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TORSE-FORMING VECTOR FIELDS IN T-SEMISYMMETRIC
RIEMANNIAN SPACES

JOSEF MIKEŠ, LUKÁŠ RACHŮNEK

Abstract. In this paper we consider torse-forming vector fields in T -semi-

symmetric Riemannian spaces. We prove that if Ti- and Tij-semisymmetric
spaces admit a non-isotropic torse-forming vector field, then it is convergent;

non-Einsteinian Ricci semisymmetric spaces with a harmonic Riemannian ten-

sor do not admit non-recurrent torse-forming vector fields. Our paper general-
izes earlier results by J. Kowolik and also results concerning almost Kenmotsu

manifolds.

1. Introduction

This paper is concerned about certain questions of torse-forming vector fields in
T -semisymmetric Riemannian spaces. The analysis is carried out in tensor form,
locally in a class of sufficiently smooth real functions.

One of the most studied classes of special (pseudo-) Riemannian spaces Vn are
semisymmetric spaces, which were introduced by N.S. Sinyukov in 1954 (see [4],
[13], [17]) and which generalize symmetric spaces. Semisymmetric spaces are in-
vestigated in detail by E. Boeckx, O. Kowalski and L. Vanhecke [4].

A generalization of semisymmetric spaces is Ricci semisymmetric spaces, and
these are further generalized and T-semisymmetric spaces are intruduced.

A Riemannian space Vn is called T -semisymmetric ([12], [13]), if for a tensor
T the condition R(X, Y ) ◦ T = 0 holds for arbitrary vector fields X, Y , where
R(X, Y ) denotes the corresponding curvature transformation and the symbol ◦
indicates the corresponding derivation on the algebra of all tensor fields. We can
write this condition in the local transcription as

T ...
... ,[lm] = 0 (1)

where “,” denotes the covariant derivative with respect to a (possibly indefinite)
metric tensor gij of a Riemannian space Vn and [jk] denotes the alternation with
respect to j and k.

1991 Mathematics Subject Classification. 53B20, 53B30.
Key words and phrases. torse-forming vector field, concircular vector field, convergent vector

field, recurrent vector field, T-semisymmetric Riemannian spaces, Kenmotsu manifolds.
Supported by grant No. 201/99/0265 of The Grant Agency of Czech Republic.

219



220 JOSEF MIKEŠ, LUKÁŠ RACHŮNEK

Evidently, a T -semisymmetric space is semisymmetric, or Ricci semisymmet-
ric, respectively, if T is the Riemannian curvature tensor R, or Ricci tensor Ric,
respectively (see [2], [3], [4], [12], [13], [17]).

The study of recurrent, convergent, concircular and torse-forming vector fields
has a long history starting in 1925 by the works of H.W. Brinkmann [5], P.A. Shi-
rokov [19] and K. Yano [22], [23]. In Riemannian spaces Vn with the above vector
fields there exists a metric of a special form; these spaces are now called (almost)
warped products [6]. These vector fields have been used in many areas of differen-
tial geometry, for example in conformal mappings and transformations [5], [8], [22],
geodesic, almost geodesic and holomorphically projective mappings and transfor-
mations (see [1], [10] – [15], [17], [18], [20], [21]), and others [1], [2], [3], [6], [7], [9],
[11], [13], [16], [17], ...

In the papers [2], [3], [7], [9], [16] there were studied semisymmetric and Ricci
semisymmetric spaces which contain concircular and torse-forming vector fields
satisfying some other assumptions. Our work is devoted to a generalization and
extension of these results.

Particulary, we extend the following
Theorem [J. Kowolik, Th. 1, [9]]. Let a Riemannian manifold Vn (n ≥ 4) be

a Ricci-semisymmetric space whose Ricci tensor is a Codazzi tensor (i.e. Rij,k =
Rik,j). If Vn admits a torse-forming vector field ξ then either ξ is a concircular
vector field or it reduces to a recurrent one.

Here, in Theorem 5, we generalize Kowolik’s result [Th. 1] for Ricci-semisymmet-
ric spaces Vn (n > 2) where the Ricci tensor need not be a Codazzi tensor.

Moreover, our Theorem 9 shows that under the assumptions of Kowolik’s the-
orem [Th. 1] we get the stronger assertion that a torse forming vector field is
recurrent. This implies that the second theorem in Kowolik’s paper is contained in
our Theorem 9.

2. On the theory of torse-forming vector fields

Now we will recall results concerning torse-forming vector fields and their special
cases: recurrent, convergent and concircular vector fields, which have been obtained
in [1], [5]–[9], [10]–[14], [16]–[23].

A vector field ξ in a Riemannian space Vn is called torse-forming if it satisfies
∇Xξ = % X + a(X)ξ where X ∈ TM , a(X) is a linear form and % is a function. In
the local transcription this reads

ξh
,i = % δh

i + ξhai (2)

where ξh and ai are the components of ξ and a, and δh
i is the Kronecker symbol.

Throughout this paper we assume ξh 6= 0.
A torse-forming vector field ξ is called

a) recurrent, if % = 0,
b) concircular , if ai is a gradient covector (i.e. ai = a,i),
c) convergent , if it is concircular, and % = const · exp(a).
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After a suitable normalization we can characterize concircular and convergent
vector fields ξ in the following form

b) ξh
,i = % δh

i and c) ξh
,i = const δh

i (3)

respectively.
A vector field ξ is called isotropic if g(ξ, ξ) = 0, where g is a metric on Vn.

Lemma 1. A non-recurrent torse-forming vector field is non-isotropic.

Proof. Let us suppose that % 6= 0 and that ξ is an isotropic torse-forming vector
field, i.e. ξαξβgαβ = 0, where gij are components of metric g. By covariant
differentiation of the last equation we get ξαξβ

,i gαβ = 0 and using (2) we obtain
% ξαgαi = 0. Therefore % = 0, which contradicts the assumption.

A non-isotropic torse-forming vector field ξ can be normalized so that ξαξβgαβ =
e = ±1 and we can write the equation (2) for a torse-forming vector field in the
following form [17]:

ξi,j = % (gij − e ξiξj), (4)
where ξi ≡ ξαgαi is a locally gradient covector, i.e. ξi = f,i where f is a function.
Evidently, we have in this case:

a) if % = 0, then ξ is recurrent and convergent,
b) if % = e

f+const , then ξ is convergent,
c) if % is a function of f , i.e. % = %(f), then ξ is concircular,
d) if % 6= %(f), then ξ is neither concircular nor recurrent.

Because we are studying vector fields ξ in Riemannian spaces, in what follows,
we shall not distinguish contravariant (ξh) from covariant (ξi ≡ ξαgαi) vectors.

¿From the above results it follows

Lemma 2. Any non-isotropic recurrent torse-forming vector field is convergent.

It is well known (see [17]) that, if a Riemannian space Vn admits a non-isotropic
torse-forming vector field ξ, then in Vn there exists a coordinate system x, in which
the metric takes the form

ds2 = e (dx1)2 + F (x1, x2, . . . , xn) ds̃2,

where e = ±1, F (6= 0) is a function, and ds̃2(x2, . . . , xn) is the metric form of the
associated Riemannian space Ṽn−1. In this coordinate system the vector ξ has the
following form: ξh = δh

1 . Evidently, the following holds
a) if F = const, then ξ is recurrent and convergent,
b) if F = c x12, where c is a constant, then ξ is convergent,
c) if F = F (x1), then ξ is concircular,
d) if F 6= F (x1), then ξ is neither concircular nor recurrent.

In the following we shall study non-isotropic torse-forming vector fields, charac-
terized by (4). The integrability condition arising from (4) can be written in the
form

ξαRα
ijk = gijck − gikcj + ξiajk (5)
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where Rh
ijk is the Riemannian tensor of Vn, ajk ≡ −eξ[j%k] and

ck ≡ %,k + e%2ξk . (6)

Lemma 3. Let ξ be a non-isotropic torse-forming vector field. If ci = 0, then ξ is
convergent.

Proof. Let us suppose that ci = 0. In view of (6), this assumption implies
% = %(f), which gives %′ + e%2=0. Therefore % = e

f+const or % = 0, which means
that ξh is convergent.

Taking the converse to Lemma 3 we get

Lemma 4. If a non-isotropic torse-forming vector field ξ is not convergent, then
ci 6= 0.

3. Torse-forming vector fields in T-semisymmetric Riemannian spaces
where T is a covector

In this section we shall be interested in T -semisymmetric Riemannian spaces
where T is a covector. In accordance with the general definition in section 1, by
a Ti-semisymmetric space we understand a Riemannian space Vn with a covector
field Ti satisfying

Ti,[lm] = 0. (7)
Using the Ricci identity we can write (7) in the form

R(X, Y ) ◦ T = 0 or TαRα
ijk = 0. (8)

Theorem 1. Let T (6= 0) be a covector field. A non-isotropic torse-forming vector
field ξ in a T -semisymmetric space Vn (n > 2) is convergent.

This theorem is an obvious consequence of the following more general assertion.

Lemma 5. Let T (6= 0) be a covector field. A non-isotropic torse-forming vector
field ξ in a space Vn (n > 2) is convergent, if R(X, ξ) ◦ T = 0 for any X.

Proof. Suppose there exists a non-isotropic torse-forming vector field ξ in Vn

(n > 2) such that R(X, ξ) ◦ T = 0 for any X.
With help of the conditions (5) and using properties of the Riemannian tensor

these conditions can be expressed in the following form

gijckT k − Ticj + ξiajkT k = 0 (9)

where T k ≡ gkαTα.
If ckT k 6= 0, then it follows from (9) that rank‖gij‖ ≤ 2. Since n > 2 (⇔

rank‖gij‖ > 2), the formula (9) implies that ckT k = 0, and thus

Ticj = ξiajkT k.

Let us suppose that ξh is not convergent, then Lemma 4 implies that ci 6= 0,
and, by the latter equality, the vectors Ti and ξi are collinear, i.e.,

Ti = aξi, (10)
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where a is a non-zero function.
Next, differentiating (10) covariantly with respect to xj and xk, and alternating

in j and k, we have
Ti,[jk] = aξi,[jk].

According to (7) and the Ricci identity we can write this equality in the form
ξαRα

ijk = 0 and in view of (5) we obtain

δh
j ck − δh

k cj + ξhajk = 0. (11)

Since we suppose ck 6= 0, there exists a vector εk such that cαεα = 1. Contracting
(11) with εk, we find

δh
j − εhcj + ξhajαεα = 0.

This together with n > 2 (rank‖δh
j ‖ > 2) leads to a contradiction. Therefore ck = 0

holds and we get from Lemma 3 that ξ is convergent.

4. Torse-forming vector fields
in T-semisymmetric Riemannian spaces where T is a 2-tensor field

According to (1) by a 2-tensor T-semisymmetric (or simply Tij-semisymmetric)
space we mean a Riemannian space Vn with a tensor field Tij satisfying

R(X, Y ) ◦ T = 0 or Tij,[lm] = 0. (12)

First, let us prove the following lemmas for symmetric and skew-symmetric
tensors.

Theorem 2. Let T (6= αg) be a 2-covariant symmetric tensor field. A non-
isotropic torse-forming vector field ξ in a T -semisymmetric space Vn (n > 2) is
convergent.

This theorem follows from the more general lemma

Lemma 6. Let T (6= αg) be a 2-covariant symmetric tensor field. A non-isotropic
torse-forming vector field ξ in a space Vn (n > 2) is convergent, if R(X, ξ) ◦ T = 0
for any X.

Proof. Let there exist a non-isotropic torse-forming vector field ξ in Vn (n > 2)
with R(X, ξ) ◦ T = 0 for any X.

Similarly as before, using (5), the assumption T[ij] = 0, and the properties of
the Riemannian tensor, we obtain

gliTjαcα − Tljci + gljTiαcα − Tlicj + ξlωij = 0, (14)

where ωij is a certain tensor, ci ≡ cαgiα and ‖gij‖ = ‖gij‖−1.
Let us prove that there exists a function µ such that

Tiαcα = µci. (15)
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Suppose that (15) does not hold. Then we can find εi such that ciε
i = 0 and

Tαβεαcβ = 1. Contracting (14) with such an εj and subsequently with εi, we obtain
the following formulas

gli − Tlαεαci + εlTiαcα + ξlωiαεα = 0 and 2εl + ξlωαβεαεβ = 0

where εi ≡ εαgαi. We can deduce that rank‖gli‖ ≤ 2. But from the assumption
n > 2 it follows that rank‖gli‖ > 3, a contradiction.

Substituting (15) in (14) we get

Flicj + Fljci − ξlωij = 0, (16)

where
Fij ≡ Tij − µgij . (17)

Let us choose ϕj such that ϕjcj = 1. When contracting (16) with such a ϕj and
then with ϕi, we arrive at the following formulas

Fli + Fljϕ
jci − ξlωijϕ

j = 0 (18)

and
Fliϕ

i = νξl,

where ν = 1
2ωijϕ

jϕi. This together with (18) leads to Fli = ξlχi where χi =
−νci + ωijϕ

j .
Then, according to the symmetry of the tensor Fij , we can write

Fij = λξiξj , (19)

where λ is a function, this implies that λ 6= 0.
Next, differentiating (19) covariantly with respect to xl and xm, and alternating

in l and m, we have
Fij,[lm] = λ(ξi,[lm]ξj + ξiξj,[lm]) .

From (12) and (17) it follows Fij,[lm] = 0, which, in view of ξi 6= 0, implies ξi,[lm] =
0. It means that Vn is ξi-semisymmetric and we get from Theorem 1 that ξh is
convergent.

Theorem 3. Let T (6= 0) be a 2-covariant skew-symmetric tensor field. A non-
isotropic torse-forming vector field ξ in a T -semisymmetric space Vn (n > 3) is
convergent.

Similarly as above, this theorem follows from the following

Lemma 7. Let T (6= 0) be a 2-covariant skew-symmetric tensor field. A non-
isotropic torse-forming vector field ξ in a space Vn (n > 3) is convergent, if R(X, ξ)◦
T = 0 for any X.

Proof. Let there exist a non-isotropic torse-forming vector field ξh in Vn (n > 3)
with R(X, ξ) ◦ T = 0.
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Again, using (5) and the properties of the Riemannian tensor and, in addition,
the assumption Tij + Tji = 0, we obtain

gliTαjc
α − Tljci − gljTαic

α + Tlicj − ξlωij = 0, (20)

where ωij is a certain tensor and ci ≡ cαgαi.
Let us prove that there exists a function µ such that (15) is true. Suppose, on

the contrary, that (15) does not hold. Then we can find εi such that Tαβcαεβ = 1
and ciε

i = 0. Contracting (20) with such an εj , we can deduce that rank‖gli‖ ≤ 3.
But from the assumption n > 3 it follows that rank‖gli‖ > 3, a contradiction.

Substituting (15) in (20) we get

(Tli − µgli)cj − (Tlj − µglj)ci − ξlωij = 0. (21)

Let us suppose that cj 6= 0. Then there exist ϕi such that ϕici = 1. Contracting
(21) with ϕj we get

Tli − µgli = ξlηi + χlci (22)
where ηi and χi are suitable vectors. Symmetrizing (22) we obtain

−2µgli = ξlηi + χlci + ξiηl + χicl. (23)

Provided the vectors ξi, ci, ηi, χi were linearly independent, we could use (23)
and verify that all they are isotropic. Since, however, ξi is non-isotropic, these
vectors have to be linearly dependent. If µ 6= 0, then the equality (23) implies
rank‖gli‖ ≤ 3 which contradicts the assumption n > 3. Therefore µ = 0 and (22)
has the form

Tli = ξlηi + χlci. (24)
Using the fact that Tij is skew-symmetric, we get from (24) that there is a vector

νi such that
Tij = ξiνj − ξjνi. (25)

Having in mind that (12) and (25) are valid, we obtain

ξi,[lm]νj + ξiνj,[lm] − ξj,[lm]νi − ξjνi,[lm] = 0.

We substitute ξi,[lm] ≡ −ξαRα
ilm and then, by (5), we have

(gilcm − gimcl + ξialm)νj + ξiνj,[lm] −
−(gjlcm − gjmcl + ξjalm)νi − ξjνi,[lm] = 0.

(26)

From (25) and the assumption Tij 6= 0 it follows that the vectors ξi and νi cannot
be collinear. Therefore there is εi such that εiνi = 1 and εiξi = 0 Contracting (26)
with εj we get

gilcm − gimcl + ξiblm + νiclm = 0, (27)
where blm and clm are certain tensors. Contracting (27) with ϕm (this vector
satisfies ϕmcm = 1) we find that rank‖gli‖ ≤ 3, a contradiction. This contradiction
implies that ci = 0, which means, by Lemma 3, that ξh is convergent.

For torse-forming vector fields in Tij-semisymmetric Riemannian spaces an as-
sertion which is analogous to Theorem 1 and Lemma 5 holds.
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Theorem 4. Let T (6= αg) be a 2-covariant tensor field. A non-isotropic torse-
forming vector field ξ in a T -semisymmetric space Vn (n > 3) is convergent.

Analogously we show that the following is true.

Lemma 8. Let T (6= αg) be a 2-covariant tensor field. A non-isotropic torse-
forming vector field ξ in a space Vn (n > 3) is convergent, if R(X, ξ) ◦ T = 0 for
any X.

Proof. Let T (6= αg) be a 2-covariant tensor field in Vn (n > 3) with R(X, ξ)◦T = 0
for any X. The tensor T can be expressed uniquely in the form T = U + V where
U is symmetric and V is skew-symmetric. Then U(X, Y ) = 1

2 (T (X, Y ) + T (Y, X))
and V (X, Y ) = 1

2 (T (X, Y )−T (Y, X)). From R(X, ξ)◦T = 0 we get R(X, ξ)◦U = 0
and R(X, ξ) ◦ V = 0.

Further, let us suppose that there exists a non-isotropic torse-forming vector
field ξ in Vn which is not convergent. Therefore we can use Lemma 6 and Lemma
7 and get that U = αg and V = 0. It means that T = αg, a contradiction. This
implies that the vector field ξ has to be convergent.

5. Torse-forming vector fields
in special T-semisymmetric spaces

Now, we will consider a special case of a T -semisymmetric space, namely, such
that T is the Ricci tensor. A Riemannian space Vn is called Ricci-semisymmetric
if the Ricci tensor Ric satisfies

R(X, Y ) ◦Ric = 0.

For non-Einsteinian spaces we have the inequality Ric 6= αg. The following
theorem follows from Theorem 2:

Theorem 5. A non-isotropic torse-forming vector field ξ in a non-Einsteinian
Ricci-semisymmetric space Vn (n > 2) is convergent.

This theorem follows from

Lemma 9. A non-isotropic torse-forming vector field ξ in a non-Einsteinian space
Vn (n > 2) is convergent, if R(X, ξ) ◦Ric = 0 for any X.

The structure Fh
i in Kählerian spaces is covariantly constant, and evidently in

this case Kn is Fh
i -semisymmetric. Therefore we have, using Theorem 4

Theorem 6. A non-isotropic torse-forming vector field ξ in a Kählerian space Kn

(n > 3) is convergent.

For Einsteinian spaces we have

Theorem 7. A non-isotropic torse-forming vector field ξ in an Einstenian space
Vn (n > 2) is concircular.
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Proof. Let Vn (n > 2) be an Einsteinian space. The Ricci tensor of this space
satisfies the following equation Rij = R

n gij , where R = Rαβgαβ is the scalar curva-
ture. Let there exist a non-istropic torse-forming vector field ξh in Vn. Then the
condition (5) is satisfied. By contracting of (5) with gij we obtain

(n− 2)%,k = ξk(R
n + e(n− 1)a2 − eξα%α). (28)

Since ξk is a gradient vector, i.e., ξk ≡ ξ,k, it follows from (28) that % = %(ξ)
which implies that ξh is concircular. The proof of Theorem 7 is complete.

Using Theorems 5 and 7 and the property of the concircular vector field in a
semisymmetric space Vn (n > 2) with non-constant curvature [13] we have

Theorem 8. A non-isotropic torse-forming vector field ξ in a semisymmetric space
Vn (n > 3) with non-constant curvature is convergent.

The Einsteinian, Kählerian, semisymmetric and Ricci-semisymmetric Riemann-
ian spaces with concircular (or convergent) vector field are described in [5] – [9],
[11] – [14], [16].

Spaces which generalize Einsteinian spaces are Riemannian spaces with a har-
monic curvature tensor, they are characterized by the following formula:

Rα
ijk,α = 0 (⇔ Rij,k = Rik,j). (29)

These spaces are studied by many authors, for example [9], [15], [20].
We have

Theorem 9. A torse-forming vector field ξ in a non-Einsteinian Ricci-semisym-
metric space Vn (n > 2) with harmonic curvature tensor is recurrent.

Proof. Let there exist a non-recurrent torse-forming vector field ξh in a non-
Einsteinian Ricci-semisymmetric space Vn (n > 2) with harmonic curvature tensor.
Evidently, the vector ξh is non-isotropic. Therefore we can use Theorem 5 and get
that ξh is convergent.

For this vector formula (3c) applies in the following form:

ξi,j = % gij , % ≡ const 6= 0. (30)

The condition of integrability of the equation (30) has the form ξαRα
ijk = 0.

Differentiating covariantly the last formula we obtain

ξαRα
ijk,l + % Rlijk = 0. (31)

Contracting (31) with gkl and using properties of the Riemannian tensor and (29)
we get:

% Rij = 0.

Because of % 6= 0 (ξh is not reccurent) we have Rij = 0. This contradics to the fact
that Vn is not an Einsteinian space, and we are done.

Remark. T. Q. Binh, U. C. De, L. Tamássy and M. Tarafdar [2], [3] studied
Ricci-semisymmetric and semisymmetric almost Kenmotsu manifolds. In Ken-
motsu manifolds there exists a unit vector field ξ satisfying the condition ∇Xξ =
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X − η(X)ξ, where η(X) = g(X, ξ). By simple observation we convince ourselves
that this vector field is non-isotropic and torse-forming, is not convergent and, con-
sequently, is not recurrent. Therefore many results of [2] and [3] follow immediately
from the properties of the torse-forming fields introduced in our article.
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