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ON HAMILTON p,—-EQUATIONS IN SECOND-ORDER
FIELD THEORY

DANA SMETANOVA

ABSTRACT. In the present paper recent results on regularizations of first order
variational problems are generalized to Lagrangians affine in the second deriva-
tives. New regularity conditions are found and Legendre transformations are
studied.

1. INTRODUCTION AND NOTATION

In this paper we consider an extension of the classical Hamilton—Cartan varia-
tional theory on fibered manifolds.

It is known that in field theory to a variational problem represented by a La-
grangian one can associate different Hamilton equations corresponding to different
Lepagean equivalents of the Lagrangian (DEDECKER [1], KRUPKA [7]). Accord-
ingly, these Hamilton equations depend upon a Lagrangian (resp. its Poincaré
- Cartan form), and an auxiliary differential form corresponding to the at least
2-contact part of the Lepagean equivalent of the Lagrangian. This admits a new
approach to the problem of regularity (DEDECKER [1], KRUPKOVA [11], [12], KRUP-
KOVA and SMETANOVA [13], [14]). Contrary to the classical calculus of variations
where regularity is a property of a single Lagrangian, in the generalized approach
regularity conditions (different from [3], [4], [8], [15]) depend upon a Lagrangian
and some “free” functions which can be considered as parameters. Within this
setting, a proper choice of a Lepagean equivalent can lead to a “regularization” of
a Lagrangian. Using this regularization procedure one can regularize some inter-
esting traditionally singular physical fields, the Dirac field, and the electromagnetic
field (cf. DEDECKER [1], KRUPKOVA and SMETANOVA [13], [14]).

Throughout this paper, 7 : ¥ — X is s fibered manifold, and dim X = n,
dimY = m + n. The r-jet prolongation of 7 is a fibered manifold denoted by
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T+ J7Y — X and w5 : JY — J°Y, 0 < s < r, we denote the natural jet
projections. A fibered chart on Y (resp. an associated fibered chart on J"Y) is
denoted by (V,v), ¥ = (2',y7) (vesp. (Vi,¢), ¥r = (2°,9%,97,...,97, ;). In
what follows, we consider » =1 or r = 2.

Recall that every g-form 1 on JY admits a unique (canonical) decomposition
into a sum of ¢g-forms on J" 1Y as follows:

q
T = h(n) + > pe(),
k=1

where h(n) is a horizontal form, called the horizontal part of n, and pr(n), 1 <k <
q, is a k-contact form, called the k-contact part of n (see e.g. [5], [6] for review).
We use the following notations:

wo :dxl/\d.TQ/\"~/\dl‘n, wj :ia/azin, Wij :ia/azjwi,
and
w? =dy° — y}’dxj, wi =dy] — yfjdxj.

By an r-th order Lagrangian we shall mean a horizontal n-form A on J"Y. A
form p is called a Lepagean equivalent of a Lagrangian A if (up to a projection)
h(p) = A, and p1(dp) is a m,41 o-horizontal form [5]. For an r-th order Lagrangian
we have all its Lepagean equivalents of order (2r —1) characterized by the following
formula

(1.1) p=0+v,

where © is a global Poincaré—Cartan form associated to A, and v is an arbitrary
n-form of order of contactness > 2, i.e., such that h(v) = p1(v) = 0 (cf. KRUPKA
[5], [6]). Recall that for a Lagrangian of order 1, © = 6 where ) is the classical
Poincaré—Cartan form of A,

oL
0y = Lwy + — w’ A w;.

dyg
If r = 2, © is no more unique, however, there is an invariant decomposition
(1.2) O =0, + do,

where

oL oL oL
On=Lwo+ | 55 —dv s | W ANwj + 7w Awj
ay_j ayjk 8%]‘

and ¢ does not depend upon A (KRUPKA [6]).
With the help of Lepagean equivalents of a Lagrangian one obtains the following
intrinsic formulation of the Fuler—Lagrange and Hamilton equations.

Theorem (KRUPKA [5]). Let A be a Lagrangian on J"Y, p its Lepagean equivalent.
A section v of 7 is an extremal of X if and only if

(1.3) ¥ i e aedp = 0

for every m-vertical vector field & on 'Y .
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A section § of the fibered manifold 7o,._1 is called a Hamilton extremal of p
(Krupka [7]) if

(1.4) 5iedp = 0,
for every mo,_1-vertical vector field £ on J2 1Y,

(1.3) are called the Euler—Lagrange equations and (1.4) the Hamilton equations
of p, respectively. Notice that while the Euler-Lagrange equations are uniquely
determined by the Lagrangian, Hamilton equations depend upon a choice of v.
Consequently, one gets many different Hamilton theories associated to a given
variational problem.

In accordance with [13], by Hamilton ps-equations we shall mean Hamilton
equations of a Lepagean equivalent p of A\ where v is a 2-contact n-form (i. e.,
h(v) =p;(v)=0,i>1,i#2).

The aim of this paper is to consider Hamilton ps-equations for a class of second
order Lagrangians. Namely, we study Lagragians affine in second derivatives y7,,
such that their Lepagean equivalent is of the form p = 6 + v, where v = pa(5),
for an n-form 3 defined on J'Y.

Recall that a section § of the fibered manifold m, is said to be holonomic if
§ = J" for a section «y of m. Clearly, if v is an extremal then J?"~ v is a Hamilton
extremal; conversely, however, a Hamilton extremal need not be holonomic, and
thus a jet prolongation of some extremal. This suggests a definition of regularity
proposed by KRUPKA and STEPANKOVA [9] in consequence with a study of second
order Lagrangians with projectable Poincaré—Cartan forms: Throughout this paper
a Lepagean form is called regular if every its Hamilton extremal is holonomic.
Taking a Lepagean equivalent of A in the form p = 6y + p2(8), where 3 is defined
on J'Y, we can see that regularity conditions involve A and 3, and one can ask
about a proper choice 3, such that p is regular. We study this question in Section
2. Section 3 is then devoted to the question on the existence of certain Legendre
coordinates for regularizable Lagrangians. In Section 4 we deal with Lagrangians,
affine with second derivatives, admitting a Lepagean equivalent projectable onto
JYY. Our results are a direct generalization of techniques and results from [13],
[14] and provide, as a special case, the results of [9] and [2].

2. REGULARIZATION OF VARIATIONAL PROBLEMS FOR SECOND-ORDER
LAGRANGIANS AFFINE IN SECOND DERIVATIVES

We shall consider Lagrangians affine in the second derivatives and its Lepagean
forms (1.1), (1.2) where ¢ = 0, v is 2-contact, and

v =p2(0),

where 3 is defined on J'Y and such that p;(3) = 0 for all i > 3.
In a fiber chart, a Lagrangian A affine in the second derivatives is expressed by

(2.1) A= Lwy, L=L+LJyf,



332 DANA SMETANOVA

where functions L, E? do not depend on the variables y;; and the functions Efﬁ
satisfy the condition L% = LJi. In view of the above considerations we obtain

~ = oL  OLK ~
p= (L + Ll’fly,’;l> wo + ((‘)y" + &g; vy — diL2F | w7 A w;
(2.2) . N S
+ Lywi ANwj + fEw Aw” Awij + gadw? Awy A wgj

+ hEI T A Wl A wiy,

. ij  kij  pklij . -
where the functions f3),, g5/, hyy’ do not depend on the yy ’s and satisfy the
conditions

(I o _ 4t iy fji.
ov vo) ov oV ov — Jvror
kig _ kji.
(23) gauj - _ga'{/a
klij _ 1 lkij klij _ 1 klji
hau - hvcr ) hau - ha’l/ .

In general case, the Poincaré—Cartan forms of a second order Lagrangians is
defined on J3Y, but for Lagrangians of the forms (2.1) 6, is projectable onto J?Y.
Our choice of the 2-contact part v of p conserves the Lepagean form (2.2), (2.3)
defined on J?Y.

In the following theorems necessary conditions for regularity are found, which
according to the definition of regularity in this paper, guarantee that extremals
and Hamilton extremals of A = hp are in bijective correspondence.

Theorem A. Let dim X > 3. Let A be a second-order Lagrangian affine in the
variables y7;, the formula (2.1) be its expression in a fiber chart (V,v), ¢ = (2%, y%)
on'Y. Let p be a Lepagean equivalent of X of the form (2.2), (2.3).

Assume that the matriz
(2.5) (ALY | BLPY),

v

with mn? rows (resp. mn + mn(n + 1)/ 2 columns) labelled by (v, k, 1) (resp.

Tkl T ik T4l
A= (S - (G ¢ G ) ok - a).
dy; 2\ 9y Iy

klpg __ kpql lpgk
Bws - (hwc +hwc )a

and

has rank mn(n + 3)/ 2.
Then p is reqular on w1 (V), i.e., every Hamilton extremal § : 7(V) D U —
J2Y of p is of the form 6 = J?~, where ~y is an extremal of \.

Proof. Expressing the Hamilton ps-equations (1.4) in fiber coordinates we get along
0 the following system of first-order equations for section §:
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mn? equations

oLk 1 (oLi* AL 3 dy°
v o o gl ik _
(2.6) ( o 3 ( ot - 8%,;) 9o, — Yo <6$j

.. .. 8y€’
kijl lijk % o
2 (huaj + hug ) <8J)J - yzg) = 07

mn equations

27 271 pgq . Nk
(2.7) <6L LY 6dL”’—% 4f% 4 24

ByTouy T oyzaur T Bt T By T

OxI J oyy, 0ys

y;-’)

kij
1gau>

o oL ki o
x <8y, —y‘-’) + (" -9 L4295 — 21 — 4dlh’;§,“>

dy7 o ikjl iy [ O3 o
X <63:j yij) +2 (hE+hJY) g il
o ij o kzy o kij
(5 B - ) (55 )(
ayy 8y oy* Oxd

o (200e | 095k 095 B
ay° oyy oyr 8351

and m equations

oL  OLpa oL  dLpa
2. Eoyho—d | = d;dy L3*
= <3y”+ dy <5?J5+ o ”ypq> e )

9*L 82qu . 9*L oBLra
ygay” " dygoyr T Gyrayr  dyrayr

d oy°
Tik w .0
d L7 +2d; ) (8xj yj)

oLk 9L 92 Lp
oy 8y oYy 3y oyy 7P oyy

~ B

az’frl 1 azjk +8f/{;l _ ghit _ gl Oy
oyy 2\ oy oyy ve ve Oxd

&
2% )

i
g —
j _yl]> - 0)

OHED oMY oW (Our L\ (9
+ 2 + o + v i ypi 9.5
oy 0y; ayy, o’ Or

0

0
Uy + 7 dpLiP +AfTE - 2dzg’§ﬁ#>

- yglj)
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b OSRN (00" e (9 .
8y ori i ori i
o zg agkzj 89161] 8y/{ . 8ya "
+2< ? “ ) \aw %) (o ¥
Yi y° yY x x
hlkz; aglzj agk:zj ayn aya
2 L—ai ) 52—y, ) =0.
i ( ay oy owp ) <6w1 x“) (axﬂ y’”)
The system (2.6) can be viewed as a system of mn? (algebraic) linear homoge-

neous equations for
n+1 n+3
mn +mn =mn
2 2
W o
ari U)o

oys o
(ax]i —yfj>7 j<i.

According to the (algebraic) Frobenius theorem, this system has a unique (zero)
solution if and only if the rank of the matrix of system, i. e., (A5 | BEIP9) is equal
to the number of unknowns, i. e., mn ((n + 3)/2). Let dim X = n > 3, then

mn2—mn(ﬁ+ﬁ)>mn n+3
N 2 2/~ 2 )7

as desired. Since rank of matrix (2.5) is maximal, by assumption, we obtain

+2

unknowns

and

o g

y L
8xi06:y3067 ax]ioézygjo&jgz’

proving that § = J2+v. Substituting this into (2.8) we get

oL  OLM oL  OLM
Kk —dy | = d;dy L3F
<3yu + Dy” Ypg — 45 (8%’ + ay” ypq> + d;dg ) o J3y

= (aLd oL + djdy 8L>OJ37 = 0,

oy / 8y§-’ oy,

i. e., v is an extremal of A. O

Theorem B. Let A\ be a second-order Lagrangian affine in the variables y7;, the

formula (2.1) be its expression in a fiber chart (V,), ¥ = (z%,y°) on Y. Let p
be a Lepagean equivalent of X of the form (2.2), (2.3). Suppose that p satisfies the
conditions

(2.9) ]
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Assume that the matriz

: oLf 1 (oL oL¥ . ,
R
( ) ( oys 2 < oyy oyy,
with mn? rows (resp. mn columns) labelled by (v, k,1) (resp. (o0,j)), has the maz-
imal rank (i.e. rank AFY = mn).
Then every Hamilton extremal & : (V) D U — J?Y of p is of the form mg 100 =
JYvy, where 7y is an extremal of \.

Proof. Substituting (2.9) into Hamilton ps-equations (2.6), and using the condition
rank AW = mn we obtain

0y7od _ oo

T
The previous condition means 731 0§ = J'vy. However, the last equations (2.8)
now mean that - is an extremal of . O

3. LEGENDRE TRANSFORMATION ON J2Y FOR SECOND ORDER LAGRANGIANS
AFFINE IN SECOND DERIVATIVES

Writing the Lepagean equivalent (2.2), (2.3) in the form of a noninvariant de-
composition in the canonical basis (dz*,dy?, dy¢, dyfj) of 1-forms we get

p=—Huwo +pldy" Aw; +pYdyl Nw,

+ £, dy” Ady” Awi; + gFF dy® A dyf A w4+ REST dyg A dyp A wgj,

where
oL Tij \, 0, Tij, 0 ij 0,V kij |  jik\, o, v
H ==Lt 57— dild vl +L5 v+ 2foul vy~ (952 +92 ) vs y3h
1
R ) i
3.1
8L - y , 3
Po = gz — Gl — Af5u) - (957 + g22F) yi,
K3

P =LY+ (gl + glb) i — 2 (W57 + hiE7) i

I = 9l (i en BERT -+ B = BE ) and

opl,  opl,
Ay Oy
det - - # 0,
dpy  Opd
dyy  9yy

then
(32) Vo = (2,97, 97 u5) — (&', 97, P, pd) = X
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is a coordinate transformation over an open set U C V5. We call it Legendre
transformation, and the x (3.2) the Legendre coordinates. Accordingly, H,pl,p¥
are called a Hamiltonian and momenta, respectively. Since the functions f&, gk
htiki (2.3) may depend upon the momenta p® (not upon p¥), the Hamilton ps-
equations (1.4) in these “Legendre coordinates” take a rather complicated form:

0H opt ofi, Oy¥ ofia,  Ofd  9fu\ Oy* Oy”
—=——2 44 % " 42 ny na v , .
oy° ox? + oxd Oxt + ay° + oy + oy° ) Ox* OxJ

-4

Ofsy Opy 0y” | 095 Oy | o (09x) 095\ Oy* Oyy
Opk Ozt OxI OxJ Oxt oy° oys ) Oxt OxI
5095 0Pl Oyi o Ohyy” Oyi Oyf

opl. Oz OxI Oy® Ox' Oxi’

OH _ 0y”  ,Ofly 0y* dy” | 09 Oy* yi  ,0hu™ Oy Oyf

opi  ox Opt. Oz Ozk dpt Oz Oxt opt Oxd dx™’
OH 1 (dy] | 9Oy
opy 2\ 0z ort )’

However, if dn = 0, where
n= f;{, dy® A dy” ANwij + g’”j dy’ A dyg N\ wij + hﬁll,” dyp N dy] A wij,

ov

then

oM _ oy, O _ oy 0 _1(of | 0
dye  Ox'’ 9pL  Oxt’ gp¥ 2 \ 0wl azrt )’
In general case the regularity of the Lepagean form (2.3), (2.3) and regularity of

Legendre transformation (3.2) do not coincides. By the following Theorem C the
existence of Legendre transformation (3.2) guarantees that Theorem B holds.

Theorem C. Let A be a second-order Lagrangian affine in the variables y7;, the
formula (2.1) be its expression in a fiber chart (V,¢), ¢ = (z%,y°) on Y. Let p

be a Lepagean equivalent of X of the form (2.2), (2.3). Suppose that p satisfies the
conditions h¥' = 0. Suppose that p admits the Legendre transformation

o = (', v, i, y5) — (& v, b, PY) = X
defined by (3.1), (3.2).

Then a1 06 = Jlv, where v is an extremal of .

Proof. Since, the functions h¥!/ vanish, the Jacobi matrix of the Legendre trans-
formation takes the form

Bpf, api
yg  Oyy,
opg 0

ayy,
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The above matrix is regular if and only if the matrices (g; " ), and (%’; “J) have
kl k

the maximal rank. Explicit computations lead to

apff _ 32{7 1 <5fok + 85?) kil lik

8y]l€/l ay’? 2 8yly @yZ ~ You ~ YGou>

i.c. in the notation (2.10), (gg& ) = (AE)T
kl
Accordingly, from Theorem B we obtain mp 105 = Jl7, where 7 is an extremal
of \. O

For a deeper discussion on Legendre transformations and their geometric mean-
ing we refer to [11], [12].

4. PROJECTABILITY ONTO J1Y

Theorem D. Let A be a second-order Lagrangian affine in the variables yg;, i. e.,
in fibered coordinates expressed by (2.1). Let p be a Lepagean equivalent of X of the
form (2.2), (2.3). The following conditions are equivalent:

L. p is projectable onto J'Y .
I1. p satisfies the conditions

kilj likj _
hoo? + h,? =0,

4.1 = = =
(4.1) gkﬂ N gljk _ 8L’Ijl 1 aLng 8L(le .
i av ﬁyg 2\ oyy oyy,

Proof. Taking into account
p=—Huwy+ p’dy’ Aw; + pYdyd A wj
+ [3, Ay’ AN dy” Awij + ghil dy” A dyf Awig + by dyi A dyy A wig,

it is sufficient to find conditions of the independence H, p¢ , and p%/ on y7;’s. Explicit
computations lead to

op, oLM 1 (oL¥* QLI b
Po v ( o + o kil lzk_O,

v o a % v “Y9ov " Yov =
oyy, oys 2\ Oy; oy,
Opg _ 9 (hkilj i hlz‘kj) -0,
ayzl vo vo
OH _ (0L} 1 (oL 9Ly gl glik ) e
oYy, oy? 2\ Oy oYy, v v |

= (W + b+ b+ ) wi



338 DANA SMETANOVA

Corollary. Every second-order Lagrangian affine in the variables yi; has a Lep-
agean equivalent projectable onto J'Y .

Remark. If the functions f%,, gk¥, hkld (2.2), (2.3) vanish, i. e., p = 0, the

vy gO’I/’

projectability conditions (4.1) take the form (cf. [9])

LK 1 (oLik  HLi!
c o v + v = 0
y; 2\ oy oy,

Theorem E. Let \ be a second-order Lagrangian affine in the variables i, the
formula (2.1) be its expression in a fiber chart (V,v), 1 = (x,4°) on Y. Let p be
a Lepagean equivalent of A of the form (2.2), (2.3) and suppose that it is projectable
onto JYY . If p satisfies the conditions

hgluij =0,
ofs, 1 (0gky  ogky
oyy 2\ oy oy°
(4.2) wj w1 (OLY  OLK
9vo Jov = 2 6y;€/ 6y;f

agyi 995 _

K

oyy, oyr

and the matrix

) 92T 92 [P 9 . oLk . )
cki = KKk d Lip — SV g ik g 9g. okid 7
vo <8y§73yz + aygayllg ypq ayz P~o ayo. fg‘y + 900

with rows (resp. columns) labelled by (v, k) (resp. (0,j)), is regular, then p is
regular, i.e., every Hamilton extremal § : (V) D U — JY of p is of the form
§ = Jly, where v is an extremal of \.

Proof. Expressing the Hamilton ps-equations (1.4) of a Lepagean equivalent p pro-
jectable onto J'Y in fiber coordinates and using (4.2) we get along § the following
system of first-order equations:

mn equations

%L 92 Lpra o ~. 0Lk 4 g
( nys dp LY — =70 — 430 + 2d,g5

4.3 + A
(43) OyF0yy  Oygoyr T Oy " dy

m equations

oL oL oL oL ~
4.4 _— b d | == 4 Ay d;dp L7
( ) (ayy + 8y” ypq J <8y; + ay;, ypq> + J kL )
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&L 92Lre 9L o2LPI 0 -
o v + o uypq - o v o Vypq - udkLU
Oy 0y~ Oysdy Oy dy; Oy’ oy; dy

0 ~. . oy’
——dp LIF 4+ 2d, f9 ) | === — o
it vouss) (3 )

oLk 9L 92 Lpa o .~ , g
T o~ gurar Y T g WLl + ATl — 2dig)]
<8y” dy7oyy  Oygoyy Pt Oy P

oup -
(2 )

ofy, [ ofF OfAN\ (9v* .\ (9T L\ _
”(aw T T aya) (fw y) <6xf yj) =0

The matrix C¥J is regular. Hence, from equations (4.3) we obtain the formula

(4.5) — =y7 0.

Substituting this into (4.4) we get

OL 9L OL 9L =
Kk & _ g | 2= KK . Lgk 3
<8y” + By Ypg — dj <5yV + By ypq> +d;di L], ) o J%y

) i
oL oL oL
= 7—diu+ddk O']B’Y =0,
(32/” Toyy 3%)
proving our assertion. O

Remark. a) Let A be a second-order Lagrangian (2.1), suppose that the functions
L% satisfy the conditions

oLk oLk

dyy N yy

This means that L¥ take the form
1 (o i
po_ (o0 o
2\ oy Oyg

and the Lagrangian equivalent with a first-order Lagrangian.

We can choose the functions ¢g¥% in a regular Lepagean equivalent (in the sense

of Theorem E) in the following form

Tkj T ki
gkij _ 1 aLuj o aLV + tkij
oV 2 8y20' 8y§)‘ oV
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where the functions %% do not depend on the variables y¥, and satisfy the condi-
tions

kij kji  kij ik kij ikj

ta’t/] = _tajyl7 ta'f/] = _tzJT’Ly’ talyj = _tlua?

b) Let A be a second-order Lagrangian (2.1) and suppose that the functions L

satisfy the conditions

LK 1 (OLI* N dLI!
9yg 2\ oy dyy,

Then we can choose the functions gk as follows:

wy _ 1 (0L oLy

go'l/ lod - v
4\ 0y oyy,

+tax

ov )
where the t¥’s are as above.
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