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1. INTRODUCTION

The 3-space S2 x R is the direct product of the 2-sphere and the real line. The
similarity group

(1.1) Sim(S? x R) := Isom(S?) x Sim(R) := {A} x {(a,b)}

where A € O3 the 3-dimensional orthogonal group acting on S?; a € R\ {0}, b €
R and z — za + b define a similarity of R.
The isometry group

(1.2) Isom(S? x R) := Isom(S?) x Isom(R)

is specified by a := £1.

At the similarity classification of S? x R space groups in [1], the fixed point
free isometry groups G, leaving invariant a translation lattice of R, have also been
found and listed in infinite series which lead to space forms S2 x R/G, i.e. compact
manifolds with local S x R metric [2],[3],[4] (see our Table 2).

It turns out that - instead of similarity equivariance - the diffeomorphism one

(1.3) G~G =8"'GS

with a very simple “skew” diffeomorphism S leads to 4 diffeomorphism classes of
S2 x R space forms derived first very sketchily in [5]:

2 orientable ones (with fundamental group Z and Zs ® Zo, respectively; here ®
stands for free product of Coxeter groups)

and 2 nonorientable ones (with Zy x Z and Z, respectively).
Surprisingly, we find in the book [4] - without any proof - the statement on the
existence of one nonorientable manifold, up to diffeomorphism, that admits SZ x R
structures. This statement is false then obviously, in the earlier survey [3] we can
read the correct numbers.

We are working - in this compir\ign - on the classification of space forms in the
other fibre geometries H? x R, SLyR and Nil as well.

Although P. Scott [3] has presented a strategy for describing all the Seifert
bundles for the four compact S2 x R manifolds, we find it actual to give another
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more complete interpretation which seems to be advantageous for other reason (see
also [1] and [2]).

2. S2 x R ISOMETRIES AND SPACE FORMS, BASIC OBSERVATIONS

As we mentioned in the Introduction, an S%2 x R space form can naturally be
defined as a factor space (S% x R)/G, where G is an isometry group of S% x R,
containing an invariant lattice in R, denoted by L¢, as follows

(2.1) G Lg= (1), 7:$2 xR = S*xR, (X,z)~ (X,z+1)

with a minimal 0 < t € R; moreover, G acts freely on S2 x R (i.e. without any
fixed point) with compact fundamental domain (of non-empty interior).

By a similarity of S? x R we may assume that ¢t = 1. G is called space form group
or fundamental group as well.

(22) G:= {Az X K/i} = {Az X (K,“kz)} = {Az X K“kz}

where 4; € O3 acts on S2%, k = (K, k;) acts on R. Here K; is either the identity
1r of R or the reflection in zero 1g :  — —z. The “linear parts” of G in (2.2)
form the point group

of G. The translational parts k; to (4; x K;) have to satisfy the multiplication
formula

(24) (Al X Kl,kl) o} (A2 X Kz,k2) = (A1A2 X Kle,leQ + k‘z)

where we have indicated that our transforms act from the right throughout this
paper. Formula (2.4) can be derived from the assumed right action, in general:

(25) (X, :L')(Az X KJZ') = (XAZ,ZL'KZ + kz)

Any isometry of S2 x R is a product of at most 5 reflections. At most 3 reflections
(in equator circles of S%) produce any element of IsomS2:=IsomS?x IdR, at most
2 reflections(in points of R) are for IsomR:=IdS?x IsomR.
S?R; denotes the set of reflections above, wherei = 0...3, j = 0...2 (respectively,
i=0and j =0 for Id(S? x R)).

Proposition 2.1 Any space form group G has a finite point group Gg.
The proof is indirect. Since the linear parts of IsomR contain 2 elements, then
{A;} in (2.3) would have infinitely many ones from IsomS2. But S? is compact,
and we assumed a lattice Lg = (7) <1 G. Thus, there does not exist any open set
in the compact “shell” S2 x [0, 1] (Fig.1) which contains only points not equivalent
under the infinitely many transforms {{4; x 1gr,k;},0 < k; < 1} =: Go C G.
Then G cannot have any fundamental domain with non-empty interior F, since
the infinite disjoint union of Gp-images of this F2 would lie in the compact shell
S2 x [0,2], a contradiction.H

Remarks 1, In the proof we did not utilize, that G was fixed point free.
2, If G is not assumed to have a lattice, then it may have infinite point group Gp.
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FIGURE 1. S%ZxRis modelled in E3, := E3U{co} where the origin
0 and the infinity co are distinguished. The 0-concentric sphere of
Euclidean radius z models the level S? x {r} by r = Inz. Thus 0
is a joint point —oo of the R-fibres {s} x R (s € S?) as O-rays, oo
is a common point 400 € {s} x R. The spherical transforms are
usual. The transforms of R appear as the following “dictionary”

translates:

reflection (€ Ry) of S2 x R <= sphere inversion of E3,

in a sphere S? x {k} in an O-centered sphere of radius g
where k = Inp

translation (€ Ra) of S2 x R <= 0-central similarity of E3
with d € R from 0 with factor A
where d = In)

(a) F is a shell describing Or1(Z), generated by a translation 7
pairing the spheres S;—1 and S; of F (the letter S is left in the
figure).

(b) Or2(Z4 ® Zs) is represented by the shell F;, each of its bound-
ary spheres is paired with itself by an involutive map f; € S2R;
(i=1,2).

(c) Or equivalently, a half shell F, and its Schlegel diagram in
picture (d) describes Or2 by (f,7 — ff, frf17).
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With y € R and with the usual (geographic) sphere coordinates ¢ (mod 27) and
—Z <9 < Z, any “screw motion” of S? x R

a
27
generates a cyclic group G := (s) with infinite point group Gy (Q* denotes the
set of irrational numbers). The orbit space S2 x R/(s) can be represented by the
“shell-like” compact fundamental domain F = S? x [0, a] with a pairing ( the bar
refers to this) of its 0- and a-level by (2.6). See Fig.1 for an analogous picture.

G is fixed point free, i.e. we get a compact manifold with local 8% x R-metric.
Then

(2.7) S?ZxR/(s) ~F

may be called an S? x R space form in general sense. Then we promptly have
uncountable many similarity classes of S%2 x R space forms, parametrized just by
the irrational number a/27 € (0,1/2). The similarity parameter a in (2.6) is not
essential.

As we have promised in the introduction, we can formulate the illustrative
Proposition 2.2 Any S% x R/(s) above is diffeomorphic to S% x R/(7), in (2.1)
with t = 1 by the “skew” transform

(28) S: S*xR—8*xR:(®,3,7) — (p,9,y) := (@ + o, 9,Ja)

so that s = S~'18.
Proof (see the symbolic Fig.2). By our conventions for the coordinates of S2 x R
and for the parameters of s in (2.6), the skew transform S is a bijection, indeed.
For this § < y, ¥ < ¥ are obvious. If % runs over an interval of length 27, then
so does ¢ = p + ya for any fixed y. Moreover, the Jacobian

10
A, 0.y) _ [, 8‘
8(¢a 19;?) 0 a

(2.6) s: (p,0,y) = (¢ + a9,y + a); €Q 0<acR

(2.8") 1
0
is constant. _

Since 7 : (g,9,7) — (@,9,7 + 1) is a unit translation, thus

y
(29)  (p0,9) S~ @07 5, @07+ § @+F+Da,, G+ 1)) =

=(p+a,%,y+a) as at s.l
Remarks 3, As before we can see that s in (2.6) is similarity equivariant to
5:(p,9,9) — (P — a,9,7 + 1) by the similarity
(2.10) o (2,9,7) = (9,9,y) = (=5,9,7a);

s=0 1so

holds indeed.
Thus we have proven all statements in Rem. 2,.



SIMILARITY AND DIFFEOMORPHISM CLASSIFICATION OF S2 x R MANIFOLDS 109

4, The screw motion, with 2 < ¢ € N (for natural numbers)

2 k
(2.11) S:(waﬁ,y)H(w+§,ﬁ,y+5) € S3R;

with greatest common divisor (g.c.d) (k,q) = 1, and 1 < k < [Z] (the lower integer
part (Li.p) of 1) and the lattice (7) in (2.1) with ¢ = 1, determine an orientable
space form S2 x R/G in our original (restricted) definition. These lie in different
similarity classes for different pairs ¢, k above. However, they are all diffeomorphic
to S2 x R/(r) by Prop. 2.2, so with the cyclic fundamental group G ~ Z.

To this we consider the transform

2
(2.12) 'tV (g, 0, y) = (o + %u,ﬁ,w% —-v)

from G, where ku—qv = 1 can be achieved, since (k,q) = 1, by appropriate integers
u,v with 0 < u < ¢ and 0 < v < k. Different k; and ks cannot yield the same
u in (2.12), else ¢ would divide u, a contradiction. However, ¥ and ¢ — k lead to
equivariant groups by similarity of type (2.10).H

The diffeomorphism class, represented by S? x R/(r) by Prop. 2.2 will be denoted
by Orl1(Z). We summarize the previous results in

Proposition 2.3 The diffeomorphism class Or1(Z) of S% x R space forms con-
tains the infinite series of similarity classes described exactly in Rem.4, formula
(2.11).

The proof is completed by observing the angular invariant o = 2”7” = —2”(‘;—_“)
(mod 27) belonging to the shortest translation part of length % in (2.12).
Moreover, we shall find Or2(Z2 ® Z2) as a diffeomorphism class, containing ex-
actly one similarity class of the remaining orientation preserving fixed point free
isometry groups of S?2 x R.H

Or2 will be represented by the group denoted by 7,1.II1.1(0) in [1]. The fun-
damental group G ~ Zga ® Zo will be a free product of two Coxeter groups:
G= <f1> ® <f2> Here

(2.13) f1:(p,9,y) = (p+m,—9,—y) € S3Ry

f2: (p,9,9) = (p+7, -0, -y +1) € SjRs
are two involutive generators of G whose elements are

(2.14) 1, r:=fify, 77 i=ffy,... 7" ",..., n=0,1,... (~7Z)

R =fr kL My =k k=0,1,...

By other words: G is an infinite dihedral group, or G is a free Cozxeter group of 2
generators (see Fig.1 for 2 geometric presentations of Or2).
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3. A SYSTEMATIC ENUMERATION OF S% x R SPACE FORMS

In Table 1 there are listed the finite isometry groups A of S2 in different no-
tations, from which we prefer the 2-orbifold signatures of Macbeath and Conway,
equivalent to each other. Here the factor surface S2/A are characterized by the A-
orbits of S2. Any fundamental domain F 4 with a side pairing - as usual - provides
us a more visual picture (Fig.3).

E.g. the group

(3.1)
is generated by

1q - (+,05[g,q; {}); ¢>1 - q,q

2
mmmH@+§@

a g-fold rotation of S2.

A 2-gon (digon) with 27” angles at the opposite poles and with pairing the (may
be bent) sides by r, will topologically be an orientable (+) surface of genus 0 (a
sphere), where the two opposite g-fold rotational centres are distinguished (as two

cone points) by %’T angular neighbourhood of S2 at each pole (Fig.3).

Macbeath signature H. Weyl Schoen- | Coxeter-| Conway
flies Moser
lq | (+,0;[g,ql;{}) ¢>1 Cq Cq qlt 4,4
2q | (+,0;[];{(g;9)}) ¢ >2 D,C,y Cyv q *q,q
3q | (+,0;[2,2,q;{}) ¢ > 2 D, D, 2,q"  ]2,2,¢9
4q0 (+707 7{(2727q)}) q 2 3 D2qu th 27q *2727q
4qe (+307 7{(25 2aq)}) q 2 2 Dq x I th 2aq *25 23q
5qo | (+,0;[g);{(1)}) g >1 C34Cy Cyn 2, 1] | gx
5qe | (+,0;[g); {(1)}) ¢>2 Cy x1I Cyn 2, ] | g*
690 | (+,0;[2;{(@)}) ¢ >3 Dy x1I Dya 2t2q] | 2xg¢
6qe (+507 2 7{(q)}) q Z 2 D2qu qu 2+72q 2 % q
7qo | (=, L;[gl;{}) ¢>1 Cyx1I Saq 27,297 ¢®
7qe (_5 17 q 7{}) q Z 2 CQqu S2q 2+72q+ Q®
8 (+,0;[2,3,3];{}) Ay T 3.3 2,3,3
9 | (+0;[2,3,4;{}) Sy 0 347 2,34
10 | (+,0;[2,3,5];{}) As I 357 [2,3,5
11 (+,0; ;{(2,3,3)}) S4Ay Ty 3,3 %x2,3,3
12 | (+,0;] ;:{(2,3,4)}) Sy x T Oy 34 %x2,3,4
13 | (+,0;[];{(2,3,5)}) Ag x T Iy 3,5 %2,3,5
14 | (+,0;[3];{(2)}) Ay x T T 3+,4] 3 %2
Table 1.

To form appropriate S2 x R space form group G from q,q above, we choose
first a point group Go by (2.3) then the translational parts by (2.4), so that the
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FIGURE 2. Symbolic picture for diffeomorphism equivariance by
a skew transform S. s = S~17S. Here p denotes the angle o
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FIGURE 3. Spherical groups for S? x R space forms
(a) 1q — q,q for Orl (b) 5q — g* for Nol and No2
(¢) 7q — q® for Nol,No2, and Or2, respectively.
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group G by (2.2) shall be fixed point free.
We recall from [1] the three types of S? x R point groups derived from any isometry
group A of S

(3.2) Type I : Go = Ax1gr, Type Il : Go = A x 1r

Type IIT : Go = A'B:= {B x IR} U{(A\ B) x 1r}

where B is a subgroup in A of index two.
Type I: (q,q) X 1r from (3.1) has the presentation

(3.3) (1 —gf) g1 € S5

with one generator g; := r X 1g and relation gf = 1. The possible translational
part k1 in (g1, k1) satisfies, by (2.4), the so called Frobenius congruence

(3.4) k1g=0 (mod 1)

implying k; =0 or ky = %, k=1,...,q—1.
The first solution leads to fixed point free group iff ¢ = 1, the second ones make
this if (k,q) = 1, just as we have described in Sect.2 (in Rem. 4, formula (2.11),
Prop.2.3).

Type II: (q,q) x 1gr from (3.1) has the presentation

(3.5) (91,92 — 91, 93,97 ' 929192), 91 € S3, g2 € Ry

for g1 :=r x 1g and g5 : (¢,9,y) — (¢,9, —y). The translational parts k; and ks
in (g1,%1) and (g1, k2) satisfy the Frobenius congruences

(36) qu =0, ko2 = 0, k12=0 (mOd 1).
Now we have only to emphasize that for any k2 € R
3.7 (92,k2) : (9,0, 9) = (0,9, —y + k2) € Ry

is a reflection in the S2 x {%kz} level with fixed points.
Thus we do not obtain any space form group in the Type II.
Type III: (q,q)'(3,3) with 2 < g even yields a presentation

27
(3.8) (91 —gD), 91: (0, 0,9) = (0 + 7,19, —y) € S3R,

Any transform (g1,k1), k1 € R for any even ¢ > 2, has fixed points: (., 3, %),
(.,—Z, %) over the poles of S2, yielding no space form in this type.H
The next important isometry group series of S (Table 1) is

(3.9) 7qa—(—,1[gi{}), ¢>1 — q®.

Here every 2-orbifold (S?/A) is nonorientable (—) surface with genus 1 (i.e. a
projective plane, or i.e., the sphere with one cross cap ®) with a rotation centre
of order ¢ (cone point with angular neighborhood 27"), in Fig.3 we have pictured
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its symbolic fundamental domain ?q® with its side pairing. This provides the

generator
(3.10) z:(,9) = (¢ + g —9) € S2
a rotatory reflection of S2.

The possible point groups as follow:
Type I: q® x 1r has the presentation

™
(311) (gl _gfq% g1 € Sg g1 (90719731) = ((P—i_ 57_197 y):
k1 in (g1, k1) satisfies the Frobenius congruence
1 k
(312) k‘lquO (modl) : kl EO, kIE§7 klEQ—q,k:1,2,,q—1

The diffeomorphism class Nol of nonorientable S2 x R space forms will be rep-
resented by 7,1.1.1(0) from [1], i.e. in case ¢ =1, k4 =0, z := g1 (Fig.4). The
fundamental domain Fg of this G is a “half shell” with unusual face pairing which

provides the presentaion(by unusual “edges”)

(3.13) G=(z,7— 2% zr217') ~Z2 x Z.

—

@ (b)

FIGURE 4. Non-orientable S2 x R space forms by Schlegel dia-
grams of half shells F with side pairings

(a) Nol(Zz x Z) : (z) x (1) is generated by the antipodal map
Z € S% and by a translation 7 € Re with relations to the “edges”
—sizrz vl =1; ——s:rzz =1

(b) No2(Z) : (z), z € S2Ra,7 € Ra, Z € S2Ry —»: 22 1 =
1, ~zlz=1, »:zzr ' =1, 5:zz7 1 =1
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The second diffeomorphism class No2 of nonorientable S x R space forms will
be represented by 7,1.12(3) from [1], i.e. in case ¢ = 1, ky = 1 (Fig.4). The
fundamental domain Fg is again a “half shell” with another face pairing with
presentation

(3.14) G = (2,2, 7 —zzr ", 7zr ', 2z "2 'z) ~1Z,
since z = z, T = zz are consequences. Other g > 1 leads to fixed points over the

poles of S2 in both above cases ky = 0 or k; = 1.

The third case in (3.12) yields fixed point free group iff the g.c.d (k,q) = 1.
Then the generator of the group G

m k
(3.15) z:= (g1,k1) : (0,9, 9) = (o + E,—ﬁ,y+2—q)
leads to cases: i, ¢ odd, k even ii, ¢ odd, k£ odd iii, g even.
i, 1< qodd, k=2u, 1 <u € N. Consider the element
(3.16) w=zi7"": (p,9,y) = (p + 7, —9,y) € S2

which is just the antipodal map of S2, an orientation reversing involution, i.e.
ww = 1. The following element z - with ¢,v odd - will be

1
(3.17) Z:=27": (p,0,9) = (0 + %T, —hyt+ )€ SiRa,

here 2uv—2tq = 2 , i.e. uv—tq = 1, because of g.c.d. (u,q) = 1 can be chosen. This
provides a minimal (non zero) translational part, uniquely, since different vy, vy
(mod ¢) could not serve this translational part. Then

(3.18) G = (w) x (WZ) ~ Zy X Z,

and the skew transform S by (2.8) with o = %, a = ; shows that 8% x R/G
belongs to the diffeomorphism class Nol by (3.13). To this, following Prop.2.2, we
can check with z in (3.13) that
(3.19) w=_S8"128, wz =875
hold, indeed.

In cases ii, and iii, z in (3.15) does not produce an involutive element of G. With
appropriate integers t,v odd we take

1

(3.20) z:=2"7 ' (p,0,y) = (p+ %T, -9,y + Z_q) € SiR2
where kv — 2¢qt = 1 since g.c.d (k,2q) = 1.
This Z provides a minimal (non zero) translational part, uniquely, since different
v1,v2  (mod ¢q) could not serve this translational part (we may apply also the
similarity (2.10)). Then
(3.21) G=(Z)~7Z

leads to the diffeomorphism class No2 by (3.14), again by the skew transform S
in (2.8).
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Type II: q® x 1R leads to fixed points analogously as before. We do not obtain
any S2 x R space form.
Type III: (q®)'(q,q) has the presentation

™
(322) (gl - gfq)a g1: (807 197 y) = ((p + Ea _197 _y) € SgRl

The translational part k; in (g1, k1) satisfies by (2.4)
(323) k‘ll—>(—k’1)+k‘1:0l—)k’1...l—)0.

Thus, by choosing the similarity ¢ : (¢,9,y) = (¢, 9,y + k1) (as translation), we
get equivariance to case k; = 0. We use the notation f := g; for this involutive
transform in case ¢ = 1, which is the product of the antipodal map of S% and a
reflection in S2 x {0}. Else (¢ > 1) we obtain fixed points over the poles of S2.
Thus we get the promised representative S% x R/G for the second diffeomorphism
class Or2 of orientable S x R space forms in Fig.1 with

(3.24) G := (f,7 — 2, frf7)

by half shell F». Or equivalently G := (fi,f, — f2, f2) holds by a shell F;, if f; := f,
and f5 :=f7: (¢, 9,y) = (p+m, =¥, —y + 1) for the free Coxeter group (f;) x (f2).
This was summarized at the end of Sect.2.

4. THE OTHER SIMILARITY CLASSES OF S2 x R SPACE FORMS

After the discussions detailed before, we treat the remaining cases more sketchily.
From the finite isometry groups of S2 only (Fig.3)

(4.1) 59— (+,0;[gl; {(1)}), 1<g€eN — qgx

provide S% x R space forms. From the other spherical groups in Table 1 each leads
to fixed points as in [1]. So the classification of orientable space forms has already
been complete.

Any group A in (4.1) are generated by a reflection g; in an equatorial circle
of 8% and by a g¢-fold rotation g» about its poles. The fundamental domain F4
in Fig.3 shows also the S2-orbifold with one boundary component in {(1)} or the
empty sign after %, i.e. without non trivial dihedral corner; moreover, if ¢ > 1, one
g-fold rotation centre (cone point of angular neighborhoud 27”) in [q] or ¢ before *,
respectively.

Again, we consider the possible 3 types of point groups Gy and the corresponding
S2 x R space groups G without any fixed point.

Type I: g* X 1g has the presentation

(4.2) (91,92 — 91,93, 95 ' 919291),

27
g1 : (0, 9,y) = (0, =9,y); g2: (0, 9,9) = (p+ ?,ﬂ,y)-
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The translational parts k1 in (g1, k1) and ks in (g2, ko) satisfy the Frobenius con-
gruences

(4.3) k12=0, koq=0, —ko+ k1 + ko + k1 =2k =0 (mod 1).

Only (ki,k2) = (5, %) provides nonorientable S2 x R space forms. Then
1 1

(4.4) a:=(g91,5) 1 (9. 0,9) = (9, ~d,y + 3)

k 27 k
s = (92’5) (e dy) = (o + 7,19,y+ 5)
with g.c.d (k,q) =1 and k = 1,...,[%] for Li.p of , generate our group G. We
discuss the two cases: i, ¢ = 2u even and ii, ¢ odd.

i, If ¢ = 2u is even, we take
2
(4.5) wi=as'r ! (p,0,9) = (p+ 5o —0,y) € S3

by 1+ % _¢t=0,ie 2u(l-2t)+2kv =0 holds withv =u =%, k =
2t — 1, ww = 1, thus w is the involutive antipodal map. The transform

1
(4.6) I K (<p,19,y)*—>(<p+%,19,y+5) € S3Ra,
where
E—r—— i.e. ks —2ur =1 since g.c.d (k,2u) =1
5 =5 e = g.c.d (k,2u) =1,

is just the unique screw motion in G' with minimal non-zero translational part. We
see, that

(4.7) G = (W) x (8) ~Zy x Z

serves an SZ x R space form diffeomorphic to Nol by a skew transform S by (2.8)
as earlier. To this

(4.8) a = wrls™? = wsl? k) = wg¥,

by (4.5) and (4.6) are satisfactory equations, according to (4.4).
ii, If ¢ is odd, then we can take with integer s and ¢

2 1
(4.9) 7 as'm (o) o (04 =, Dyt o) €S3Rs
by
1 sk 1
4+ = e 2 1-2 =1 .c.d (2 =1
2+q t 2q,ze sk + ( t)q by g.c.d (2k,q) =1,

as a unique generator. Moreover, G does not have any involutive element now.
Namely, we can express the generators in (4.4) by z:

(4.10) a=7! s=27F
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by (4.9). This proves G = (Z) ~ Z, and a skew transform S by (2.8) shows the
diffeomorphic equivariance to G in (3.20-21) in the class No2.

Type II: q* x 1R leads to fixed points as before.

Type III: We have three possibilities as in [1]:

(4.11) ILa (q%)'(q,q), ITLb (q*)'(%*), III.c(q*)’(%@),

where q is even in the last two cases. Again, we have fixed points at each space
group G from the above three point groups.

Remarks 1, If we do not require an invariant lattice (r) by (2.1), then we have
uncountably many similarity classes in No2 as well by a generator

(4'12) z: (‘pa 7-97 y) = (90 + a, _197 Y + a) € SgRZ

for G with irrational & € (0,3); 0 <a € R.

This is as to in the orientable class Orl with the screw motion s in (2.6).

2, In the orientable case f € S3R; by (2.13) is the only (even similarity) type of
involutive transforms without fixed points. Combining this f with a screw motion
s in (2.6) with irrational 5=

(4.13) fsfs : (p,9,y) — (¢ + 27 + 20,9, y)

has fixed points over the poles. Thus we see that the diffeomorphism class Or2 has
exactly one similarity class of S x R space forms, and we do not have any more.
3, In the nonorientable case the antipodal map z € S3 in (3.13) is the only type
of involutive transforms without fixed points. Combining this z with any screw
motion s in (2.6)

(4.14) zsz : (0, %,y) = (p+2r + a,%,y +a),zsz=s

show that our diffeomorphism class Nol contains also uncountably many similarity
classes, and we do not have any more.
At the end we summarize our results in

Theorem 4.1 There are exactly 2 orientable: Or1(Z) and Or2(Z ® Z), resp. 2
nonorientable diffeomorphism classes: Nol(Zgy x Z) and No2(Z) of S2 x R space
forms, containing the similarity equivariance classes as follows in Table 2. In the
diffeomorphism class Or2 there are exactly one similarity type, also in the general
sense if we allow infinite point groups for the fundamental groups. The other 3
diffeomorphism classes contain similarity classes in infinite series for finite point
groups, or uncountably many similarity classes for infinite point groups.C]
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Symbol Conditions Diffeomorphism class
1,1.1.1(0) representative (Fig.1) Orl(Z)
1q.I.2(§) (k,q) =1, 1<k < |1] Orl
7,1.1.1(0) representative (Fig.4) Nol(Z; x Z)
7,1.1.2(3) repr. (Fig.4) No2(Z)
7q0.I.3(%) 2 < q odd, (k,q) =1, even | Nol

k<gq
7q0.I.3(%) 2 < q odd, (k,q) = 1, odd | No2

k<q
7qe.I.3(%) 2<qeven, (k,q) =1,k <gq No2
7,1.111.1(0) repr. (Fig.1) Or2(Z; ® Z,)
5qe.L.4(3, %) 2 < q even, (k,q) =1, 1 < | Nol

k< 4]
5q0.I.4(%, %) 1<qodd, (k,q) =1, 1<k<|No2

13]

Table 2 Classes of S2 x R space forms
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