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TORSE-FORMING VECTOR FIELDS IN T-SEMISYMMETRIC
RIEMANNIAN SPACES

JOSEF MIKES, LUKAS RACHUNEK

ABSTRACT. In this paper we consider torse-forming vector fields in T-semi-
symmetric Riemannian spaces. We prove that if Tj- and T};-semisymmetric
spaces admit a non-isotropic torse-forming vector field, then it is convergent;
non-Einsteinian Ricci semisymmetric spaces with a harmonic Riemannian ten-
sor do not admit non-recurrent torse-forming vector fields. Our paper general-
izes earlier results by J. Kowolik and also results concerning almost Kenmotsu
manifolds.

1. INTRODUCTION

This paper is concerned about certain questions of torse-forming vector fields in
T-semisymmetric Riemannian spaces. The analysis is carried out in tensor form,
locally in a class of sufficiently smooth real functions.

One of the most studied classes of special (pseudo-) Riemannian spaces V;, are
semisymmetric spaces, which were introduced by N.S. Sinyukov in 1954 (see [4],
[13], [17]) and which generalize symmetric spaces. Semisymmetric spaces are in-
vestigated in detail by E. Boeckx, O. Kowalski and L. Vanhecke [4].

A generalization of semisymmetric spaces is Ricci semisymmetric spaces, and
these are further generalized and T-semisymmetric spaces are intruduced.

A Riemannian space V,, is called T-semisymmetric ([12], [13]), if for a tensor
T the condition R(X,Y) oT = 0 holds for arbitrary vector fields X,Y, where
R(X,Y) denotes the corresponding curvature transformation and the symbol o
indicates the corresponding derivation on the algebra of all tensor fields. We can
write this condition in the local transcription as

Ty =0 (1)

where “” denotes the covariant derivative with respect to a (possibly indefinite)
metric tensor g;; of a Riemannian space V,, and [jk] denotes the alternation with
respect to j and k.
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Evidently, a T-semisymmetric space is semisymmetric, or Ricci semisymmet-
ric, respectively, if T is the Riemannian curvature tensor R, or Ricci tensor Ric,
respectively (see [2], [3], [4], [12], [13], [17]).

The study of recurrent, convergent, concircular and torse-forming vector fields
has a long history starting in 1925 by the works of H.W. Brinkmann [5], P.A. Shi-
rokov [19] and K. Yano [22], [23]. In Riemannian spaces V;, with the above vector
fields there exists a metric of a special form; these spaces are now called (almost)
warped products [6]. These vector fields have been used in many areas of differen-
tial geometry, for example in conformal mappings and transformations [5], [8], [22],
geodesic, almost geodesic and holomorphically projective mappings and transfor-
mations (see [1], [10] — [15], [17], [18], [20], [21]), and others [1], [2], [3], [6], [7], [9],
[11], [13], [16], [17], ...

In the papers [2], [3], [7], [9], [16] there were studied semisymmetric and Ricci
semisymmetric spaces which contain concircular and torse-forming vector fields
satisfying some other assumptions. Our work is devoted to a generalization and
extension of these results.

Particulary, we extend the following

Theorem [J. Kowolik, Th. 1, [9]]. Let a Riemannian manifold V,, (n > 4) be
a Ricci-semisymmetric space whose Ricci tensor is a Codazzi tensor (i.e. Rijp =
Rir ;). If Vi, admits a torse-forming vector field £ then either £ is a concircular
vector field or it reduces to a recurrent one.

Here, in Theorem 5, we generalize Kowolik’s result [Th. 1] for Ricci-semisymmet-
ric spaces V;, (n > 2) where the Ricci tensor need not be a Codazzi tensor.

Moreover, our Theorem 9 shows that under the assumptions of Kowolik’s the-
orem [Th. 1] we get the stronger assertion that a torse forming vector field is
recurrent. This implies that the second theorem in Kowolik’s paper is contained in
our Theorem 9.

2. ON THE THEORY OF TORSE-FORMING VECTOR FIELDS

Now we will recall results concerning torse-forming vector fields and their special
cases: recurrent, convergent and concircular vector fields, which have been obtained
in [1], [5]-{9], [10]-{14], [16]-{23].

A vector field £ in a Riemannian space V,, is called torse-forming if it satisfies
Vxé=0X+a(X)¢ where X € TM, a(X) is a linear form and p is a function. In
the local transcription this reads

eh =00+ ¢a; (2)

where ¢" and a; are the components of ¢ and a, and 5? is the Kronecker symbol.
Throughout this paper we assume &" # 0.
A torse-forming vector field ¢ is called
a) recurrent, if o = 0,
b) concircular, if a; is a gradient covector (i.e. a; = a;),

¢) convergent, if it is concircular, and ¢ = const - exp(a).
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After a suitable normalization we can characterize concircular and convergent
vector fields ¢ in the following form

b) 52 = oot and c) ff; = const o' (3)

respectively.
A vector field ¢ is called isotropic if g(&,&) = 0, where g is a metric on V.

Lemma 1. A non-recurrent torse-forming vector field is non-isotropic.

Proof. Let us suppose that ¢ # 0 and that £ is an isotropic torse-forming vector
field, i.e. §“§5ga5 = 0, where g;; are components of metric g. By covariant
differentiation of the last equation we get fafi gap = 0 and using (2) we obtain
0&%gai = 0. Therefore o = 0, which contradicts the assumption.

A non-isotropic torse-forming vector field ¢ can be normalized so that £*¢% g, =
e = £1 and we can write the equation (2) for a torse-forming vector field in the
following form [17]:

§ij = 0(9i5 — €&&;)), (4)
where §; = £“gqq is a locally gradient covector, i.e. & = f; where f is a function.
Evidently, we have in this case:

a) if p = 0, then £ is recurrent and convergent,
b) if o = m, then £ is convergent,
c) if g is a function of f, i.e. o = o(f), then ¢ is concircular,
d) if o # o(f), then £ is neither concircular nor recurrent.
Because we are studying vector fields £ in Riemannian spaces, in what follows,
we shall not distinguish contravariant (¢") from covariant (&; = £%ga:) vectors.
;From the above results it follows

Lemma 2. Any non-isotropic recurrent torse-forming vector field is convergent.

It is well known (see [17]) that, if a Riemannian space V,, admits a non-isotropic
torse-forming vector field &, then in V,, there exists a coordinate system z, in which
the metric takes the form

ds* = e (dz')* + F(2', 2?%,..., 2™) d3?,

where e = +1, F(# 0) is a function, and ds?(2?,...,2") is the metric form of the
associated Riemannian space V,,_1. In this coordinate system the vector ¢ has the
following form: ¢" = 7. Evidently, the following holds

a) if F' = const, then £ is recurrent and convergent,

b)if FF = cxlz, where c is a constant, then ¢ is convergent,

c) if F = F(2%), then ¢ is concircular,

d) if F # F(z'), then £ is neither concircular nor recurrent.

In the following we shall study non-isotropic torse-forming vector fields, charac-
terized by (4). The integrability condition arising from (4) can be written in the
form

§a Rk = Gijck — gircj + &iajk (5)
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where Rfjk is the Riemannian tensor of V,,, aj, = —e§[;0x) and

k= 0k + €0’k (6)
Lemma 3. Let £ be a non-isotropic torse-forming vector field. If ¢; =0, then £ is

convergent.

Proof. Let us suppose that ¢; = 0. In view of (6), this assumption implies

0 = o(f), which gives ¢’ + ep?=0. Therefore o = m or 9 = 0, which means

that £ is convergent.
Taking the converse to Lemma 3 we get

Lemma 4. If a non-isotropic torse-forming vector field £ is not convergent, then

01#0

3. TORSE-FORMING VECTOR FIELDS IN T-SEMISYMMETRIC RIEMANNIAN SPACES
WHERE T IS A COVECTOR

In this section we shall be interested in T-semisymmetric Riemannian spaces
where T is a covector. In accordance with the general definition in section 1, by
a T;-semisymmetric space we understand a Riemannian space V,, with a covector
field T; satisfying

T; fim) = 0. (7)
Using the Ricci identity we can write (7) in the form
R(X,Y)oT =0 or T,Rj =0. (8)

Theorem 1. Let T (# 0) be a covector field. A non-isotropic torse-forming vector
field & in a T-semisymmetric space V,, (n > 2) is convergent.

This theorem is an obvious consequence of the following more general assertion.

Lemma 5. Let T (# 0) be a covector field. A non-isotropic torse-forming vector
field € in a space Vi, (n > 2) is convergent, if R(X,&)oT =0 for any X.

Proof. Suppose there exists a non-isotropic torse-forming vector field ¢ in V,,
(n > 2) such that R(X,£) oT =0 for any X.

With help of the conditions (5) and using properties of the Riemannian tensor
these conditions can be expressed in the following form

gijer T — Ticj + &a, T = 0 9)

where TF = gk T,

If ¢xT*F # 0, then it follows from (9) that rank||g;;|| < 2. Since n > 2 (&
rank||g;;|| > 2), the formula (9) implies that ¢, 7% = 0, and thus

TiCj = fiajka.
Let us suppose that ¢ is not convergent, then Lemma 4 implies that ¢; # 0,

and, by the latter equality, the vectors T; and &; are collinear, i.e.,
711' = a’{’ia (10)
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where a is a non-zero function.
Next, differentiating (10) covariantly with respect to 27 and ¥, and alternating
in 7 and k, we have

T (k) = ai,[jk)-

According to (7) and the Ricci identity we can write this equality in the form
§a Ry = 0 and in view of (5) we obtain

(5§Lck — 526‘7‘ + fhajk =0. (11)
Since we suppose ¢, # 0, there exists a vector €* such that c,e® = 1. Contracting
(11) with &*, we find

(5? —ele; +€"aj0e® = 0.
This together with n > 2 (rank||6” || > 2) leads to a contradiction. Therefore ¢ = 0
holds and we get from Lemma 3 that £ is convergent.

4. TORSE-FORMING VECTOR FIELDS
IN T-SEMISYMMETRIC RIEMANNIAN SPACES WHERE T IS A 2-TENSOR FIELD

According to (1) by a 2-tensor T-semisymmetric (or simply 7;;-semisymmetric)
space we mean a Riemannian space V,, with a tensor field T;; satisfying

R(X,Y)oT =0 or Tjum =0. (12)
First, let us prove the following lemmas for symmetric and skew-symmetric

tensors.

Theorem 2. Let T (# ag) be a 2-covariant symmetric tensor field. A non-
isotropic torse-forming vector field £ in a T-semisymmetric space V, (n > 2) is
convergent.

This theorem follows from the more general lemma

Lemma 6. Let T (# ag) be a 2-covariant symmetric tensor field. A non-isotropic
torse-forming vector field & in a space Vi, (n > 2) is convergent, if R(X,§)oT =0
for any X.

Proof. Let there exist a non-isotropic torse-forming vector field £ in V;, (n > 2)
with R(X,€) oT =0 for any X.
Similarly as before, using (5), the assumption T};;; = 0, and the properties of
the Riemannian tensor, we obtain
Qiljac® = Tijc; + g1 Tiac™ — Tiic; + §ui; = 0, (14)
where w;; is a certain tensor, ¢’ = c,g™® and ||g¥|| = | g:;]|7*.
Let us prove that there exists a function p such that

Tioc® = pc;. (15)
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Suppose that (15) does not hold. Then we can find &° such that ¢;e* = 0 and
T.pe®c” = 1. Contracting (14) with such an €7 and subsequently with &%, we obtain
the following formulas

Gii — T1a%c; + e1Tia ™ + Euine® =0 and  2¢; 4 §uape®e” =0

where g; = €%g,;. We can deduce that rank]|g;|| < 2. But from the assumption
n > 2 it follows that rank||g;|| > 3, a contradiction.
Substituting (15) in (14) we get

Ficj + Fjc; — §uw;; =0, (16)
where
Fij = Tij — ngij- (17)

Let us choose (7 such that ¢/c; = 1. When contracting (16) with such a ¢/ and
then with ¢°, we arrive at the following formulas

Fii + Fijp’c; — Guije’ =0 (18)
and
I;‘lispZ = V{la
where v = %wijcpjgai. This together with (18) leads to Fj; = &x; where x; =
—ve; + w;jel.
Then, according to the symmetry of the tensor Fj;, we can write
Fij = A&&;, (19)

where A is a function, this implies that A #£ 0.
Next, differentiating (19) covariantly with respect to 2! and 2™, and alternating
in [ and m, we have

Fijtm) = A& im)&5 + &ijjim)) -
From (12) and (17) it follows Fj; i) = 0, which, in view of §; # 0, implies &; i) =
0. It means that V,, is &-semisymmetric and we get from Theorem 1 that £" is
convergent.

Theorem 3. Let T (# 0) be a 2-covariant skew-symmetric tensor field. A non-
isotropic torse-forming vector field £ in a T-semisymmetric space V,, (n > 3) is
convergent.

Similarly as above, this theorem follows from the following

Lemma 7. Let T (# 0) be a 2-covariant skew-symmetric tensor field. A non-
isotropic torse-forming vector field € in a space Vy, (n > 3) is convergent, if R(X,&)o
T =0 for any X.

Proof. Let there exist a non-isotropic torse-forming vector field ¢# in V;, (n > 3)
with R(X,&) o T = 0.
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Again, using (5) and the properties of the Riemannian tensor and, in addition,
the assumption T;; + T}; = 0, we obtain

GiTajc® = Tije; — g1 Taic™ + Tiic; — §ui; = 0, (20)

where w;; is a certain tensor and ¢t = cag™.

Let us prove that there exists a function p such that (15) is true. Suppose, on
the contrary, that (15) does not hold. Then we can find &’ such that T,zc%? =1
and ¢;e' = 0. Contracting (20) with such an &/, we can deduce that rank||g;|| < 3.
But from the assumption n > 3 it follows that rank||g;;|| > 3, a contradiction.

Substituting (15) in (20) we get

(Thi — pagui)ej — (Ty; — pgij)ei — iz = 0. (21)
Let us suppose that ¢; # 0. Then there exist ¢ such that ¢’c; = 1. Contracting
(21) with ¢’/ we get

Ty — pgui = &mi + xu¢i (22)
where 7; and x; are suitable vectors. Symmetrizing (22) we obtain
—2pg1 = &mi + xaci + &+ Xacr. (23)

Provided the vectors &;, ¢;, n;, x; were linearly independent, we could use (23)
and verify that all they are isotropic. Since, however, &; is non-isotropic, these
vectors have to be linearly dependent. If u # 0, then the equality (23) implies
rank||g;;|| < 3 which contradicts the assumption n > 3. Therefore = 0 and (22)
has the form

Ty = &mi + xuci- (24)

Using the fact that T;; is skew-symmetric, we get from (24) that there is a vector

v; such that
Tij = &vj — &vie (25)
Having in mind that (12) and (25) are valid, we obtain

i, tm)Vi + &V tm) — §5,.um)Vi — EiVi,tm] = 0.
We substitute &; ;) = —§aRf},, and then, by (5), we have
(girem — GimCi + &im)Vj + i) jim] — (26)
—(gj16m — gjmer + Eiaim)vi — &V im) = 0.
From (25) and the assumption T;; # 0 it follows that the vectors &; and v; cannot
be collinear. Therefore there is €’ such that e'v; = 1 and £%¢; = 0 Contracting (26)
with &/ we get
GilCm — GimCl + gzblm + ViCim = 07 (27)
where by, and ¢, are certain tensors. Contracting (27) with ¢™ (this vector
satisfies ¢™¢,, = 1) we find that rank||g;;|| < 3, a contradiction. This contradiction
implies that ¢; = 0, which means, by Lemma 3, that £” is convergent.

For torse-forming vector fields in 7;;-semisymmetric Riemannian spaces an as-
sertion which is analogous to Theorem 1 and Lemma 5 holds.
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Theorem 4. Let T (# ag) be a 2-covariant tensor field. A non-isotropic torse-
forming vector field £ in a T-semisymmetric space V,, (n > 3) is convergent.

Analogously we show that the following is true.

Lemma 8. Let T (# ag) be a 2-covariant tensor field. A non-isotropic torse-
forming vector field € in a space Vi, (n > 3) is convergent, if R(X,£)oT =0 for
any X.

Proof. Let T (# ag) be a 2-covariant tensor field in V,, (n > 3) with R(X,£)oT =0
for any X. The tensor T can be expressed uniquely in the form T'= U + V where
U is symmetric and V is skew-symmetric. Then U(X,Y) = L(T(X,Y)+T(Y, X))
and V(X,Y) = 3(T(X,Y)-T(Y, X)). From R(X,{)oT = 0 we get R(X,&)oU =0
and R(X,£) oV =0.

Further, let us suppose that there exists a non-isotropic torse-forming vector
field ¢ in V,, which is not convergent. Therefore we can use Lemma 6 and Lemma
7 and get that U = ag and V = 0. It means that T" = ag, a contradiction. This
implies that the vector field £ has to be convergent.

5. TORSE-FORMING VECTOR FIELDS
IN SPECIAL T-SEMISYMMETRIC SPACES

Now, we will consider a special case of a T-semisymmetric space, namely, such
that T is the Ricci tensor. A Riemannian space V,, is called Ricci-semisymmetric
if the Ricci tensor Ric satisfies

R(X,Y)o Ric=0.

For non-Einsteinian spaces we have the inequality Ric # «g. The following
theorem follows from Theorem 2:

Theorem 5. A non-isotropic torse-forming vector field £ in a non-Einsteinian
Ricci-semisymmetric space V,, (n > 2) is convergent.

This theorem follows from

Lemma 9. A non-isotropic torse-forming vector field & in a non-Einsteinian space
Vi (n > 2) is convergent, if R(X, &) o Ric =0 for any X.

The structure Fih in Kahlerian spaces is covariantly constant, and evidently in
this case K, is Fih—semisymmetric. Therefore we have, using Theorem 4

Theorem 6. A non-isotropic torse-forming vector field £ in a Kdhlerian space Ky,
(n > 3) is convergent.

For Einsteinian spaces we have

Theorem 7. A non-isotropic torse-forming vector field & in an FEinstenian space
Vi (n > 2) is concircular.



TORSE-FORMING VECTOR FIELDS IN T-SEMISYMMETRIC RIEMANNIAN SPACES 227

Proof. Let V,, (n > 2) be an Einsteinian space. The Ricci tensor of this space
satisfies the following equation R;; = % gij, where R = R, g°? is the scalar curva-
ture. Let there exist a non-istropic torse-forming vector field £* in V,,. Then the
condition (5) is satisfied. By contracting of (5) with g%/ we obtain

(n—2)ox = &5 +e(n —1)a* — e€%0a). (28)

Since & is a gradient vector, i.e., g = £, it follows from (28) that o = o(¢)
which implies that £ is concircular. The proof of Theorem 7 is complete.

Using Theorems 5 and 7 and the property of the concircular vector field in a
semisymmetric space V,, (n > 2) with non-constant curvature [13] we have

Theorem 8. A non-isotropic torse-forming vector field £ in a semisymmetric space
Vi, (n > 3) with non-constant curvature is convergent.

The Einsteinian, Kéhlerian, semisymmetric and Ricci-semisymmetric Riemann-
ian spaces with concircular (or convergent) vector field are described in [5] — [9],
[11] — [14], [16].

Spaces which generalize Einsteinian spaces are Riemannian spaces with a har-
monic curvature tensor, they are characterized by the following formula:

ko =0 (& Rijk = Rixj). (29)
These spaces are studied by many authors, for example [9], [15], [20].
We have

Theorem 9. A torse-forming vector field £ in a non-Einsteinian Ricci-semisym-
metric space Vi, (n > 2) with harmonic curvature tensor is recurrent.

Proof. Let there exist a non-recurrent torse-forming vector field " in a non-
Einsteinian Ricci-semisymmetric space V;, (n > 2) with harmonic curvature tensor.
Evidently, the vector £" is non-isotropic. Therefore we can use Theorem 5 and get
that &" is convergent.

For this vector formula (3c) applies in the following form:

;= 09ij, o= const#0. (30)
The condition of integrability of the equation (30) has the form Saly, = 0.
Differentiating covariantly the last formula we obtain

Contracting (31) with ¢g*! and using properties of the Riemannian tensor and (29)
we get:

QRij =0.
Because of p # 0 (" is not reccurent) we have R;; = 0. This contradics to the fact
that V,, is not an Einsteinian space, and we are done.

Remark. T. Q. Binh, U. C. De, L. Taméssy and M. Tarafdar [2], [3] studied
Ricci-semisymmetric and semisymmetric almost Kenmotsu manifolds. In Ken-
motsu manifolds there exists a unit vector field £ satisfying the condition Vx& =
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X —n(X)¢&, where n(X) = g(X,€). By simple observation we convince ourselves
that this vector field is non-isotropic and torse-forming, is not convergent and, con-
sequently, is not recurrent. Therefore many results of [2] and [3] follow immediately
from the properties of the torse-forming fields introduced in our article.
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