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ONE KIND OF MULTISYMPLECTIC STRUCTURES ON
6-MANIFOLDS

JIŘÍ VANŽURA

1. Introduction

Let us recall first that a multisymplectic structure of order k + 1 on a finite
dimensional real vector space V is a (k + 1)-form ω ∈ Λk+1V ∗ such that the
homomorphism

V → ΛkV ∗, v 7→ ιvω = ω(v, ·, . . . , ·)
is a monomorphism. The first examples of multisymplectic structures are symplec-
tic structures and non-zero n-forms, where n = dimV . For further information on
multisymplectic strucrures we refer the reader to [CIL]. We shall use the following
definition.

1. Definition. Let ω be a multisymplectic (k + 1)-form on Rn and let ξ be an
n-dimensional real vector bundle over a base X. A multisymplectic structure of
type ω on ξ is a continuous (k + 1)-form Ω ∈ Λk+1ξ∗ with the following property:
There exists an open cover {Ui}i∈I of X such that for every i ∈ I there is an
isomorphism

fi : Ui × Rn → ξ|Ui

such that for each x ∈ Ui

(fiκi,x)∗Ω = ω,

where κi,x : Rn → Ui × Rn is defined by the formula κi,x(v) = (x, v).

2. Remark. If ξ = TX is the tangent bundle of a differentiable manifold X, it
is natural to assume that the form Ω is differentiable. The standard definition of
multisymplectic structure in this framework requires also dΩ = 0. Such a condition
in our setting makes no sense, and from the point of view of differential geometry
we should call our structure almost multisymplectic structure. Nevertheless, for the
sake of brevity, we speak about multisymplectic structures. The goal of this note
is to investigate special multisymplectic structures of order 3 on 6-dimensional real
vector bundles. It is known (see [C]) that on R6 there exist up to isomorphism only
three (mutually non-isomorphic) multisymplectic 3-forms. If we denote e1, . . . , e6
the canonical basis of R6, and α1, . . . , α6 the dual basis, the above mentioned three
forms are
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(1) ω1 = α1 ∧ α2 ∧ α3 + α4 ∧ α5 ∧ α6,
(2) ω2 = α1 ∧ α2 ∧ α3 + α1 ∧ α4 ∧ α5 + α2 ∧ α4 ∧ α6 − α3 ∧ α5 ∧ α6,
(3) ω3 = ω = α1 ∧ α4 ∧ α5 + α2 ∧ α4 ∧ α6 + α3 ∧ α5 ∧ α6.

If a 3-form α belongs to the isomorphism class of the form ωi, we shall often say
that α is of type ωi. We are interested only in the form ω3, and therefore we shall
denote it simply by ω. This means that we have always

ω = α1 ∧ α4 ∧ α5 + α2 ∧ α4 ∧ α6 + α3 ∧ α5 ∧ α6.

2. Algebraic properties

We shall introduce the subspaces

V0 = [e1, e2, e3] and V ⊥
0 = [e4, e5, e6].

For any 3-form α on R6 we define

∆(α) = {v ∈ R6; ιvα has rank 2.}

3. Lemma. ∆(ω) = V0.

Proof. Let us consider a vector v = c1e1 + · · ·+ c6e6. We get

ιvω = c1α4 ∧ α5 + c2α4 ∧ α6 + c3α5 ∧ α6 − c4α1 ∧ α5 − c4α2 ∧ α6+

+c5α1 ∧ α4 − c5α3 ∧ α6 + c6α2 ∧ α4 + c6α3 ∧ α5.

Further we have

(ιvω)∧(ιvω) = −c4c6α1∧α2∧α4∧α5 +c4c5α1∧α2∧α4∧α6−c24α1∧α2∧α5∧α6−
−c5c6α1 ∧ α3 ∧ α4 ∧ α5 + c25α1 ∧ α3 ∧ α4 ∧ α6 − c4c5α1 ∧ α3 ∧ α5 ∧ α6+

+(c2c4 + c3c5)α1 ∧ α4 ∧ α5 ∧ α6 − c26α2 ∧ α3 ∧ α4 ∧ α5 + c5c6α2 ∧ α3 ∧ α4 ∧ α6−
−c4c6α2∧α3∧α5∧α6+(−c1c4+c3c6)α2∧α4∧α5∧α6−(c1c5+c2c6)α3∧α4∧α5∧α6.

Obviously, (ιvω) ∧ (ιvω) = 0 implies c4 = c5 = c6 = 0. On the other hand if
c4 = c5 = c6 = 0, then (ιvω) ∧ (ιvω) = 0. This finishes the proof.

4. Remark. In Lemma 3 we have determined ∆(ω3). Similarly we can find
∆(ω1) and ∆(ω2). We get

∆(ω1) = V0 ∪ V ⊥
0 ,

∆(ω2) = {0},
∆(ω3) = V0.

This shows that ω1, ω2, and ω3 represent three different isomorphism classes of 3-
forms. It is also easy to see how, using ∆(α), we can recognize to which isomorphism
class a multisymplectic 3-form α belongs. Let us mention here that there is an
invariant λ(α) defined for any 3-form α, which was introduced by N. Hitchin (see
[H]). A multisymplectic 3-form α belongs to the isomorphism class of
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ω1 if and only if λ(α) > 0
ω2 if and only if λ(α) < 0
ω3 if and only if λ(α) = 0.

It is also important to notice that V0 ⊂ R6 is a subspace naturally associated
with the form ω. This is no more true for the subspace V ⊥

0 .

We shall introduce the group O(ω) consisting of all automorphisms ϕ ∈ GL(6,R)
preserving the form ω, i. e. such that for every vectors v, v′, v′′ ∈ V there is

(*) ω(ϕv, ϕv′, ϕv′′) = ω(v, v′, v′′).

It is clear that O(ω) is a closed subgroup of GL(6,R). Consequently, O(ω) is a Lie
group.

5. Lemma. For every element ϕ ∈ O(ω) there is ϕ(V0) = V0.

Proof. Let v ∈ V0, and let ϕ ∈ O(ω). For arbitrary v1, v2, v3, v4 ∈ R6 we get

((ιϕvω) ∧ (ιϕvω))(v1, v2, v3, v4) =
1
6!

∑
π∈S4

signπ · ω(ϕv, vπ1, vπ2) · ω(ϕv, vπ3, vπ4) =

=
1
6!

∑
π∈S4

signπ · ω(ϕv, ϕϕ−1vπ1, ϕϕ
−1vπ2) · ω(ϕv, ϕϕ−1vπ3, ϕϕ

−1vπ4) =

=
1
6!

∑
π∈S4

signπ · ω(v, ϕ−1vπ1, ϕ
−1vπ2) · ω(v, ϕ−1vπ3, ϕ

−1vπ4) =

= ((ιvω) ∧ (ιvω))(ϕ−1v1, ϕ
−1v2, ϕ

−1v3, ϕ
−1v4) = 0.

For ϕ ∈ O(ω) we denote ϕ0 = ϕ|V0. Further we denote O0(ω) = {ϕ ∈
O(ω);ϕ0 = id}. We obtain in this way a sequence

0 → O0(ω) → O(ω)
ρ→→ GL(V0) → 0,

where ρ denotes the restriction homomorphism. It is obvious that this sequence is
exact at O0(ω) and at O(ω). At this moment it is not clear whether it is exact at
GL(V0). Our next aim is to investigate this sequence.

We can introduce a subspace AV0 ⊂ Λ2R6∗ as follows.

AV0 = {α ∈ Λ2R6∗; ιvα = 0 for every v ∈ V0}
We have the following obvious lemma.

6. Lemma. If v, v′ ∈ V0, then ιvιv′ω = 0.

This lemma shows that we can define a homomorphism

β : V0 → AV0 , β(v) = ιvω.

7. Lemma. The homomorphism β : V0 → AV0 is an isomorphism.
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Proof. The 3-form ω is multisymplectic, and consequently β is a monomorphism.
A direct computation shows that AV0 has a basis α4 ∧ α5, α4 ∧ α6, α5 ∧ α6, and
consequently dimAV0 = 3. This proves the lemma.

Further, we set V1 = R6/V0, and p : R6 → V1 will denote the projection. It can
be easily seen that that Λ2p∗ : Λ2V ∗

1 → Λ2R6∗ has the image AV0 . We can thus
define an isomorphism

γ : V0
β→→ AV0

(Λ2p∗)−1

→ −→ Λ2V ∗
1 .

The isomorphism γ enables us to introduce a regular pairing

V0 × Λ2V1 → R

by the formula

< v0, ṽ1 >= (γv0)(ṽ1), where v0 ∈ V0, ṽ1 ∈ Λ2V1.

If v̂1 ∈ Λ2R6, then it is easy to see that

< v0, (Λ2p)v̂1 >= ω(v0, v̂1).

Let us remark that for any endomorphism ψ0 : V0 → V0 there exists a unique
endomorphism ψ̃t

0 : Λ2V1 → Λ2V1 such that

< ψ0v0, ṽ1 >=< v0, ψ̃
t
0ṽ1 > for every v0 ∈ V0, ṽ1 ∈ Λ2V1.

We consider now an element ϕ ∈ O(ω), and v, v′ ∈ R6. It is obvious that ϕ induces
an endomorphism ϕ1 : V1 → V1. We have

ω(ϕv0, v, v′) = ω(v0, ϕ−1v, ϕ−1v′)

< ϕ0v0, pv ∧ pv′ >=< v0, (ϕ−1
1 ∧ ϕ−1

1 )(pv ∧ pv′) > .

This shows that we have ϕ̃t
0 = Λ2(ϕ−1

1 ). From this we get

det(ϕ0) = det(ϕ̃t
0) = det(Λ2(ϕ−1

1 )) = (detϕ−1
1 )2 > 0.

We can see that the short sequence under consideration can be written in the form

0 → O0(ω) → O(ω)
ρ→→ GL+(V0) → 0.

Let us consider now any complementary subspace W to the subspace V0, i. e. any
subspace W such that R6 = V0 ⊕W . Similarly as above we get an isomorphism

γW : V0 → Λ2W ∗

defined by the formula γW v0 = (ιv0ω)|W . Using this isomorphism we get the
regular pairing

V0 × Λ2W → R, < v0, w̃ >= (γW v0)(w̃), where v0 ∈ V0, w̃ ∈ Λ2W.

Consequently, to each endomorphism ψ0 : V0 → V0 there exists a unique endomor-
phism ψW

0 such that for every v0 ∈ V0 and w̃ ∈ Λ2W we have

< ψ0v0, w̃ >=< v0, ψ
W
0 w̃ > .
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Let us consider now an element ϕ ∈ O(ω). We define a homomorphism ϕW : W →
W as the composition

W
ϕ|W→ → V

πW→→W,

where πW denotes the projection of R6 = V0 ⊕W onto W . It is easy to see that
ϕW is an isomorphism. For any v0 ∈ V0 and w,w′ ∈W we have

< ϕ0v0, w ∧ w′ >= ω(ϕ0v0, w, w
′) = ω(ϕv0, ϕϕ−1w,ϕϕ−1w′) =

= ω(v0, ϕ−1w,ϕ−1w′) = ω(v0, πWϕ−1w, πWϕ−1w′) =

= ω(v0, ϕ−1
W w,ϕ−1

W w′) =< v0,Λ2(ϕ−1
W ) >,

which shows that
ϕW

0 = Λ2(ϕ−1
W ).

8. Definition. A complementary subspace W is called special if ω|W = 0.

Obviously, the subspace V ⊥
0 is a special complementary subspace. It is easy

to see that complementary subspaces are in a bijective correspondence with the
elements τ of the vector space Hom(V ⊥

0 , V0). Moreover, τ corresponds to a special
complementary subspace if and only if for every w,w′, w′′ ∈W there is

ω(τw,w′, w′′) + ω(w, τw′, w′′) + ω(w,w′, τw′′) = 0.

We define a subgroup D(ω) ⊂ O(ω) by the formula

D(ω) = {ϕ ∈ O(ω);ϕ(V ⊥
0 ) = V ⊥

0 }.

Obviously, D(ω) is a closed subgroup of O(ω), and consequently a Lie group.
Before we continue with our considerations, we shall need the following lemma.

9. Lemma. Let Z be a 3-dimensional real vector space, and let us consider a
homomorphism

λ : GL(Z) → GL(Λ2Z), λ(ϕ) = Λ2ϕ for ϕ ∈ GL(Z).

Then λ is an epimorphism onto GL+(Λ2Z), and its kernel is {id,−id}.

Proof. Because det(Λ2(ϕ)) = (det(ϕ))2, it is obvious that λ is a homomorphism
into GL+(Z). We shall now investigate the kernel of this homomorphism. Let us
choose a basis z1, z2, z3 of Z, and for ϕ ∈ GL(Z) let us write

ϕ(zi) =
3∑

j=1

ϕijzj , i = 1, 2, 3.

Let us assume that ϕ ∈ kerλ. Then we have

ϕz1 ∧ ϕz2 = z1 ∧ z2, ϕz2 ∧ ϕz3 = z2 ∧ z3, ϕz3 ∧ ϕz1 = z3 ∧ z1.
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From these identities we get the following nine equations:

(1) ϕ11ϕ22 − ϕ12ϕ21 = 1

(2) ϕ12ϕ23 − ϕ13ϕ22 = 0

(3) ϕ13ϕ21 − ϕ11ϕ23 = 0

(4) ϕ21ϕ32 − ϕ22ϕ31 = 0

(5) ϕ22ϕ33 − ϕ23ϕ32 = 1

(6) ϕ23ϕ31 − ϕ21ϕ33 = 0

(7) ϕ31ϕ12 − ϕ32ϕ11 = 0

(8) ϕ32ϕ13 − ϕ33ϕ12 = 0

(9) ϕ33ϕ11 − ϕ31ϕ13 = 1

The equations (7) and (4) can be written in the form

ϕ11ϕ32 − ϕ12ϕ31 = 0
ϕ21ϕ32 − ϕ22ϕ31 = 0

Considering ϕ32, ϕ31 as unknown quantities, and ϕ11, ϕ12, ϕ21ϕ22 as coefficients, we
have a system of two homogeneous linear equations with two unknown quantities
and with a nonvanishing determinant (see (1)). Consequently, we get

ϕ32 = 0, ϕ31 = 0.

Proceeding along the same lines, we get

ϕij = 0 for all i 6= j.

The equation (1), (5), and (9) have now the form

ϕ11ϕ22 = 1, ϕ22ϕ33 = 1, ϕ33ϕ11 = 1.

It can be easily seen that this system has only two solutions. Either ϕ11 = ϕ22 =
ϕ33 = 1 or ϕ11 = ϕ22 = ϕ33 = −1. This shows that

kerλ = {id,−id}.

Because dimGL(Z) = dimGL(Λ2Z), and GL+(Λ2Z) is connected, it follows easily
that λ maps already GL+(Z) onto GL+(Λ2Z).

10. Remark. The above lemma shows that we have a short exact sequence

0 → Z2 → GL(Z) λ→→ GL+(Λ2Z) → 0,

and that the restriction

λ+ : GL+(Z) → GL+(Λ2Z)

is an isomorphism. Let us remark that because dimZ is odd, we have GL(Z) =
GL+(Z)× Z2.
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If Z = V1 resp. Z = V ⊥
0 we denote the isomorphism λ+ by λ̃0 resp. λ0. Therefore,

we have the isomorphisms

λ̃0 : GL+(V1) → GL+(Λ2V1) resp. λ0 : GL+(V ⊥
0 ) → GL+(Λ2V ⊥

0 ).

Taking W = V ⊥
0 , we have the regular pairing

V0 × Λ2V ⊥
0 → R

satisfying

< v0, w ∧ w′ >= ω(v0, w, w′), where v0 ∈ V0 ,and w,w′ ∈ V ⊥
0 .

Let now ϕ ∈ D(ω), and let us denote ϕ⊥0 = ϕ|V ⊥
0 . It is obvious that ϕW = ϕ⊥0 .

We denote for simplicity ϕt
0 = ϕW

0 . There is ϕ = ϕ0 ⊕ ϕ⊥0 , and we have

ϕt
0 = Λ2((ϕ⊥0 )−1), which implies λ−1

0 ((ϕt
0)
−1) = sign det(ϕ⊥0 ) · ϕ⊥0

It is now easy to prove the following lemma.

11. Lemma. The homomorphism

µ : GL(V0) → D(ω)

defined by the formula

µ(ϕ0) = (|ϕ0|, sign det(ϕ0) · λ−1
0 ((ϕt

0)
−1)), where |ϕ0| = sign det(ϕ0) · ϕ0,

is an isomorphism.

Proof. Let us define a homomorphism µ̄ : D(ω) → GL(V0) by the formula

µ̄((ϕ0, ϕ
⊥
0 )) = sign det(ϕ⊥0 ) · ϕ0.

Because sign det(sign det(ϕ0) · λ−1
0 ((ϕt

0)
−1))) = sign det(ϕ0), we have

µ̄µ(ϕ0) = sign det(ϕ0) · |ϕ0| = ϕ0.

Further, because

sign det(sign det(ϕ⊥0 ) · ϕ0) = sign det(ϕ⊥0 )

we have

µµ̄((ϕ0, ϕ
⊥
0 )) = (ϕ0, sign det(ϕ⊥0 ) · sign det(ϕ⊥0 ) · ϕ⊥0 ) = (ϕ0, ϕ

⊥
0 ).

12. Remark. The above isomorphism can be formulated also in the following
way.

µ : GL+(V0)× Z2 → D(ω),
where Z2 denotes the multiplicative group {1,−1}, and µ is defined by the formula

µ(ϕ0, ε) = (ϕ0, ε · λ−1
0 ((ϕt

0)
−1)).

We can see that the Lie group D(ω) has two connected components, and the
connected component of the unit element is isomorphic with GL+(3,R).
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We have shown that ρD(ω) = GL+(V0). This enables us to introduce the short
exact sequence

0 → D0(ω) → D(ω)
ρD→→ GL+(V0) → 0,

where ρD = ρ|D(ω). From our previous considerations we can easily get D0(ω) =
{(id, id), (id,−id)}. Moreover, we obtain easily the following lemma.

13. Lemma. The short sequence

0 → O0(ω) → O(ω)
ρ→→ GL+(V0) → 0.

is exact.

We now introduce another subgroup K(ω) ⊂ O(ω), namely

K(ω) = {ϕ ∈ O(ω);ϕ0 = id, ϕ1 = id}.

We recall that ϕ0 = ϕ|V0 and ϕ1 is the automorphism of V1 induced by ϕ. It is
again easy to see that K(ω) is a closed subgroup of O(ω), and consequently is a
Lie group.

14. Lemma. K(ω) is a normal subgroup of O(ω).

Proof. Let ϕ ∈ K(ω) and ψ ∈ O(ω). We get

(ψϕψ−1)0 = ψ0ϕ0ψ
−1
0 = ψ0ψ

−1
0 = id,

(ψϕψ−1)1 = ψ1ϕ1ψ
−1
1 = ψ1ψ

−1
1 = id,

which finishes the proof.

We can easily see that there is

D(ω) ∩K(ω) = {id}.

Let now ϕ ∈ O(ω) be an arbitrary element, and let us define ϕD ∈ D(ω) by the
formula

ϕD = (ϕ0, sign detϕ1 · λ−1
0 ((ϕt

0)
−1))).

Our next aim is to prove that ϕϕ−1
D ∈ K(ω). Obviously, we have

ϕ−1
D = (ϕ−1

0 , sign detϕ1 · λ−1
0 (ϕt

0)).

For v0 ∈ V0 we have
ϕϕ−1

D v0 = ϕϕ−1
0 v0 = v0.

Before we continue with our considerations, we shall present the following com-
mutative diagram,

GL+(V ⊥
0 ) λ0−−−−→ GL+(Λ2V ⊥

0 )yπ

yΛ2π

GL+(V1)
λ̃0−−−−→ GL+(Λ2V1)
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where the isomorphisms π and Λ2π are defined in the obvious way using the iso-
morphism p|V ⊥

0 : V ⊥
0 → V1. From this commutative diagram we get the relation

λ−1
0 = π−1λ̃−1

0 (Λ2π).

Further equality, which we shall need at the end of the following computation,
follows from the formula ϕ̃t

0 = (Λ2π)ϕt
0. Applying λ̃−1

0 to this equality, we get

λ̃−1
0 (ϕ̃t

0) = sign det(ϕ1) · ϕ−1
1 .

Let now ṽ ∈ V1 be arbitrary, and let v ∈ V ⊥
0 be such that pv = ṽ. We have

ϕ1(ϕD)−1
1 ṽ = ϕ1p(sign detϕ1 · (λ−1

0 (ϕt
0))v) = sign detϕ1 · ϕ1p(λ−1

0 (ϕt
0))v =

= sign detϕ1 · ϕ1p(π−1λ̃−1
0 (Λ2π)(ϕt

0))v = sign detϕ1 · ϕ1p(π−1λ̃−1
0 (ϕ̃t

0))v =

= sign detϕ1 · ϕ1(λ̃−1
0 (ϕt

0))ṽ = sign detϕ1 · ϕ1(sign detϕ1 · ϕ−1
1 )ṽ = ṽ.

We have thus shown that ϕϕ−1
D ∈ K(ω), which proves the following lemma.

15. Lemma. Every element ϕ ∈ O(ω) can be uniquely expressed in the form

ϕ = δζ where δ ∈ D(ω) and ζ ∈ K(ω).

Using the above lemma we can define a homomorphism r : O(ω) → D(ω) in the
following way. Let ϕ ∈ O(ω) be an element, and let ϕ = δζ be its decomposition
with δ ∈ D(ω) and ζ ∈ K(ω). We define

r(ϕ) = δ.

Because δ1ζ1δ2ζ2 = δ1δ2(δ−1
2 ζ1δ2)ζ2, we can see that r is a homomorphism. Obvi-

ously, we have an exact sequence

0 → K(ω) → O(ω) r→→ D(ω) → 0.

We shall now investigate the subgroup K(ω). It is obvious that any element of
K(ω) has the form id+ τ , where τ : R6 → R6 is a homomorphism satisfying

τ(V0) = 0, τ(V ⊥
0 ) ⊂ V0.

It can be immediately seen that id+τ ∈ O(ω) if and only if for any w,w′, w′′ ∈ V ⊥
0

there is
ω(τw,w′, w′′) + ω(w, τw′, w′′) + ω(w,w′, τw′′) = 0.

One can easily verify that for any homomorphism τ with the above properties the
trilinear form β on V ⊥

0

β(w,w′, w′′) = ω(τw,w′, w′′) + ω(w, τw′, w′′) + ω(w,w′, τw′′)

is antisymmetric, i. e. it is a 3-form. Consequently, there exist c(τ) ∈ R such that

ω(τw,w′, w′′) + ω(w, τw′, w′′) + ω(w,w′, τw′′) = c(τ) · (α4 ∧ α5 ∧ α6)(w,w′, w′′)

for every w,w′, w′′ ∈ V ⊥
0 . Now, we can see that c(τ) is a linear form on the vector

space Hom(V ⊥
0 , V0), and id+τ ∈ O(ω) if and only if c(τ) = 0. We get the following

lemma.



384 JIŘÍ VANŽURA

16. Lemma. The group K(ω) is a closed subgroup of O(ω) which is isomorphic
(as a Lie group) with the commutative Lie group R8.

17. Remark. Lemma 18 shows that the Lie group O(ω) considered as a differ-
entiable manifold is diffeomorphic with the differentiable manifold D(ω) ×K(ω).
Using Lemma 11 and Lemma 16, we can see that O(ω) is diffeomorphic with
GL(3,R) × R8. This shows that O(ω)/GL(3,R) is diffeomorphic with R8, and
consequently contractible. Moreover, taking into account the equality following
Definition 8 we can immediately see that the group K(ω) operates simply transi-
tively on the set of all special complementary subspaces. Consequently, the group
O(ω) operates transitively on this set.

An easy consequence of the previous considerations is the following proposition.

18. Proposition. The Lie group O(ω) is a semi-direct product of D(ω) and K(ω).
The Lie group O0(ω) is a semi-direct product of D0(ω) and K(ω).

19. Definition. A basis v1, . . . , v6 is called adapted basis with respect to the
form ω if and only if the following conditions are satisfied:

ω(vi, vj , vk) = 0 if at least two indices are ≤ 3,

ω(v1, v4, v5) = 1, ω(v2, v4, v5) = 0, ω(v3, v4, v5) = 0,

ω(v1, v4, v6) = 0, ω(v2, v4, v6) = 1, ω(v3, v4, v6) = 0,

ω(v1, v5, v6) = 0, ω(v2, v5, v6) = 0, ω(v3, v5, v6) = 1,

ω(v4, v5, v6) = 0.

It is obvious that if v1, . . . , v6 is an adapted basis, then ϕv1, . . . , ϕv6 is an adapted
basis if and only if ϕ ∈ O(ω). Because e1, . . . , e6 is an adapted basis, and O(ω)
preserves V0, we get easily the following lemma.

20. Lemma. For every adapted basis v1, . . . , v6 there is v1, v2, v3 ∈ V0.

The following considerations will be used later on. Let us choose any isomor-
phism

h : V0 → Λ2V ⊥
0 .

Such an isomorphism exists because dimV0 = dim Λ2V ⊥
0 . Now, we can define a

bilinear form
b : V0 × V0 → R, b(v0, v′0) = ω(v0, hv′0).

It is easy to see that the bilinear form b is regular. On the other hand, we have
obviously

ω(v0, w, w′) = b(v0, h−1(w ∧ w′)) for v0 ∈ V0, w, w
′ ∈ V ⊥

0 .

21. Lemma. Let b : V0×V0 → R be a regular bilinear form, and let h : V0 → Λ2V ⊥
0

be an isomorphism. Then there exists a unique 3-form α on R6 with the following



ONE KIND OF MULTISYMPLECTIC STRUCTURES ON 6-MANIFOLDS 385

properties

α(v0, v′0, v) = 0 for v0, v
′
0 ∈ V0 and v is arbitrary,

α(v0, w, w′) = b(v0, h−1(w ∧ w′)) for v0 ∈ V0, w, w
′ ∈ V ⊥

0 ,

α(w,w′, w′′) = 0 for w,w′, w′′ ∈ V ⊥
0 .

Moreover, α is multisymplectic, and belongs to the isomorphism class of ω.

Proof. We prove first that α is multisymplectic. Let v ∈ R6 be a non-zero vector.
We can write v = v0 + w, where v0 ∈ V0 and w ∈ V ⊥

0 . Let us assume first that
w = 0. The regularity of b implies that there exists v′0 ∈ V0 such that b(v0, v′0) 6= 0.
Because every element of Λ2V ⊥

0 is decomposable, there are w,w′ ∈ V ⊥
0 such that

h−1(w ∧ w′) = v′0. We get then α(v0, w, w′) 6= 0. Next, let us assume that w 6= 0.
Obviously, we can find w′ ∈ V ⊥

0 such that h−1(w ∧ w′) 6= 0 and v′0 ∈ V0 such that
b(v′0, h

−1(w ∧ w′)) 6= 0. Then we have

α(v0 + w, v′0, w
′) = α(w, v′0, w

′) = −α(v′0, w, w
′) = −b(v′0, h−1(w ∧ w′)) 6= 0.

Now, we are going to prove that α belongs to the same isomorphism class as ω.
First we define the isomorphism

h0 : V0 → Λ2V ⊥
0

by the formulas

h0(e1) = e4 ∧ e5, h0(e2) = e4 ∧ e6, h0(e3) = e5 ∧ e6.

When we take in the role of b the canonical scalar product on R6, which we denote
b0, then applying our construction, we obtain the form ω. There is a unique
automorphism ψ0 : V0 → V0 such that b(v0, v′0) = b0(ψv0, v′0) for every v0, v′0 ∈ V0.
Then we get

b(v0, h−1(w ∧ w′)) = b0(ψ0v0, h
−1
0 (h0h

−1)(w ∧ w′)),

where h0h
−1 : Λ2V ⊥

0 → Λ2V ⊥
0 is an automorphism. If det(h0h

−1) > 0, then
according to Lemma 9 there exists an automorphism χ : V ⊥

0 → V ⊥
0 such that

h0h
−1 = Λ2χ. We have then

b(v0, h−1(w ∧ w′)) = b0(ψ0v0, h
−1
0 (χw ∧ χw′)).

If det(h0h
−1) < 0, then there exists an automorphism χ′ : V ⊥

0 → V ⊥
0 such that

−h0h
−1 = Λ2χ. We have then

b(v0, h−1(w ∧ w′)) = b0(−ψ0v0, h
−1
0 (χ′w ∧ χ′w′)).

This means that the automorphism ψ0 ⊕ χ resp. the automorphism (−ψ0) ⊕ χ′

transforms the form ω into the form α.
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3. Topological and geometrical properties

The first results presented in this section are formulated in the category of
topological spaces. But it is easy to verify that all of them remain valid in the
category of differentiable manifolds of class C∞. At the end we prove some results
which make sense only in the category of differentiable manifolds. In this section
we shall call adapted basis adapted frame, which is terminology more common in
geometry.

We shall consider now an orientable 6-dimensional real vector bundle ξ over a
base X endowed with a continuous form Ω ∈ Λ3ξ∗ with the following property: for
every x ∈ X there is an isomorphism

gx : R6 → ξx such that g∗xΩ = ω.

In other words, we assume that for each x ∈ X the restriction Ωx = Ω|ξx on the
fiber ξx is a 3-form of type ω. Similarly as in the algebraic part, we can define a
3-dimensional subbundle

ξ0 = {v ∈ ξ; ιvΩx is decomposable },
where Ωx denotes the restriction of Ω onto the fiber of ξ passing through v. We
denote ξ1 = ξ/ξ0, and we have again an isomorphism

γ : ξ0 → Λ2ξ∗1 .

First we prove the following lemma.

22. Lemma. The 3-form Ω defines defines on ξ a multisymplectic structure of
type ω.

Proof. Our aim is to prove the local triviality in the sense of Definition 1. Let
x0 ∈ X. First we choose an adapted basis v1, . . . , v6 in the fiber ξx0 . On a
neighborhood of x0 we choose local sections s′′1 , . . . , s

′′
6 of ξ such that

(i) s′′i (x0) = vi, i = 1, . . . , 6,
(ii) s′′1 , . . . , s

′′
6 are linearly independent,

(iii) s′′1 , s
′′
2 , s

′′
3 are sections of ξ0.

Now, we are going to prove that it is possible to substitute s′′4 , s
′′
5 , s

′′
6 by local

sections s′4, s
′
5, s

′
6 (and simultaneously we set s′1 = s′′1 , s′2 = s′′2 , and s′3 = s′′3) in

such a way that s′1, . . . , s
′
6 satisfy the conditions of type (i)-(iii), and moreover

ω(s′4, s
′
5, s

′
6) = 0.

We denote η the vector subbundle spanned by the sections s′′4 , s
′′
5 , s

′′
6 , and by

Hom(η, ξ0) the vector bundle of homomorphisms. Taking a section τ of this bundle,
we set

s′4 = s′′4 + τs′′4 , s′5 = s′′5 + τs′′5 , s′6 = s′′6 + τs′′6 .

The conditions of type (i)-(iii) are satisfied, and the remaining condition is satisfied
if and only if

ω(τs′′4 , s
′′
5 , s

′′
6) + ω(s′′4 , τs

′′
5 , s

′′
6) + ω(s′′4 , s

′′
5 , τs

′′
6) = −ω(s′′1 , s

′′
2 , s

′′
3).
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Because the homomorphism Hom(η, ξ0) → ε of the vector bundle Hom(η, ξ0) into
the trivial line bundle ε defined for t ∈ Hom(η, ξ0)x by the formula

t 7→ ω(ts′′4(x), s′′5(x), s′′6(x)) + ω(s′′4(x), ts′′5(x), s′′6(x)) + ω(s′′4(x), s′′5(x), ts′′6(x))

is obviously surjective for x = x0, it is surjective in a neighborhood of x0. Con-
sequently, we can see that a local section τ satisfying the above condition exists.
Summarizing, we have got sections s′1, . . . , s

′
6 such that

(a) s′1, . . . , s
′
6 are linearly independent,

(b) s′1, s
′
2, s

′
3 are sections of ξ0,

(c) ω(s′4, s
′
5, s

′
6) = 0,

with all these conditions being satisfied on a neighborhood of x0. Finally, we set
s4 = s′4, s5 = s′5, and s6 = s′6, and we define

s1 = γ−1(s′∗4 ∧ s′∗5 ), s2 = γ−1(s′∗4 ∧ s′∗6 ), s3 = γ−1(s′∗5 ∧ s′∗6 ),

where s′∗1 , . . . , s
′∗
6 are sections dual to the sections s′1, . . . , s

′
6. Now, it is obvious

that for every x from a neighborhood of x0 the basis s1(x), . . . , s6(x) is an adapted
basis in ξx. From this the lemma follows easily.

Because the vector bundle Λ2ξ∗1 is orientable (we recall that for an n-dimensional
vector bundle ζ there is w1(Λ2ζ) = (n − 1)w1(ζ)), the vector bundle ξ0 is also
orientable. We choose a complementary subbundle η ⊂ ξ to ξ0, i. e. we have
ξ = ξ0 ⊕ η. It is obvious that η is also orientable. As a consequence of this we get

η ∼= Λ2η∗.

Again, similarly as in the algebraic part, we get an isomorphism

γη : ξ0 → Λ2η∗.

Now, we can prove the following proposition.

23. Proposition. On an orientable 6-dimensional vector bundle ξ over a base
X there exists a multisymplectic structure of type ω if and only if there exists an
orientable 3-dimensional vector bundle η over X such that

ξ ∼= η ⊕ η.

Proof. We have already seen that the condition is necessary. It remains to prove
that it is also sufficient. Thus, let us assume that ξ = η ⊕ η. The following
considerations are in fact a bundlification of Lemma 21. We choose arbitrary
regular bilinear form B on η, e. g. a riemannian metric. Further, we choose an
isomorphism H : η → Λ2η. We define a 3-form Ω ∈ Λ2ξ∗ in the following way. For
any x ∈ X we set

Ωx((v1, 0), (v2, 0), (v3, v4)) = 0

Ωx((v1, 0), (0, v2), (0, v3)) = B(v1,H−1(v2 ∧ v3))
Ωx((0, v1), (0, v2), (0, v3)) = 0
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for every v1, v2, v3, v4 ∈ ηx. It is easy to see that Ω is continuous and of type ω in
every fiber of ξ. Consequently, by virtue of Lemma 22, it defines a multisymplectic
structure on ξ. This finishes the proof.

Let us recall that a tangent structure on a 6-dimensional real vector bundle ξ is
a continuous tensor field F of type (1, 1) on ξ, i. e. an endomorphism

F : ξ → ξ such that F 2 = 0 and kerF = imF.

It is obvious that if there is on ξ a tangent structure F , then we get a 3-dimensional
subbundle ξ0 = kerF , and for any complementary subbbundle η we have the
isomorphism F |η : η → ξ0. This shows that the bundle ξ is a direct sum of two
isomorphic subbundles. If the vector bundle ξ and the subbundle ξ0 are orientable,
then obviously ξ carries a multisymplectic structure of type ω. Conversely, if ξ is
endowed with a multisymplectic structure of type ω, then ξ ∼= η ⊕ η. On η ⊕ η we
have a tangent structure defined by the formula

Fx(v1, v2) = (v2, 0).

Then we get a tangent structure also on the isomorphic bundle ξ. We have thus
proved the following corollary.

24. Corollary. On an orientable 6-dimensional vector bundle ξ over a base X
there exists a multisymplectic structure of type ω if and only if there exists a
tangent structure F such that the subbundle kerF is orientable.

Considering the principal GL(6,R)-bundle Fr(ξ) consisting of all frames of the
vector bundle ξ, we can state the following lemma.

25. Lemma. On an orientable 6-dimensional vector bundle ξ over a base X there
exists a multisymplectic structure of type ω if and only if the principal GL(6,R)-
bundle Fr(ξ) can be reduced to the subgroup O(ω) ⊂ GL(6,R).

Proof. If there is on ξ a multisymplectic structure Ω of type ω, the corresponding
reduction to the subgroup O(ω) consists of all adapted frames. Conversely, if there
exists a reduction of Fr(ξ) to the subgroup O(ω), we use any frame from this
reduction, and define a multisymplectic form Ω of type ω on ξ using the formulas
defining an adapted frame.

We now pass completely to the category of differentiable manifolds. Let M be a
6-dimensional differentiable manifold, and let Ω be a diffrentiable 3-form on M , or
in another words on the vector bundle ξ = TM , defining there a multisymplectic
structure of type ω. Let us recall that we do not suppose that the 3-form Ω is closed.
We have just seen that with this multisymplectic structure there is associated a
G-structure, where G = O(ω). We shall call a multisymplectic structure Ω of
type ω integrable if and only if the associated O(ω)-structure is integrable. The
subbbundle ξ0 ⊂ ξ = TM is in this situation a distribution on M , and we shall
denote it by D0.
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26. Proposition. A multisymplectic structure Ω of type ω is integrable if and
only if the following two conditions are satisfied:

(i) the distribution D0 is integrable,
(ii) the 3-form Ω is closed, i. e. dΩ = 0.

Proof. Let Ω be integrable. This means that in a neighborhood of every point
x ∈ M we can find coordinates (x1, . . . , x6) such that on this neighborhood we
have

Ω = dx1 ∧ dx4 ∧ dx5 + dx2 ∧ dx4 ∧ dx6 + dx3 ∧ dx5 ∧ dx6.

It is obvious that the distribution D0 is spanned by the vector fields ∂/∂x1,∂/∂x2,
∂/∂x3, and consequently it is integrable. Moreover, obviously dΩ = 0. Conversely,
let us assume that the conditions (i) and (ii) are satisfied. Because the distribution
D0 is integrable, on a neighborhood of any point x ∈ M , we can find functions
x4, x5, x6 such that the distribution D0 is described by the equations

dx4 = 0, dx5 = 0, dx6 = 0.

Similarly as in the previous section, we can introduce a subbundle AD0 ⊂ Λ2T ∗(M).
We can immediately see that the three 2-forms

dx4 ∧ dx5, dx4 ∧ dx5, dx5 ∧ dx6

are local sections of AD0 . Now, we define vector fields X1, X2, X3 on the neighbor-
hood under consideration and belonging to the distribution D0 by the formulas

X1 = β−1(dx4 ∧ dx5), X2 = β−1(dx4 ∧ dx6), X3 = β−1(dx5 ∧ dx6).

In other words, we have

ιX1ω = dx4 ∧ dx5, ιX2ω = dx4 ∧ dx5, ιX3ω = dx5 ∧ dx6.

Because dΩ = 0 we have dΩ(X,X ′, Y, Z) = 0 for any vector fields X,X ′, Y, Z
defined around the point x. Let us assume that the vector fields X and X ′ belong
to the distribution D0. Then we obtain

0 = 4dΩ(X,X ′, Y, Z) =

= XΩ(X ′, Y, Z)−X ′Ω(X,Y, Z) + Y Ω(X,X ′, Z)− ZΩ(X,X ′, Y )
−Ω([X,X ′], Y, Z) + Ω([X,Y ], X ′, Z)− Ω([X,Z], X ′, Y )
−Ω([X ′, Y ], X, Z) + Ω([X ′, Z], X, Y )− Ω([Y, Z], X,X ′) =

= XΩ(X ′, Y, Z)−X ′Ω(X,Y, Z)
−Ω([X,X ′], Y, Z) + Ω([X,Y ], X ′, Z)− Ω([X,Z], X ′, Y )

−Ω([X ′, Y ], X, Z) + Ω([X ′, Z], X, Y ).
Hence we get

Ω([X,X ′], Y, Z) = XΩ(X ′, Y, Z)−X ′Ω(X,Y, Z)

+Ω([X,Y ], X ′, Z)− Ω([X,Z], X ′, Y )− Ω([X ′, Y ], X, Z) + Ω([X ′, Z], X, Y ) =
= X((ιX′Ω)(Y, Z))−X ′((ιXΩ)(Y, Z))
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−(ιX′Ω)([X,Y ], Z) + (ιX′Ω)([X,Z], Y ) + (ιXΩ)([X ′, Y ], Z)− (ιXΩ)([X ′, Z], Y ).
Setting now X = X1 and X ′ = X2 we get

Ω([X1, X2], Y, Z) = X1((dx4 ∧ dx6)(Y, Z))−X2((dx4 ∧ dx5)(Y, Z))

−(dx4 ∧ dx6)([X1, Y ], Z) + (dx4 ∧ dx6)([X1, Z], Y )
+(dx4 ∧ dx5)([X2, Y ], Z)− (dx4 ∧ dx5)([X2, Z], Y ) =

= X1((dx4 ∧ dx6)(Y, Z))− Y ((dx4 ∧ dx6)(X1, Z)) + Z((dx4 ∧ dx6)(X1, Y ))
−(dx4 ∧ dx6)([X1, Y ], Z) + (dx4 ∧ dx6)([X1, Z], Y )− (dx4 ∧ dx6)([Y, Z], X1)
−X2((dx4 ∧ dx5)(Y,Z)) + Y ((dx4 ∧ dx5)(X2, Z))− Z((dx4 ∧ dx5)(X2, Y ))

+(dx4 ∧ dx5)([X2, Y ], Z)− (dx4 ∧ dx5)([X2, Z], Y ) + (dx4 ∧ dx5)([Y, Z], X2) =
= (d(dx4 ∧ dx6))(X1, Y, Z)− (d(dx4 ∧ dx5))(X2, Y, Z) = 0.

The 3-form Ω is multisymplectic, and this implies that [X1, X2] = 0. Along the
same lines we can prove that [X1, X3] = 0 and [X2, X3] = 0. Now, it is easy to see
that we can find functions x1, x2, x3 defined in a neighborhood of the point x such
that together with the functions x4, x5, x6 they form coordinates, and

X1 =
∂

∂x1
, X2 =

∂

∂x2
, X3 =

∂

∂x3
.

See e. g. [S]. Consequently, with respect to the coordinates (x1, . . . , x6), we have

Ω = dx1 ∧ dx4 ∧ dx5 + dx2 ∧ dx4 ∧ dx6 + dx3 ∧ dx5 ∧ dx6.

This finishes the proof.

The aim of the next example is to show that the assumption concerning the
integrability of D0 is is independent of the assumption dΩ = 0. We present an
example of a multisymplectic 3-form of type ω which is closed but the distribution
D0 of which is not integrable.

27. Example. Let us consider the open subset U = {x ∈ R6;x3 6= x4}. We
define on U the following six 1-forms

A1 = ex1x3+x4 dx1 + x3 dx3 + dx6

A2 = ex1x3+x4 dx1 + x4 dx3 +dx5

A3 = dx2

A4 = x1 dx3 + dx4

A5 = dx5

A6 = dx6

It is easy to see that at each point x ∈ U the 1-forms A1x, . . . , A6x are linearly
independent. Let us set

Ω = A1 ∧A4 ∧A5 +A2 ∧A4 ∧A6 +A3 ∧A5 ∧A6.

We have
dA4 = dx1 ∧ dx3, dA5 = 0, dA6 = 0,
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which shows that the distribution D0 determined by the equations dA4 = 0, dA5 =
0, and dA6 = 0 is not integrable. Moreover, we have

dΩ = (−x1e
x1x3+x4dx1 ∧ dx3 − ex1x3+x4dx1 ∧ dx4) ∧ (x1dx3 + dx4) ∧ dx5

−(ex1x3+x4dx1 + x3dx3 + dx6) ∧ dx1 ∧ dx3 ∧ dx5

+(−x1e
x1x3+x4dx1 ∧ dx3 − ex1x3+x4dx1 ∧ dx4 − dx3 ∧ dx4) ∧ (x1dx3 + dx4) ∧ dx6

−(ex1x3+x4dx1 + x4dx3 + dx5) ∧ dx1 ∧ dx3 ∧ dx6 = 0.

28. Remark. Topological conditions for the existence of a multisymplectic 3-
form of type ω (or equivalently of a tangent structure) on a 6-dimensional vector
bundle will be the subject of a forthcoming paper.
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ment Math. 18-19 (1972-73), 225-243.
[2] Cantrijn, F.; Ibort, A.; de León, M. On the geometry of multisymplectic manifolds, preprint,

1998

[3] Hitchin, N., The geometry of three-forms in six and seven dimensions, preprint arXiv.math.
DG/0010054 5 Oct 2000

[4] Spivak, M., A Comprehensive Introduction to Differential Geometry, vol. 1, Publish or
Perish, Berkeley, 1979, Chap. 5, Th. 14, p. 219.

Mathematical Institute, Academy of sciences of the Czech Republic, Žižkova 22, 616
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