SIMILARITY AND DIFFEOMORPHISM CLASSIFICATION OF $\mathbf{S^2} \times \mathbf{R} \ \mathbf{MANIFOLDS}$

JÓZSEF Z. FARKAS AND EMIL MOLNÁR

1. Introduction

The 3-space $S^2 \times R$ is the direct product of the 2-sphere and the real line. The similarity group

$$(1.1) Sim(\mathbf{S}^2 \times \mathbf{R}) := Isom(\mathbf{S}^2) \times Sim(\mathbf{R}) := \{A\} \times \{(a,b)\}\$$

where $A \in \mathbf{O^3}$ the 3-dimensional orthogonal group acting on $\mathbf{S^2}$; $a \in \mathbf{R} \setminus \{0\}$, $b \in \mathbf{R}$ and $x \mapsto xa + b$ define a similarity of \mathbf{R} .

The isometry group

(1.2)
$$Isom(\mathbf{S}^2 \times \mathbf{R}) := Isom(\mathbf{S}^2) \times Isom(\mathbf{R})$$

is specified by $a := \pm 1$.

At the similarity classification of $\mathbf{S}^2 \times \mathbf{R}$ space groups in [1], the fixed point free isometry groups G, leaving invariant a translation lattice of \mathbf{R} , have also been found and listed in infinite series which lead to space forms $\mathbf{S}^2 \times \mathbf{R}/G$, i.e. compact manifolds with local $\mathbf{S}^2 \times \mathbf{R}$ metric [2],[3],[4] (see our Table 2).

It turns out that - instead of similarity equivariance - the diffeomorphism one

$$(1.3) G \sim G' = S^{-1}GS$$

with a very simple "skew" diffeomorphism S leads to 4 diffeomorphism classes of $S^2 \times R$ space forms derived first very sketchily in [5]:

2 orientable ones (with fundamental group **Z** and $\mathbf{Z_2} \otimes \mathbf{Z_2}$, respectively; here \otimes stands for free product of Coxeter groups)

and 2 nonorientable ones (with $\mathbf{Z_2} \times \mathbf{Z}$ and \mathbf{Z} , respectively).

Surprisingly, we find in the book [4] - without any proof - the statement on the existence of one nonorientable manifold, up to diffeomorphism, that admits $S^2 \times R$ structures. This statement is false then obviously, in the earlier survey [3] we can read the correct numbers.

We are working - in this comparison - on the classification of space forms in the other fibre geometries $\mathbf{H^2} \times \mathbf{R}$, $\widetilde{\mathbf{SL_2R}}$ and \mathbf{Nil} as well.

Although P. Scott [3] has presented a strategy for describing all the Seifert bundles for the four compact $S^2 \times R$ manifolds, we find it actual to give another

Supported by the Hungarian NFSR (OTKA) No.T020498(1996).

more complete interpretation which seems to be advantageous for other reason (see also [1] and [2]).

2. $\mathbf{S^2} \times \mathbf{R}$ isometries and space forms, basic observations

As we mentioned in the Introduction, an $S^2 \times \mathbf{R}$ space form can naturally be defined as a factor space $(S^2 \times \mathbf{R})/G$, where G is an isometry group of $S^2 \times \mathbf{R}$, containing an invariant lattice in \mathbf{R} , denoted by L_G , as follows

(2.1)
$$G \triangleright L_G = \langle \tau \rangle, \ \tau : \mathbf{S^2} \times \mathbf{R} \to \mathbf{S^2} \times \mathbf{R}, \ (X, x) \mapsto (X, x + t)$$

with a minimal $0 < t \in \mathbf{R}$; moreover, G acts freely on $\mathbf{S}^2 \times \mathbf{R}$ (i.e. without any fixed point) with compact fundamental domain (of non-empty interior).

By a similarity of $S^2 \times R$ we may assume that t = 1. G is called *space form group* or *fundamental group* as well.

(2.2)
$$G := \{A_i \times \kappa_i\} := \{A_i \times (K_i, k_i)\} := \{A_i \times K_i, k_i\}$$

where $A_i \in \mathbf{O^3}$ acts on $\mathbf{S^2}$, $\kappa = (K_i, k_i)$ acts on \mathbf{R} . Here K_i is either the identity $1_{\mathbf{R}}$ of \mathbf{R} or the reflection in zero $\overline{1_{\mathbf{R}}}: x \mapsto -x$. The "linear parts" of G in (2.2) form the *point group*

$$(2.3) G_0 = \{(A_i \times K_i)\}$$

of G. The translational parts k_i to $(A_i \times K_i)$ have to satisfy the multiplication formula

$$(2.4) (A_1 \times K_1, k_1) \circ (A_2 \times K_2, k_2) = (A_1 A_2 \times K_1 K_2, k_1 K_2 + k_2)$$

where we have indicated that our transforms act from the right throughout this paper. Formula (2.4) can be derived from the assumed right action, in general:

$$(2.5) (X,x)(A_i \times \kappa_i) = (XA_i, xK_i + k_i).$$

Any isometry of $S^2 \times R$ is a product of at most 5 reflections. At most 3 reflections (in equator circles of S^2) produce any element of $IsomS^2 := IsomS^2 \times IdR$, at most 2 reflections(in points of R) are for $IsomR := IdS^2 \times IsomR$.

 $\mathbf{S_i^2R_j}$ denotes the set of reflections above, where $i=0\ldots 3,\ j=0\ldots 2$ (respectively, i=0 and j=0 for $\mathrm{Id}(\mathbf{S^2}\times\mathbf{R})$).

Proposition 2.1 Any space form group G has a finite point group G_0 .

The *proof* is indirect. Since the linear parts of IsomR contain 2 elements, then $\{A_i\}$ in (2.3) would have infinitely many ones from IsomS². But S² is compact, and we assumed a lattice $L_G = \langle \tau \rangle \lhd G$. Thus, there does not exist any open set in the compact "shell" $\mathbf{S}^2 \times [0,1]$ (Fig.1) which contains only points not equivalent under the infinitely many transforms $\{\{A_i \times 1_{\mathbf{R}}, k_i\}, 0 \leq k_i < 1\} =: \overline{G_0} \subset G$. Then G cannot have any fundamental domain with non-empty interior F_G^0 , since the infinite disjoint union of $\overline{G_0}$ -images of this F_G^0 would lie in the compact shell $\mathbf{S}^2 \times [0,2]$, a contradiction.

Remarks 1, In the proof we did not utilize, that G was fixed point free.

2, If G is not assumed to have a lattice, then it may have infinite point group G_0 .

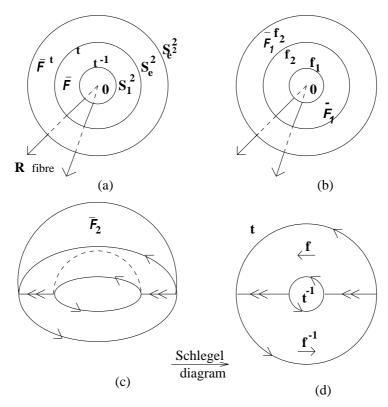


FIGURE 1. ${\bf S^2} \times {\bf R}$ is modelled in ${\bf E}_{\infty}^3 := {\bf E^3} \cup \{\infty\}$ where the origin 0 and the infinity ∞ are distinguished. The 0-concentric sphere of Euclidean radius x models the level $S^2 \times \{r\}$ by r = lnx. Thus 0 is a joint point $-\infty$ of the **R**-fibres $\{s\} \times \mathbf{R}$ $(s \in \mathbf{S}^2)$ as 0-rays, ∞ is a common point $+\infty \in \{s\} \times \mathbf{R}$. The spherical transforms are usual. The transforms of R appear as the following "dictionary"

reflection $(\in \mathbf{R}_1)$ of $\mathbf{S}^2 \times \mathbf{R} \iff$ sphere inversion of \mathbf{E}_{∞}^3 in a sphere $S^2 \times \{k\}$ in an 0-centered sphere of radius ϱ where $k = ln\rho$

translation ($\in \mathbf{R}_2$) of $\mathbf{S}^2 \times \mathbf{R} \iff 0$ -central similarity of \mathbf{E}_{∞}^3 with $d \in \mathbf{R}$ from 0 with factor λ where $d = ln\lambda$

- (a) $\bar{\mathcal{F}}$ is a shell describing $\mathbf{Or1}(\mathbf{Z})$, generated by a translation τ pairing the spheres $\mathbf{S}_{t^{-1}}$ and \mathbf{S}_t of $\bar{\mathcal{F}}$ (the letter \mathbf{S} is left in the
- (b) $\mathbf{Or2}(\mathbf{Z_2} \otimes \mathbf{Z_2})$ is represented by the shell $\bar{\mathcal{F}}_1$, each of its boundary spheres is paired with itself by an involutive map $\mathbf{f_i} \in \mathbf{S_3^2R_1}$
- (c) Or equivalently, a half shell $\bar{\mathcal{F}}_2$ and its Schlegel diagram in picture (d) describes **Or2** by $(\mathbf{f}, \tau - \mathbf{ff}, \mathbf{f}\tau \mathbf{f}^{-1}\tau)$.

With $y \in \mathbf{R}$ and with the usual (geographic) sphere coordinates $\varphi \pmod{2\pi}$ and $-\frac{\pi}{2} \leq \vartheta \leq \frac{\pi}{2}$, any "screw motion" of $\mathbf{S}^2 \times \mathbf{R}$

(2.6)
$$\mathbf{s}: (\varphi, \vartheta, y) \mapsto (\varphi + \alpha, \vartheta, y + a); \ \frac{\alpha}{2\pi} \in \mathbf{Q}^*; \ 0 < a \in \mathbf{R}$$

generates a cyclic group $G := \langle \mathbf{s} \rangle$ with infinite point group G_0 (\mathbf{Q}^* denotes the set of irrational numbers). The orbit space $\mathbf{S}^2 \times \mathbf{R}/\langle \mathbf{s} \rangle$ can be represented by the "shell-like" compact fundamental domain $\overline{\mathcal{F}} = \mathbf{S}^2 \times [0, a]$ with a pairing (the bar refers to this) of its 0- and a-level by (2.6). See Fig.1 for an analogous picture.

G is fixed point free, i.e. we get a compact manifold with local $S^2 \times \mathbf{R}$ -metric. Then

(2.7)
$$\mathbf{S}^2 \times \mathbf{R}/\langle \mathbf{s} \rangle \sim \overline{\mathcal{F}}$$

may be called an $\mathbf{S}^2 \times \mathbf{R}$ space form in general sense. Then we promptly have uncountable many similarity classes of $\mathbf{S}^2 \times \mathbf{R}$ space forms, parametrized just by the irrational number $\alpha/2\pi \in (0,1/2)$. The similarity parameter a in (2.6) is not essential.

As we have promised in the introduction, we can formulate the illustrative **Proposition 2.2** Any $S^2 \times R/\langle s \rangle$ above is diffeomorphic to $S^2 \times R/\langle \tau \rangle$, in (2.1) with t = 1 by the "skew" transform

$$(2.8) \hspace{1cm} S: \hspace{1cm} \mathbf{S^2} \times \mathbf{R} \to \mathbf{S^2} \times \mathbf{R} : (\overline{\varphi}, \overline{\vartheta}, \overline{y}) \mapsto (\varphi, \vartheta, y) := (\overline{\varphi} + \overline{y}\alpha, \overline{\vartheta}, \overline{y}a)$$

so that $\mathbf{s} = S^{-1} \tau S$.

Proof (see the symbolic Fig.2). By our conventions for the coordinates of $\mathbf{S}^2 \times \mathbf{R}$ and for the parameters of \mathbf{s} in (2.6), the skew transform S is a bijection, indeed. For this $\overline{y} \leftrightarrow y$, $\overline{\vartheta} \leftrightarrow \vartheta$ are obvious. If $\overline{\varphi}$ runs over an interval of length 2π , then so does $\varphi = \overline{\varphi} + \overline{y}\alpha$ for any fixed \overline{y} . Moreover, the Jacobian

(2.8')
$$\frac{\partial(\varphi,\vartheta,y)}{\partial(\overline{\varphi},\overline{\vartheta},\overline{y})} = \begin{pmatrix} 1 & 0 & \alpha \\ 0 & 1 & 0 \\ 0 & 0 & a \end{pmatrix}$$

is constant.

Since $\tau: (\overline{\varphi}, \overline{\vartheta}, \overline{y}) \mapsto (\overline{\varphi}, \overline{\vartheta}, \overline{y} + 1)$ is a unit translation, thus

(2.9)
$$(\varphi, \vartheta, y) \xrightarrow{S^{-1}} (\overline{\varphi}, \overline{\vartheta}, \overline{y}) \xrightarrow{\underline{\tau}} (\overline{\varphi}, \overline{\vartheta}, \overline{y} + 1) \xrightarrow{\underline{S}} (\overline{\varphi} + (\overline{y} + 1)\alpha, \overline{\vartheta}, (\overline{y} + 1)a) =$$

$$= (\varphi + \alpha, \vartheta, y + a) \text{ as at s.} \blacksquare$$

Remarks 3, As before we can see that **s** in (2.6) is similarity equivariant to $\overline{\mathbf{s}}: (\overline{\varphi}, \overline{\vartheta}, \overline{y}) \mapsto (\overline{\varphi} - \alpha, \overline{\vartheta}, \overline{y} + 1)$ by the similarity

(2.10)
$$\sigma: (\overline{\varphi}, \overline{\vartheta}, \overline{y}) \mapsto (\varphi, \vartheta, y) := (-\overline{\varphi}, \overline{\vartheta}, \overline{y}a);$$
$$\mathbf{s} = \sigma^{-1} \overline{\mathbf{s}} \sigma$$

holds indeed.

Thus we have proven all statements in Rem. 2,.

4, The screw motion, with $2 \le q \in \mathbb{N}$ (for natural numbers)

(2.11)
$$\mathbf{s}: (\varphi, \vartheta, y) \mapsto (\varphi + \frac{2\pi}{q}, \vartheta, y + \frac{k}{q}) \in \mathbf{S_2^2 R_2}$$

with greatest common divisor (g.c.d) (k,q)=1, and $1 \leq k \leq \lfloor \frac{q}{2} \rfloor$ (the lower integer part (l.i.p) of $\frac{q}{2}$) and the lattice $\langle \tau \rangle$ in (2.1) with t=1, determine an orientable space form $\mathbf{S}^2 \times \mathbf{R}/G$ in our original (restricted) definition. These lie in different similarity classes for different pairs q,k above. However, they are all diffeomorphic to $\mathbf{S}^2 \times \mathbf{R}/\langle \tau \rangle$ by Prop. 2.2, so with the cyclic fundamental group $G \sim \mathbf{Z}$. To this we consider the transform

(2.12)
$$\mathbf{s}^{u}\tau^{-v}: (\varphi, \vartheta, y) \mapsto (\varphi + \frac{2\pi u}{q}, \vartheta, y + \frac{ku}{q} - v)$$

from G, where ku-qv=1 can be achieved, since (k,q)=1, by appropriate integers u,v with 0 < u < q and $0 \le v < k$. Different k_1 and k_2 cannot yield the same u in (2.12), else q would divide u, a contradiction. However, k and q-k lead to equivariant groups by similarity of type (2.10).

The diffeomorphism class, represented by $\mathbf{S}^2 \times \mathbf{R}/\langle \tau \rangle$ by Prop. 2.2 will be denoted by $\mathbf{Or1}(\mathbf{Z})$. We summarize the previous results in

Proposition 2.3 The diffeomorphism class $Or1(\mathbf{Z})$ of $S^2 \times \mathbf{R}$ space forms contains the infinite series of similarity classes described exactly in Rem.4, formula (2.11).

The *proof* is completed by observing the angular invariant $\alpha = \frac{2\pi u}{q} = -\frac{2\pi(q-u)}{q}$ (mod 2π) belonging to the shortest translation part of length $\frac{1}{q}$ in (2.12).

Moreover, we shall find $Or2(\mathbf{Z_2} \otimes \mathbf{Z_2})$ as a diffeomorphism class, containing exactly one similarity class of the remaining orientation preserving fixed point free isometry groups of $\mathbf{S^2} \times \mathbf{R}.\blacksquare$

Or2 will be represented by the group denoted by **7**, **1.III.1**(0) in [1]. The fundamental group $G \sim \mathbf{Z_2} \otimes \mathbf{Z_2}$ will be a free product of two Coxeter groups: $G = \langle \mathbf{f_1} \rangle \otimes \langle \mathbf{f_2} \rangle$. Here

(2.13)
$$\mathbf{f_1}: (\varphi, \vartheta, y) \mapsto (\varphi + \pi, -\vartheta, -y) \in \mathbf{S_3^2 R_1}$$

$$\mathbf{f_2}: (\varphi, \vartheta, y) \mapsto (\varphi + \pi, -\vartheta, -y + 1) \in \mathbf{S_3^2R_1}$$

are two involutive generators of G whose elements are

(2.14)
$$\mathbf{1}, \ \tau := \mathbf{f_1}\mathbf{f_2}, \ \tau^{-1} := \mathbf{f_2}\mathbf{f_1}, \dots, \tau^n, \tau^{-n}, \dots, \ n = 0, 1, \dots \ (\sim \mathbf{Z})$$

$$\tau^k \mathbf{f_1} = \mathbf{f_1} \tau^{-k}, \dots, \tau^{-k} \mathbf{f_2} = \mathbf{f_2} \tau^k, \dots, k = 0, 1, \dots$$

By other words: G is an infinite dihedral group, or G is a free Coxeter group of 2 generators (see Fig.1 for 2 geometric presentations of **Or2**).

3. A systematic enumeration of $\mathbf{S^2} \times \mathbf{R}$ space forms

In Table 1 there are listed the finite isometry groups A of S^2 in different notations, from which we prefer the 2-orbifold signatures of Macbeath and Conway, equivalent to each other. Here the factor surface S^2/A are characterized by the Aorbits of S^2 . Any fundamental domain $\overline{\mathcal{F}}_A$ with a side pairing - as usual - provides us a more visual picture (Fig.3).

E.g. the group

(3.1)
$$1\mathbf{q} - (+, 0; [q, q]; \{\}), \ q \ge 1 - \mathbf{q}, \mathbf{q}$$

is generated by

$$\mathbf{r}:(\varphi,\vartheta)\mapsto(\varphi+rac{2\pi}{q},\vartheta)$$

a q-fold rotation of S^2 . A 2-gon (digon) with $\frac{2\pi}{q}$ angles at the opposite poles and with pairing the (may be bent) sides by \mathbf{r} , will topologically be an orientable (+) surface of genus 0 (a sphere), where the two opposite q-fold rotational centres are distinguished (as two cone points) by $\frac{2\pi}{q}$ angular neighbourhood of S^2 at each pole (Fig.3).

	Macbeath signature	H. Weyl	Schoen-	Coxeter-	Conway
			flies	Moser	
1q	$(+,0;[q,q];\{\}) \ q \ge 1$	C_q	C_q	[q] ⁺	q,q
2q	$(+,0;[\];\{(q,q)\})\ q\geq 2$	$D_q C_q$	C_{qv}	[q]	*q,q
3q	$(+,0;[2,2,q];\{\}) \ q \ge 2$	D_q	D_q	$[2,q]^{+}$	2,2,q
4qo	$(+,0;[\];\{(2,2,q)\})\ q\geq 3$	$D_{2q}D_q$	D_{qh}	[2,q]	*2, 2, q
4qe	$(+,0;[\];\{(2,2,q)\})\ q\geq 2$	$D_q \times I$	D_{qh}	[2,q]	*2, 2, q
5qo	$(+,0;[q];\{(1)\}) \ q \ge 1$	$C_{2q}C_q$	C_{qh}	$[2,q^{+}]$	q*
5qe	$(+,0;[q];\{(1)\}) \ q \ge 2$	$C_q \times I$	C_{qh}	[2,q +]	q*
6qo	$(+,0;[2];\{(q)\}) \ q \ge 3$	$D_q \times I$	D_{qd}	$[2^{+},2q]$	2*q
6qe	$(+,0;[2];\{(q)\}) \ q \ge 2$	$D_{2q}D_q$	D_{qd}	$[2^{+},2q]$	2*q
7qo	$(-,1;[q];\{\}) \ q \ge 1$	$C_q \times I$	S_{2q}	$[2^+,2q^+]$	$q\otimes$
7qe	$(-,1;[q];\{\}) \ q \ge 2$	$C_{2q}C_q$	S_{2q}	$[2^+, 2q^+]$	$q\otimes$
8	$(+,0;[2,3,3];\{\})$	A_4	T	$[3,3]^+$	2,3,3
9	$(+,0;[2,3,4];\{\})$	S_4	0	$[3,4]^+$	2,3,4
10	$(+,0;[2,3,5];\{\})$	A_5	I	$[3,5]^+$	2,3,5
11	$(+,0;[\];\{(2,3,3)\})$	S_4A_4	T_d	[3,3]	*2, 3, 3
12	$(+,0;[\];\{(2,3,4)\})$	$S_4 \times I$	O_h	$[3,\!4]$	*2, 3, 4
13	$(+,0;[\];\{(2,3,5)\})$	$A_5 \times I$	I_h	$[3,\!5]$	*2, 3, 5
14	$(+,0;[3];\{(2)\})$	$A_4 \times I$	T_h	$[3^+,4]$	3 * 2

Table 1.

To form appropriate $S^2 \times R$ space form group G from q, q above, we choose first a point group G_0 by (2.3) then the translational parts by (2.4), so that the

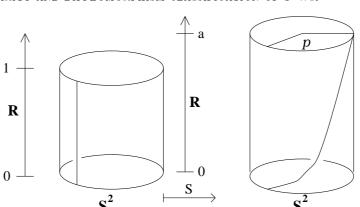
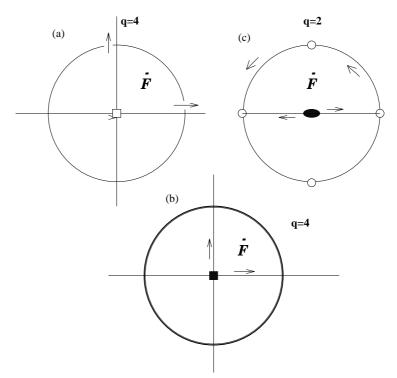


FIGURE 2. Symbolic picture for diffeomorphism equivariance by a skew transform S. $\mathbf{s}=S^{-1}\tau S.$ Here p denotes the angle α



- FIGURE 3. Spherical groups for $S^2 \times \mathbf{R}$ space forms (a) $1\mathbf{q} \mathbf{q}, \mathbf{q}$ for $\mathbf{Or1}$ (b) $5\mathbf{q} \mathbf{q}*$ for $\mathbf{No1}$ and $\mathbf{No2}$ (c) $7\mathbf{q} \mathbf{q}\otimes$ for $\mathbf{No1}, \mathbf{No2}$, and $\mathbf{Or2}$, respectively.

group G by (2.2) shall be fixed point free.

We recall from [1] the three types of $S^2 \times R$ point groups derived from any isometry group A of S^2 :

(3.2)
$$Type\ I: G_0 = A \times 1_{\mathbf{R}},\ Type\ II: G_0 = A \times \overline{1}_{\mathbf{R}}$$

Type III:
$$G_0 = A'B := \{B \times 1_{\mathbf{R}}\} \cup \{(A \setminus B) \times \overline{1}_{\mathbf{R}}\}$$

where B is a subgroup in A of index two.

Type I: $(\mathbf{q}, \mathbf{q}) \times 1_{\mathbf{R}}$ from (3.1) has the presentation

$$(3.3) (g_1 - g_1^q) \ g_1 \in \mathbf{S}_2^2$$

with one generator $g_1:=\mathbf{r}\times 1_{\mathbf{R}}$ and relation $g_1^q=1$. The possible translational part k_1 in (g_1, k_1) satisfies, by (2.4), the so called Frobenius congruence

$$(3.4) k_1 q \equiv 0 \pmod{1}$$

implying $k_1 \equiv 0$ or $k_1 \equiv \frac{k}{q}$, k = 1, ..., q - 1. The first solution leads to fixed point free group iff q = 1, the second ones make this if (k, q) = 1, just as we have described in Sect.2 (in Rem. 4, formula (2.11), Prop.2.3).

Type II: $(\mathbf{q}, \mathbf{q}) \times \overline{\mathbf{1}}_{\mathbf{R}}$ from (3.1) has the presentation

$$(3.5) (g_1, g_2 - g_1^q, g_2^2, g_1^{-1}g_2g_1g_2), g_1 \in \mathbf{S}_2^2, g_2 \in \mathbf{R}_1$$

for $g_1 := \mathbf{r} \times 1_{\mathbf{R}}$ and $g_2 : (\varphi, \vartheta, y) \mapsto (\varphi, \vartheta, -y)$. The translational parts k_1 and k_2 in (g_1, k_1) and (g_1, k_2) satisfy the Frobenius congruences

(3.6)
$$k_1 q \equiv 0, \ k_2 2 \equiv 0, \ k_1 2 \equiv 0 \pmod{1}.$$

Now we have only to emphasize that for any $k_2 \in \mathbf{R}$

$$(3.7) (g_2, k_2) : (\varphi, \vartheta, y) \mapsto (\varphi, \vartheta, -y + k_2) \in \mathbf{R_1}$$

is a reflection in the $S^2 \times \{\frac{1}{2}k_2\}$ level with fixed points.

Thus we do not obtain any space form group in the Type II.

Type III: $(\mathbf{q}, \mathbf{q})'(\frac{\mathbf{q}}{2}, \frac{\mathbf{q}}{2})$ with $2 \leq q$ even yields a presentation

(3.8)
$$(g_1 - g_1^q), \ g_1 : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{2\pi}{q}, \vartheta, -y) \in \mathbf{S_2^2 R_1}$$

Any transform $(g_1, k_1), k_1 \in \mathbf{R}$ for any even $q \geq 2$, has fixed points: $(\cdot, \frac{\pi}{2}, \frac{k_1}{2})$, $(.,-\frac{\pi}{2},\frac{k_1}{2})$ over the poles of S^2 , yielding no space form in this type. The next important isometry group series of S^2 (Table 1) is

(3.9)
$$7\mathbf{q} - (-, 1; [q]; \{\}), \ q \ge 1 - \mathbf{q} \otimes.$$

Here every 2-orbifold (S^2/A) is nonorientable (-) surface with genus 1 (i.e. a projective plane, or i.e., the sphere with one cross cap \otimes) with a rotation centre of order q (cone point with angular neighborhood $\frac{2\pi}{q}$), in Fig.3 we have pictured its symbolic fundamental domain $\overline{\mathcal{F}}_{\mathbf{q}\otimes}$ with its side pairing. This provides the generator

$$\mathbf{z}: (\varphi, \vartheta) \mapsto (\varphi + \frac{\pi}{q}, -\vartheta) \in \mathbf{S_3^2}$$

a rotatory reflection of S^2 .

The possible point groups as follow:

Type $I: \mathbf{q} \otimes \times 1_{\mathbf{R}}$ has the presentation

(3.11)
$$(g_1 - g_1^{2q}), g_1 \in \mathbf{S_3^2} : g_1 : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{\pi}{q}, -\vartheta, y),$$

 k_1 in (g_1, k_1) satisfies the Frobenius congruence

(3.12)
$$k_1 2q \equiv 0 \pmod{1}$$
 : $k_1 \equiv 0$; $k_1 \equiv \frac{1}{2}$; $k_1 \equiv \frac{k}{2q}$, $k = 1, 2, \dots, q - 1$.

The diffeomorphism class **No1** of nonorientable $S^2 \times \mathbf{R}$ space forms will be represented by **7**, **1**.**I**.**I**(0) from [1], i.e. in case q = 1, $k_1 = 0$, $\mathbf{z} := g_1$ (Fig.4). The fundamental domain $\overline{\mathcal{F}}_G$ of this G is a "half shell" with unusual face pairing which provides the presentaion(by unusual "edges")

(3.13)
$$G = (\mathbf{z}, \tau - \mathbf{z}^2, \mathbf{z}\tau\mathbf{z}\tau^{-1}) \sim \mathbf{Z}_2 \times \mathbf{Z}.$$

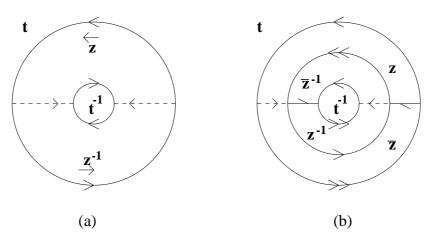


FIGURE 4. Non-orientable $S^2 \times \mathbf{R}$ space forms by Schlegel diagrams of half shells $\bar{\mathcal{F}}$ with side pairings

(a) $\mathbf{No1}(\mathbf{Z_2} \times \mathbf{Z})$: $\langle \mathbf{z} \rangle \times \langle \tau \rangle$ is generated by the antipodal map $\mathbf{z} \in \mathbf{S_3^2}$ and by a translation $\tau \in \mathbf{R_2}$ with relations to the "edges" \rightarrow : $\mathbf{z}\tau\mathbf{z}^{-1}\tau^{-1} = 1$; \rightarrow : $\mathbf{z}\mathbf{z} = 1$

(b) No2(Z):
$$\langle \mathbf{z} \rangle$$
, $\mathbf{z} \in \mathbf{S_3^2 R_2}$, $\tau \in \mathbf{R_2}$, $\bar{\mathbf{z}} \in \mathbf{S_3^2 R_2}$ ----: $z\bar{z}^{-1} = 1$, \rightarrow : $\bar{\mathbf{z}}^{-1}\mathbf{z} = 1$, \rightarrow : $z\bar{z}^{-1} = 1$

The second diffeomorphism class **No2** of nonorientable $S^2 \times \mathbf{R}$ space forms will be represented by $\mathbf{7}, \mathbf{1.I.2}(\frac{1}{2})$ from [1], i.e. in case $q=1, k_1=\frac{1}{2}$ (Fig.4). The fundamental domain $\bar{\mathcal{F}}_G$ is again a "half shell" with another face pairing with presentation

(3.14)
$$G = (\mathbf{z}, \overline{\mathbf{z}}, \tau - \mathbf{z}\overline{\mathbf{z}}\tau^{-1}, \overline{\mathbf{z}}\mathbf{z}\tau^{-1}, \mathbf{z}\overline{\mathbf{z}}^{-1}, \overline{\mathbf{z}}^{-1}\mathbf{z}) \sim \mathbf{Z},$$

since $\overline{\mathbf{z}} = \mathbf{z}$, $\tau = \mathbf{z}\mathbf{z}$ are consequences. Other q > 1 leads to fixed points over the poles of \mathbf{S}^2 in both above cases $k_1 = 0$ or $k_1 = \frac{1}{2}$.

The third case in (3.12) yields fixed point free group iff the g.c.d (k, q) = 1. Then the generator of the group G

(3.15)
$$\mathbf{z} := (g_1, k_1) : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{\pi}{q}, -\vartheta, y + \frac{k}{2q})$$

leads to cases: i, q odd, k even ii, q odd, k odd iii, q even.

i, 1 < q odd, k = 2u, $1 \le u \in \mathbb{N}$. Consider the element

(3.16)
$$\mathbf{w} := \mathbf{z}^q \tau^{-u} : (\varphi, \vartheta, y) \mapsto (\varphi + \pi, -\vartheta, y) \in \mathbf{S}_3^2$$

which is just the antipodal map of S^2 , an orientation reversing involution, i.e. $\mathbf{ww} = 1$. The following element $\overline{\mathbf{z}}$ - with t, v odd - will be

(3.17)
$$\overline{\mathbf{z}} := \mathbf{z}^v \tau^{-t} : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{v\pi}{q}, -\vartheta, y + \frac{1}{q}) \in \mathbf{S_3^2 R_2},$$

here 2uv-2tq=2, i.e. uv-tq=1, because of g.c.d. (u,q)=1 can be chosen. This provides a minimal (non zero) translational part, uniquely, since different $v_1,v_2 \pmod q$ could not serve this translational part. Then

(3.18)
$$G = \langle \mathbf{w} \rangle \times \langle \mathbf{w} \overline{\mathbf{z}} \rangle \sim \mathbf{Z}_2 \times \mathbf{Z},$$

and the skew transform S by (2.8) with $\alpha = \frac{(v+q)\pi}{q}$, $a = \frac{1}{q}$ shows that $\mathbf{S^2} \times \mathbf{R}/G$ belongs to the diffeomorphism class **No1** by (3.13). To this, following Prop.2.2, we can check with \mathbf{z} in (3.13) that

(3.19)
$$\mathbf{w} = S^{-1}\mathbf{z}S, \ \mathbf{w}\overline{\mathbf{z}} = S^{-1}\tau S$$

hold, indeed.

In cases ii, and iii, \mathbf{z} in (3.15) does not produce an involutive element of G. With appropriate integers t, v odd we take

(3.20)
$$\overline{\mathbf{z}} := \mathbf{z}^v \tau^{-t} : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{v\pi}{q}, -\vartheta, y + \frac{1}{2q}) \in \mathbf{S_3^2 R_2}$$

where kv - 2qt = 1 since g.c.d (k, 2q) = 1.

This $\overline{\mathbf{z}}$ provides a minimal (non zero) translational part, uniquely, since different $v_1, v_2 \pmod{q}$ could not serve this translational part (we may apply also the similarity (2.10)). Then

$$(3.21) G = \langle \overline{\mathbf{z}} \rangle \sim \mathbf{Z}$$

leads to the diffeomorphism class $\mathbf{No2}$ by (3.14), again by the skew transform S in (2.8).

Type $II: \mathbf{q} \otimes \times \overline{1}_{\mathbf{R}}$ leads to fixed points analogously as before. We do not obtain any $\mathbf{S}^2 \times \mathbf{R}$ space form.

Type III: $(\mathbf{q}\otimes)'(\mathbf{q},\mathbf{q})$ has the presentation

$$(3.22) (g_1 - g_1^{2q}), g_1 : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{\pi}{q}, -\vartheta, -y) \in \mathbf{S_3^2 R_1}.$$

The translational part k_1 in (g_1, k_1) satisfies by (2.4)

$$(3.23) k_1 \mapsto (-k_1) + k_1 = 0 \mapsto k_1 \dots \mapsto 0.$$

Thus, by choosing the similarity $\varrho:(\varphi,\vartheta,y)\to(\varphi,\vartheta,y+\frac{1}{2}k_1)$ (as translation), we get equivariance to case $k_1=0$. We use the notation $\mathbf{f}:=g_1$ for this involutive transform in case q=1, which is the product of the antipodal map of $\mathbf{S^2}$ and a reflection in $\mathbf{S^2}\times\{0\}$. Else (q>1) we obtain fixed points over the poles of $\mathbf{S^2}$. Thus we get the promised representative $\mathbf{S^2}\times\mathbf{R}/G$ for the second diffeomorphism class $\mathbf{Or2}$ of orientable $\mathbf{S^2}\times\mathbf{R}$ space forms in Fig.1 with

(3.24)
$$G := (\mathbf{f}, \tau - \mathbf{f}^2, \mathbf{f}\tau \mathbf{f}\tau)$$

by half shell $\bar{\mathcal{F}}_2$. Or equivalently $G := (\mathbf{f}_1, \mathbf{f}_2 - \mathbf{f}_1^2, \mathbf{f}_2^2)$ holds by a shell $\bar{\mathcal{F}}_1$, if $\mathbf{f}_1 := \mathbf{f}$, and $\mathbf{f}_2 := \mathbf{f}\tau : (\varphi, \vartheta, y) \mapsto (\varphi + \pi, -\vartheta, -y + 1)$ for the free Coxeter group $\langle \mathbf{f}_1 \rangle \times \langle \mathbf{f}_2 \rangle$. This was summarized at the end of Sect.2.

4. The other similarity classes of ${f S^2} imes {f R}$ space forms

After the discussions detailed before, we treat the remaining cases more sketchily. From the finite isometry groups of S^2 only (Fig.3)

(4.1)
$$5\mathbf{q} - (+, 0; [q]; \{(1)\}), \ 1 \le q \in \mathbf{N} - \mathbf{q}^*$$

provide $S^2 \times \mathbf{R}$ space forms. From the other spherical groups in Table 1 each leads to fixed points as in [1]. So the classification of orientable space forms has already been complete.

Any group A in (4.1) are generated by a reflection g_1 in an equatorial circle of S^2 and by a q-fold rotation g_2 about its poles. The fundamental domain $\bar{\mathcal{F}}_A$ in Fig.3 shows also the S^2 -orbifold with one boundary component in $\{(1)\}$ or the empty sign after *, i.e. without non trivial dihedral corner; moreover, if q > 1, one q-fold rotation centre (cone point of angular neighborhoud $\frac{2\pi}{q}$) in [q] or q before *, respectively

Again, we consider the possible 3 types of point groups G_0 and the corresponding $S^2 \times \mathbf{R}$ space groups G without any fixed point.

Type I: $\mathbf{q} * \times \mathbf{1}_{\mathbf{R}}$ has the presentation

$$(4.2) (g_1, g_2 - g_1^2, g_2^q, g_2^{-1}g_1g_2g_1),$$

$$g_1: (\varphi, \vartheta, y) \mapsto (\varphi, -\vartheta, y); \ g_2: (\varphi, \vartheta, y) \mapsto (\varphi + \frac{2\pi}{q}, \vartheta, y).$$

The translational parts k_1 in (g_1, k_1) and k_2 in (g_2, k_2) satisfy the Frobenius congruences

$$(4.3) k_1 2 \equiv 0, \ k_2 q \equiv 0, \ -k_2 + k_1 + k_2 + k_1 = 2k_1 \equiv 0 \pmod{1}.$$

Only $(k_1, k_2) = (\frac{1}{2}, \frac{k}{a})$ provides nonorientable $S^2 \times \mathbf{R}$ space forms. Then

(4.4)
$$\mathbf{a} := (g_1, \frac{1}{2}) : (\varphi, \vartheta, y) \mapsto (\varphi, -\vartheta, y + \frac{1}{2})$$

$$\mathbf{s} := (g_2, \frac{k}{q}) : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{2\pi}{q}, \vartheta, y + \frac{k}{q})$$

with g.c.d (k,q)=1 and $k=1,\ldots,\lfloor\frac{q}{2}\rfloor$ for l.i.p of $\frac{q}{2}$, generate our group G. We discuss the two cases: i, q = 2u even and ii, q odd.

i, If q = 2u is even, we take

(4.5)
$$\mathbf{w} := \mathbf{a}\mathbf{s}^v \tau^{-t} : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{2\pi v}{2u}, -\vartheta, y) \in \mathbf{S}_3^2$$

by $\frac{1}{2}+\frac{kv}{2u}-t=0$, i.e. 2u(1-2t)+2kv=0 holds with $v=u=\frac{q}{2},\ k=2t-1,\ \mathbf{ww}=1$, thus \mathbf{w} is the involutive antipodal map. The transform

$$(4.6) \overline{\mathbf{s}} : \mathbf{s}^s \tau^{-r} : (\varphi, \vartheta, y) \mapsto (\varphi + \frac{\pi s}{u}, \vartheta, y + \frac{1}{q}) \in \mathbf{S_2^2 R_2},$$

where

$$\frac{ks}{2u} - r = \frac{1}{2u}$$
, i.e. $ks - 2ur = 1$ since g.c.d $(k, 2u) = 1$,

is just the unique screw motion in G with minimal non-zero translational part. We see, that

$$(4.7) G = \langle \mathbf{w} \rangle \times \langle \overline{\mathbf{s}} \rangle \sim \mathbf{Z_2} \times \mathbf{Z}$$

serves an $S^2 \times R$ space form diffeomorphic to No1 by a skew transform S by (2.8) as earlier. To this

(4.8)
$$\mathbf{a} := \mathbf{w}\tau^t \mathbf{s}^{-v} = \mathbf{w}\overline{\mathbf{s}}^{(qt-kv)} = \mathbf{w}\overline{\mathbf{s}}^u,$$
$$\mathbf{s} = \overline{\mathbf{s}}^k$$

by (4.5) and (4.6) are satisfactory equations, according to (4.4). ii, If q is odd, then we can take with integer s and t

4.9)
$$\overline{\mathbf{z}}: \mathbf{as}^s \tau^{-t}: (\varphi, \vartheta, y) \mapsto (\varphi + \frac{2\pi s}{a}, -\vartheta, y + \frac{1}{2a}) \in \mathbf{S_3^2 R_2}$$

by

(4.9)

$$\frac{1}{2} + \frac{sk}{q} - t = \frac{1}{2q} \ , \ i.e. \ 2sk + (1-2t)q = 1 \ by \ g.c.d \ (2k,q) = 1,$$

as a unique generator. Moreover, G does not have any involutive element now. Namely, we can express the generators in (4.4) by $\overline{\mathbf{z}}$:

$$\mathbf{a} = \overline{\mathbf{z}}^q, \ \mathbf{s} = \overline{z}^{2k}$$

by (4.9). This proves $G = \langle \overline{\mathbf{z}} \rangle \sim \mathbf{Z}$, and a skew transform S by (2.8) shows the diffeomorphic equivariance to G in (3.20-21) in the class **No2**.

Type II: $\mathbf{q} * \times \overline{\mathbf{1}}_{\mathbf{R}}$ leads to fixed points as before.

Type III: We have three possibilities as in [1]:

$$\mathbf{III.a}\ (\mathbf{q}*)'(\mathbf{q},\mathbf{q}),\ \mathbf{III.b}\ (\mathbf{q}*)'(\frac{\mathbf{q}}{2}*),\ \mathbf{III.c}(\mathbf{q}*)'(\frac{\mathbf{q}}{2}\otimes),$$

where \mathbf{q} is even in the last two cases. Again, we have fixed points at each space group G from the above three point groups.

Remarks 1, If we do not require an invariant lattice $\langle \tau \rangle$ by (2.1), then we have uncountably many similarity classes in **No2** as well by a generator

$$(4.12) \overline{\mathbf{z}}: (\varphi, \vartheta, y) \mapsto (\varphi + \alpha, -\vartheta, y + a) \in \mathbf{S_3^2} \mathbf{R_2}$$

for G with irrational $\frac{\alpha}{2\pi} \in (0, \frac{1}{2}); \ 0 < a \in \mathbf{R}$.

This is as to in the orientable class Or1 with the screw motion s in (2.6).

2, In the orientable case $\mathbf{f} \in \mathbf{S_3^2R_1}$ by (2.13) is the only (even similarity) type of involutive transforms without fixed points. Combining this \mathbf{f} with a screw motion \mathbf{s} in (2.6) with irrational $\frac{\alpha}{2\pi}$

(4.13)
$$\mathbf{fsfs}: (\varphi, \vartheta, y) \mapsto (\varphi + 2\pi + 2\alpha, \vartheta, y)$$

has fixed points over the poles. Thus we see that the diffeomorphism class $\mathbf{Or2}$ has exactly one similarity class of $\mathbf{S^2} \times \mathbf{R}$ space forms, and we do not have any more. 3, In the nonorientable case the antipodal map $\mathbf{z} \in \mathbf{S_3^2}$ in (3.13) is the only type of involutive transforms without fixed points. Combining this \mathbf{z} with any screw motion \mathbf{s} in (2.6)

(4.14)
$$\mathbf{zsz}: (\varphi, \vartheta, y) \mapsto (\varphi + 2\pi + \alpha, \vartheta, y + a), \mathbf{zsz} = \mathbf{s}$$

show that our diffeomorphism class No1 contains also uncountably many similarity classes, and we do not have any more.

At the end we summarize our results in

Theorem 4.1 There are exactly 2 orientable: $\mathbf{Or1}(\mathbf{Z})$ and $\mathbf{Or2}(\mathbf{Z} \otimes \mathbf{Z})$, resp. 2 nonorientable diffeomorphism classes: $\mathbf{No1}(\mathbf{Z}_2 \times \mathbf{Z})$ and $\mathbf{No2}(\mathbf{Z})$ of $\mathbf{S}^2 \times \mathbf{R}$ space forms, containing the similarity equivariance classes as follows in Table 2. In the diffeomorphism class $\mathbf{Or2}$ there are exactly one similarity type, also in the general sense if we allow infinite point groups for the fundamental groups. The other 3 diffeomorphism classes contain similarity classes in infinite series for finite point groups, or uncountably many similarity classes for infinite point groups. □

Symbol	Conditions	Diffeomorphism class
1,1.I.1(0)	representative (Fig.1)	$\mathbf{Or1}(\mathbf{Z})$
$\mathbf{1q.I.2}(\frac{k}{q})$	$(k,q) = 1, \ 1 \le k \le \lfloor \frac{q}{2} \rfloor$	Or1
7,1.I.1 (0)	representative (Fig.4)	$No1(\mathbf{Z_2} \times \mathbf{Z})$
$7,1.I.2(\frac{1}{2})$	repr. (Fig.4)	No2(Z)
7qo.I. $3(\frac{k}{2g})$	$2 \le q \text{ odd}, (k,q) = 1, \text{ even}$	No1
1	k < q	
7qo.I. $3(\frac{k}{2g})$	$2 \le q \text{ odd}, (k, q) = 1, \text{ odd}$	No2
-4	k < q	
7qe.I.3 $(rac{k}{2q})$	$2 \le q \text{ even}, (k, q) = 1, k < q$	No2
7,1.III.1 (0)	repr. (Fig.1)	$\mathbf{Or2}(\mathbf{Z_2}\otimes\mathbf{Z_2})$
5qe.I.4 $(\frac{1}{2}, \frac{k}{a})$	$2 \le q \text{ even, } (k,q) = 1, \qquad 1 \le q$	No1
. 4	$k \leq \lfloor \frac{q}{2} \rfloor$	
5qo.I.4 $(\frac{1}{2}, \frac{k}{a})$	$1 \le q \text{ odd}, (k, q) = 1, 1 \le k \le$	No2
4	$\lfloor \frac{q}{2} \rfloor$	

Table 2 Classes of $S^2 \times R$ space forms

REFERENCES

- [1] Farkas, J.Z.: The classification of $S^2 \times R$ space groups Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), Vol. 42 (2001), No.1. 235–250.
- [2] Molnár, E.: The projective interpretation of the eight 3-dimensional homogeneous geometries. Beiträge zur Algebra und Geometrie, Vol. 38 (1997), No.2. 261-288.
- [3] Scott, P.: The geometries of 3-manifolds. Bull. London Math. Soc. 15 (1983), 401–487.
- [4] Thurston, W.P.(ed. by Levy. S): Three dimensional geometry and topology, Vol.1. Princeton University Press (1997) (Ch.3.8,4.7)
- [5] Tollefson, J.: The compact 3-manifolds covered by $\mathbf{S^2} \times \mathbf{R}$. Proc.Amer.Math.Soc. 45 (1974), 461-462.

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS, DEPARTMENT OF GEOMETRY

 $E{-}mail~address{:}~\texttt{farkas@math.bme.hu}\\ E{-}mail~address{:}~\texttt{emolnar@mail.bme.hu}$