donder
equations of λ are equivalent, and the mapping

(6.22) (xi, yσ, yσ
j ) → (xi, yσ, pj

σ), pj
σ =

∂L0

∂yσ
j

− ∂hjk
σ

∂xk
−

(∂hjk
σ

∂yν
+
∂hjk

ν

∂yσ

)
yν

k

is a local coordinate transformation on J1Y .

The formula (6.22) comes from the following noninvariant decomposition of the
Poincaré–Cartan form

(6.23) θλ = −Hω0 + pj
σdy

σ ∧ ωj + d(hij
σ y

σ
j ωi),

where

(6.24) H = −L0 +
∂L0

∂yσ
j

− ∂hjk
σ

∂yν
yσ

j y
ν
k .

The functions H and pj
σ were called in [26] the Hamiltonian and momenta of the

Lagrangian (6.20), and (6.22) was called Legendre transformation. In the Legendre
coordinates (6.22) the Hamilton–De Donder equations read

(6.25)
∂H

∂yν
= −∂p

i
ν

∂xi
,

∂H

∂pk
ν

=
∂yν

∂xk
.

As pointed out by Krupka and Štěpánková, the above results directly apply to the
Einstein–Hilbert Lagrangian (scalar curvature) of the General Relativity Theory
(for explicit computations see [26]). The above ideas were applied to study also
some other kinds of higher order Lagrangians with projectable Poincaré–Cartan
forms by [10] (cf. also comments in [11]).

(iii) Dedecker’s approach to first order Hamiltonian field theory. In [5], Dedecker
proposed a Hamilton theory for first order Lagrangians on contact elements. If
transfered to fibered manifolds, it becomes a “nonstandard” Hamiltonian theory.
The core is to consider Hamilton equations of the form

(6.26) δ∗iξdρ = 0,

where ρ is a Lepagean equivalent of a first order Lagrangian of the form

ρ = θλ +
n∑

k=2

gi1...ik
σ1...σk

ωσ1 ∧ · · · ∧ ωσk ∧ ωi1...ik
.

Dedecker showed that if the condition

(6.27) det
( ∂2L

∂yσ
i ∂y

ν
j

− gij
σν

)
6= 0
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is satisfied, where gij
σν are the components of the 2-contact part of ρ, then for every

solution δ of the equations (6.26) which annihilates all the n-forms

ωσ1 ∧ ωi1 , ωσ1 ∧ ωσ2 ∧ ωi1i2 , . . . , ωσ1 ∧ ωσ2 ∧ · · · ∧ ωσn ,

one gets δ = J1γ where γ is a solution of the corresponding Euler–Lagrange equa-
tions. Accordingly, Dedecker called (6.27) a regularity condition. Also he pointed
out that since (6.27) depends on a Lagrangian and the free functions gij

σν , one
could consider the regularity problem for a Lagrangian as a problem on the exis-
tence of appropriate functions gij

σν such that (6.27) are satisfied. He demonstrated
such a regularization procedure on an example of a Lagrangian, singular within
the traditional understanding (i.e., not satisfying the regularity condition (6.18)).
He also introduced “momenta” as components at dyσ1 ∧ dyi1 , dy

σ1 ∧ dyσ2 ∧ ωi1i2 ,
. . . , dyσ1 ∧ dyσ2 ∧ · · · ∧ dyσn , and “Hamiltonian” as the component at ω0 in the
decomposition of ρ in the canonical basis. A “Legendre transformation” of this
kind, however, becomes a map to a space which has no direct connection with the
space where the dynamics of the problem takes place.

(iv) Regularity conditions (5.15) and their applications. It can be easily seen
that all the regularity conditions mentioned in (i), (ii) and (iii) represent particu-
lar cases of the general regularity conditions (5.15). Our understanding of regular
variational problems as those admitting existence of a regular Hamiltonian theory
precisely develops Dedecker’s idea published in [5]. Within this setting it is nat-
ural to investigate possible regularizations of Lagrangian systems. One can even
ask for more, namely, if there is a strongly regular Hamiltonian theory admitting
a Legendre transformation (in our sense). In such a case, apparently, one gets the
original integration problem (to solve PDE of order s+ 1) transfered to a different
but equivalent integration problem to solve an exterior differential system given in
a “normal form”. This opens new possibilities to understand dynamics of varia-
tional problems and to search for effective integration methods, especially for those
Lagrangian systems which traditionally are considered as singular.

These techniques recently have been applied to some concrete physically inter-
esting Lagrangians, singular in the sense of (6.18) and (6.19). We have already
mentioned [26] where regular Hamilton equations and Legendre coordinates for
the Einstein–Hilbert Lagrangian of the General Relativity Theory have been ob-
tained. In [31] and [32] regularizations of the Dirac field Lagrangian and of the
electromagnetic field Lagrangian have been studied, and the corresponding mo-
menta, Hamiltonian, and canonical Hamilton equations have been found. It should
be stressed that in all these cases one obtains to Euler–Lagrange equations their
strongly regular Hamiltonian counterparts which depend only on the Lagrangian
of the problem.

(v) Relation of (5.15) with Saunders’ concept of “Euler regularity”. Taking
in the regularity conditions (5.15) all the auxiliary terms fJ,P,i

σν equal to zero, one
obtains formulas which depend only upon partial derivatives of the Euler–Lagrange
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expressions Eσ. In particular, one gets the following regularity conditions:

rank
( ∂Eσ

∂yν
p1...ps−kj1...jki

)
= maximal, 0 ≤ k ≤ s,

where in the above matrices, the (ν, P ) label rows, and the (σ, J, i) label columns.
For s = 1 this means that

det
(∂Eσ

∂yν
pi

)
6= 0,

and for s = 0, from the definition of regularity of a zero order Hamiltonian system
(see Sec. 4), we get

rank
(∂Eσ

∂yν
i

)
= m.

Comparing this with the concept of regularity in higher order mechanics intro-
duced in [27] (see [29] for a detailed exposition), we can see that these formulas
mean “a direct generalization” to higher order field theory of the corresponding
formulas obtained in mechanics. Accordingly, the Hamiltonian theory for higher
order mechanics developed in [27] and [28] is a particular case of the Hamiltonian
field theory in this paper and [30].

On the contrary, another generalization of the regularity conditions of [27] to
field theory, proposed by Saunders in [36], and called by him Euler regularity, gives
regularity conditions which are different from ours. Namely, for an Euler–Lagrange
form of order s+ 1 the Saunders’ Euler regularity condition reads

rank
( ∂Eσ

∂yν
p1...ps+1

)
= m,

where (σ) label rows and (ν, P ) label columns (i.e., the functional equations Eσ = 0
can be solved for n derivatives of order s+1). As shown by Saunders on examples,
“Euler regularity” unfortunately does not represent a meaningful alternative to the
(not quite satisfactory) standard concept of regularity (6.18), (6.19).

(vi) Regularity and multisymplectic forms. A regular Lepagean (n + 1)-form
(Hamiltonian system) α on JsY is a multisymplectic form. However, the converse
generally is not true, i.e., multisymplectic forms (even those which are Lepagean)
do not coincide with regular Hamiltonian systems. For details we refer to [30].
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