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The aim of this lecture is to give a brief outline of some issues that arise in studying
the geometry of bifurcation problems, and to indicate various links with other topics in
differential geometry and topology.

By a bifurcation problem we mean a problem of finding the solutions x € X to an
equation
F,(z)=F(z,p)=0€Y

where p is a multi-dimensional parameter. Here F': X x K — Y is a map which is as
smooth as necessary to enable appropriate tools of calculus to be used, and for simplicity
the spaces X,Y and K are taken here to be finite-dimensional linear spaces.

Viewing the problem geometrically, we consider the solution locus

M=F"10)c X x K.

If pg : M — K denotes projection of M to the parameter space K then we can rephrase
the problem as follows:

Bifurcation problem. Study the changes in the geometrical structure of the set p}l(,u)
as p varies in K.

See Figure 1 for a schematic representation.
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Figure 1: Schematic representation of solution locus M.
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The set of points u € K at which changes in the solution set p;{l (1) do actually occur is
called the bifurcation set. Most points of K do not belong to the bifurcation set.

Of course, there is analogous problem posed using the projection px into the variable
space X; here we have a possible solution z and want to know for which values of the
parameter g this solution can be attained, and how the answer varies with x.

Control problem. Study the changes in the geometrical structure of the set p}l (z) as
x varies in X.

Let us return to the bifurcation problem, and focus on the case when X =Y = R"™ and
K = RF with n,k > 1, as would arise for example if we were looking for equilibrium
points for the dynamical system generated by a system of ordinary differential equations
i = F(zx,p),r € R" for varying 4 € R¥. Here, under generic assumptions on F' (namely
that its Jacobian matrix have maximal rank on points of M) the solution locus is a smooth
k-dimensional manifold, and so the set p;{1 (1) is usually a discrete set of points, hence a
finite set if we restrict to some compact region of R™. Examples of typical local geometry
for the projection px : M — RF are illustrated in Figure 2 for the cases k = 1 and
k = 2. The integers attached to regions in K = R* denote the number of solutions z
corresponding to p in those regions.
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Figure 2: Generic local bifurcation geometry for £ = 1, 2.

Results from singularity theory show that for £k = 1, 2 these are in fact the only possibilities
for the local structure of the bifurcation set in generic situations, that is without further
constraints. For £ = 1 the bifurcation points are fold points py where two solutions are
born or annihilated at o with |2 — x| varying locally as ++/p — pg or /g — p; for k = 2
there are curves of folds with isolated cusp points where three solutions coalesce to one. In
general (and disregarding any behaviour in R™ coming from infinity) the bifurcation set
is the discriminant (the set of singular values) of the projection px : M — RF.

Notice that in Figure 2b if we take a symmetrically-placed ‘vertical’ slice through
M we obtain a ‘pitchfork’ configuration which is very commonly observed in bifurcation
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theory. A very simple example of a bifurcation problem yielding a pitchfork is obtained
by takingn =k =1 and F: R x R — R given by

F(z,p) = 2° — pa.

See Figure 3.
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Figure 3: A pitchfork bifurcation.

Simple as it may be, this example is not typical (generic) because an arbitrarily small
perturbation of the problem such as adding a constant term destroys the pitchfork and
gives a solution locus with one fold and another branch with no bifurcation at all: see

Figure 4.

Figure 4: Perturbed pitchfork.

The key to understanding why the pitchfork is commonly observed although non-generic
is to recognise the important role played here by symmetry. In the example given we see
that F'(—z,pu) = —F(z, 1), and if we were to insist on keeping this reflection property then
we could not get rid of the pitchfork by small perturbations. Thus in discussing typical or
generic bifurcation phenomena it is crucial to take account of any symmetries that might
be essential to the problem.

We return to discussing symmetries later, but conclude this section by stating some
more results about generic bifurcations, this time for £ = 3. It is not feasible to draw
the solution locus in a space of dimension 4 or more, but instead we can sketch the local
models for the bifurcation set itself in R3. There is one more local form corresponding
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to coalescence and annihilation or creation of four solutions: this is the swallowtail as
illustrated in Figure 5.
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Figure 5: Swallowtail bifurcation set.

However, if the problems that we consider are restricted to variational problems, that is
problems for which Fj, = grad f, for some f, : R® — R, then there are two further
examples called the hyperbolic umbilic and the elliptic umbilic: see Figure 6.

Figure 6: Hyperbolic and elliptic umbilic bifurcation sets.

These names, relating to focal sets near umbilic points of surfaces in R3, were coined
by René Thom whose study of the generic bifurcation structures for equilibrium states in
variational problems he called (elementary) catastrophe theory [RT], [PS]. Purported appli-
cations to biology, linguistics and many other fields were the subject of much controversy
in the 1970s. The mathematics itself, fortified and extended by Mather [Ma], Golubitsky
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et al. [GS] and numerous others since the ground-breaking work of Thom, underlies almost
the whole of bifurcation theory as it has since developed.

When n = 1 the solution locus M is generically a smooth k-manifold in R**!. In this
case the bifurcation set can be interpreted as the apparent outline (apparent contour) of M
when viewed along the direction of the z-axis (compare Figure 2): bifurcations correspond
to places where the lines parallel to the z-axis do not pierce the solution locus transversely,
but are tangent to it. Fixing k = 2, we now look more closely at the structure of apparent
outlines of surfaces in R3.

Apparent Outlines

Imagine a smooth 2-manifold (surface) S in R3, viewed in a particular direction. Think
of it as made of semi-transparent material so that parts of it do not obscure other parts.
We ask the natural question: What does the apparent outline look like generically?

To answer this we must define generic, which requires us to specify what are the
allowable perturbations. In accordance with common practical situations, we take S to be
fixed and permit only the direction of view to be varied (which differs from our discussion
above, where the solution locus M could be varied but the view direction was fixed). It
turns out that fold curves with isolated cusp points again give the generic description. But
now imagine that we vary the view by rigidly rotating the surface, for example. Clearly
the cusps will move and perhaps undergo changes. What are the local transitions in the
outline that we can expect to see?

The generic 1-parameter transitions that occur in apparent outlines have been classi-
fied (see [A1],[B2]) and are as illustrated in Figure 7.
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Figure 7: Generic 1-parameter transitions in apparent outlines.

The beaks and lips are fairly easy to visualise in terms of creating or removing two folds in
a smooth sheet; the swallowtail transition can be seen by rotating a torus as in Figure 8.
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Figure 8: Swallowtails from a torus.

Finally, we can consider all possible views of a given surface from all directions: this
yields a 2-parameter family of apparent outlines. What transitions can we now expect
to see generically? This has also been answered using techniques from singularity theory
by Bruce and Giblin [BG] to whom we refer for the pictures. It illustrates one way in
which Thom’s ideas on measuring degeneracy of a structure by counting the number of
parameters needed to see that structure within a generic family have been fruitful both
for mathematics and for its potential applications to fields such as computer vision [B1].

Symmetries

We now take up again the question of symmetries in a bifurcation problem, briefly touched
upon with the pitchfork. Symmetries lead to persistence of degeneracies but at the same
time they provide some vital scaffolding on which to pin the full geometry of the problem.

In this setting we suppose K = R, as the most common symmetric bifurcation prob-
lems are those in which the key symmetric features of the problem are preserved as one
parameter is varied, while other parameters may have the effect of breaking the symmetry.
We need to introduce some terminology about group actions.

Let I" be a compact Lie group acting by linear transformations on R™. If F(z, u) =0
is a bifurcation problem with the property that

F(yz,p) = vF(z, p)

for every v € I' and all z € R™ then we say that I' acts as a group of symmetries of F' or,
more formally, that F' is equivariant under the action of I'. For example, with the pitchfork
we have I' = Z, acting on R by z — £z and we see that 23 — yz (being an odd function
of z) is equivariant with respect to this action.

The orbit of z is Tz = {yx : v € T'}. By the symmetry, anything that happens at and
near z happens likewise at and near every point of the orbit of . In particular, if z is a
solution to F(x, ) = 0 then so is every point of the orbit of . Another way of saying this
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is that the solution locus M is invariant under T', as for example the pitchfork solution
locus is invariant under reflection x +— —zx.

Not every element of I' necessarily moves every x; indeed the origin 0 € R"” is fixed
under every element of I'. More generally, we denote by I',, the subgroup of I' consisting
of those elements that fix a given x, that is

I, ={yerl:yz=ux},

called the isotropy subgroup (sometimes the stabilizer) of z. If z is a solution to F'(z, ) =0
we think of I'; as the group of symmetries of the solution x.

An arbitrary subgroup H of I need not necessarily be the isotropy subgroup of any
particular . Nevertheless we can still study the set of points that are fixed under the
action of H: this is a linear subspace of R™ which we denote by Fix(H). By definition
we always have z € Fix(I';) although I'; may fix more elements than just x and its scalar

multiples. The importance of the fixed-point subspaces results from the observation that
if x € Fix(H) and v € H then

VEu(z) = Fu(ye) = Fu(z)
and so F),(x) is fixed by . Hence

Proposition 1. For every subgroup H of I' we have

F,(Fix(H)) C Fix(H).

This means that for every subgroup H of I' we can look at the restriction of the problem
to the linear subspace Fix(H) C R™, which (when Fix(H) is not zero or the whole of
R™) gives us a useful smaller-dimensional problem to study: solutions to this problem will
certainly be solutions to the original problem in R™. This is especially useful when Fix(H)
has dimension 1 as we now see.

Proposition 2. Suppose dimFix(H) = 1 with Fix(H) generated by v € R™. Assuming
that F(0,0) = 0 and that the z-derivative of F in the direction of v passes through zero

with nonzero speed as u passes through 0 (that is gf—ai(tv, w) # 0 at (0,0)) then there is a

branch of solutions to F(x,u) = 0 in the direction of v, and therefore having symmetry at
least H.

This result is called the Fquivariant Branching Lemma, essentially first stated formally
by Vanderbauwhede [V] and Cicogna [Ci]. It illustrates the phenomenon of spontaneous
symmetry-breaking: the problem as a whole retains full I'-symmetry but as the parameter
14 is varied one or more solutions with less symmetry are created.

The theory of spontaneous symmetry-breaking bifurcations has a long history in the-
oretical physics (see Michel [Mi]), and is now a large topic involving much technical inves-
tigation of specific group actions in R™. The main current approaches and many examples
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are studied in the two volumes by Golubitsky, Schaeffer and Stewart [GS] with other
important aspects discussed by Field [F].

Forced symmetry breaking

We turn finally to some remarks on forced symmetry-breaking. Again we consider F(x, u) =
0 but now take u € R¥ and suppose the problem itself has less symmetry when p # 0 than
it does when p = 0. Specifically, we suppose that the map Fj is equivariant with respect to
the action of a continuous group of symmetries, that is a Lie group I' with dimT" > 1 such
as a rotation group SO(2) or SO(3), but for u # 0 this symmetry is no longer present.

As before, if x is a solution to Fy(z) = 0 then so is the entire orbit 'z which in this
case may be a compact manifold N of positive dimension. We ask: what happens to this
manifold N of solutions as y moves away from 0 € R¥? See Figure 9.

e

Figure 9: Bifurcation from a manifold.

The first step is to invoke the important principle that nondegeneracies imply persistence
of local geometric structure. In this case the appropriate nondegeneracy assumption is that
on N the derivative of Fy (necessarily zero in directions along N) should be non-singular in
the directions normalto N. An application of the implicit function theorem over the whole
of N then shows that for |u| sufficiently small there persists a manifold N, diffeomorphic
to N and close to N on which the normal component of F), vanishes. This leaves only the
component tangent to N,: it reduces the problem to the search for zeros of a vector field
on N, itself (which we can think of as a copy of N) that vanishes identically when p = 0.

For ease of description, suppose the manifold N has trivial tangent bundle so we can
regard the vector field on N simply as a map F : N — R™ where m = dim N. (The more
general situation is easy to reconstruct from what follows.) The vanishing when p = 0
implies that F' can be written in the form

F(z,p) = A(z)p+ O(|pf?)

where A(z) is an m X k matrix varying smoothly with z. The strategy now is as follows.

First we solve the linear (in p) problem A(xz)u = 0. Next we use methods from
singularity theory to show that under generic assumptions the solution configuration is
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structurally stable, i.e. persists under small perturbations. Finally we deduce from this
that if the generic assumptions hold we can disregard the O(|u|?) terms, at least for |u|
sufficiently small.

For the linear problem we first note that since A(z)ap = aA(z)p for @ € R the
solution locus for this problem is invariant under multiplication of u by scalars. Thus any
interesting features in the parameter space R* (such as the bifurcation set) have a cone
structure with vertex at the origin.

Now to say that (z, 1) € N x RF solves the linear problem is just to say that u € ker A.
Therefore we have to study the following natural question:

Question. What is the generic behaviour of the kernels (whose dimensions of course may
vary) of an m-parameter family of m x k matrices?

The answers naturally depend on the choices of m and k.

When m = 1 the kernel of the m x 1 matrix (row vector) A(z) is the (k—1)-dimensional
hyperplane orthogonal to the column vector a(z) = A(z)T and passing through the origin;
the bifurcation set in R¥ for the linear problem is the envelope of these hyperplanes. When
k = 2 this envelope reduces to a number of lines through the origin (see results of Hale et al.
[H], [HT] in this context). For k = 3 it is generically a cone on a locus consisting of smooth
curves with isolated cusp points, with analogous results with higher order singularities
when k > 3 : see [C1]. For the full (nonlinear) problem the bifurcation set near 0 € RF is
a curvilinear version of the above, that is it can be obtained from the linear version by a
C? diffeomorphism of R of the form u > pu+ O(|p|?).

Some different and interesting phenomena occur when m = 2. For k£ = 2 the matrix
A(z) is 2 x 2, and standard results show that a generic family of such A(z) with z € N
(dim N = 2) has rank 2 (hence zero kernel) everywhere except perhaps along a 1-manifold
N; C N where it has rank 1. Hence the linear problem has no solutions for ¢ Ny, and
for x € N1 we are essentially back at the n = 1 case discussed above. Next we turn to the
case k = 3, so the matrix A(x) is 2 x 3.

Proposition 3. Generically for most points © € N we have dimker A(z) = 1. However,
there may be a set of isolated points {x;} € N (a finite set if N is compact) at which
dimker A(z;) = 2.

If dimker A = 1 we can regard ker A as an element of the projective plane RP?, and so
there is a (smooth) map

k:N\W — RP?: k(x) — ker A(z)
where W = [ J,{z;}. Therefore we can state the following result about the bifurcation set:

Proposition 4. The bifurcation set for solutions away from the ‘hot spots’ {x;} is the
cone on the double cover (in S?) of the discriminant of the map .



16 David Chillingworth: Bifurcations, singularities and symmetries

The generic structure of such a discriminant is well understood: it is (again) locally every-
were a smooth curve with isolated cusp points and is stucturally stable. Hence for small
|| the bifurcation set for the nonlinear problem is a curvilinear version of this cone.

This still leaves the question of what happens near the hot spots. How do the 1-
dimensional kernels of A(z) approach the 2-dimensional kernels of A(z;) as z — z; 7
(This seems an obvious but neglected geometrical problem arising from elementary linear
algebra.) Also, what effect do the O(|u|?) terms have on the resulting bifurcation structure?

The answers are not easy to give briefly in words. We take the unit sphere S in R3
and look at the great circle S; = S Nker A(x;). There are two main types of behaviour,
depending on the definiteness or otherwise of a certain quadratic form ¢; associated with
the matrix A(x) near z;. If ¢; is definite then a neighbourhood M; of {x;} x S; in M
takes the form of an annulus projecting diffeomorphically to a neighbourhood U; of S; in
S, so there are in fact no bifurcations here. (The control problem captures the geometry:
a core curve of M; projects by px to the single point z;, as in Legendrian collapse of
wavefronts [A2].) In contrast, if ¢; is indefinite then M; takes the form of a neighbourhood
of a 1-complex consisting of the circle {z;} x S; with another 1-manifold attached to it
at four points (two symmetrically placed pairs). The projection to U; has four folds with
images tangent to S;, and so in this case bifurcations do occur.

This is just the linear problem. For the nonlinear problem we have to consider generic
perturbations of this scenario. Pictures for the ¢; definite case are in Figure 10. For
descriptions and pictures for the indefinite case see [C2], where details of the above and a
fuller discussion of bifurcation away from a manifold of solutions can be found.

Figure 10: Geometry for solutions close to a ‘hot spot’ in V.
Here Y. is the singular set for py, with v = pn(2).
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In many cases of perturbation from a group orbit some residual symmetry persists, in
which case the geometrical theory just described must be re-cast in the context of that
remaining symmetry. Work in this direction is in progress.
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