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Preface

This volume captures about three-fourths of the proceedings of the Ninth International
Conference on Domain Decomposition Methods, which was hosted by the University
of Bergen in the resort village of Ullensvang, Norway, June 3-8, 1996. Approximately
180 mathematicians, engineers, physical scientists, and computer scientists from 21
countries came to this annual gathering.

Since three parallel sessions were employed at the conference in order to
accommodate as many presenters as possible, attendees and non-attendees alike may
turn to this volume to keep up with the diversity of subject matter that the umbrella
“domain decomposition” inspires throughout the community. Its contributors are to
be commended for their efforts to write for a diverse audience while staying within
eight pages. Page quotas are essential to accommodate by far the largest title count
in the nine-volume history of the conference.

120

DD Proceedings Chapter Count

Bergen

100

80

60

Norfolk Beijing

20

Moscow

Houston

20

0

The interest of so many authors in meeting the editorial demands and page
limitations of this proceedings volume resoundingly resolves the annual and proper

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjgrstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org
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question of whether the common thread of domain decomposition is sufficient to
justify an annual conference. It may be observed that the percentage of contributions
advancing new theorems has gradually fallen from the earliest volumes, suggesting that
available algebraic and function-theoretic foundations have largely been uncovered.
(Perhaps there will be new graph-theoretic contributions, or infusions from other areas
of mathematics in the future. In addition, we can expect relaxation of hypotheses
to continue extending the theory to less ideal problems.) Meanwhile, the variety of
algorithms and the variety of problems to which they are applied continue to grow,
and the total number of contributions has been increasing dramatically. “Divide and
conquer” may be the most basic of algorithmic paradigms, but theoreticians and
practitioners alike are still seeking — and finding — incrementally more effective
forms, and value the interdisciplinary forum provided by this proceedings series.

Besides inspiring elegant theory, domain decomposition methodology satisfies
the architectural imperatives of high-performance computers better than methods
operating only on the finest scale of the discretization (with no hierarchy) and,
seemingly, better than methods operating simultaneously on all scales (with many
levels of hierarchy). These imperatives include: spatial data locality, temporal
data locality, reasonably small communication-to-computation ratios, and reasonably
infrequent process synchronization (measured by the number of useful floating-point
operations performed between synchronizations). Spatial data locality refers to the
proximity of the addresses of successively used elements, and temporal data locality
refers to the proximity in time of successive references to a given element. Spatial and
temporal locality are both enhanced when a large computation based on nearest-
neighbor updates is processed in contiguous blocks. On cache-based computers,
subdomain blocks may be tuned for workingset sizes that reside in cache. On message-
passing or cache-coherent nonuniform memory access (cc-NUMA) parallel computers,
the concentration of gridpoint-oriented computations — proportional to subdomain
volume — between external stencil edge-oriented communications — proportional to
subdomain surface area, combined with a synchronization frequency of at most once
per volume computation, gives domain decomposition excellent parallel scalability on
a per iteration basis, provided only that the number of points per subdomain is not
allowed to go below some problem-dependent and machine-dependent minimum in the
scaling. In view of these important architectural advantages for domain decomposition
methods, it is fortunate, indeed, that mathematicians studied the convergence behavior
aspects of the subject in advance of the commercial arrival of these architectures, and
showed how to endow domain decomposition iterative methods with some measure of
algorithmic scalability, as well.

Domain decomposition has proved to be an ideal paradigm not only for execution on
advanced architecture computers, but also for the development of reusable, portable
software. Since the most complex operation in a Schwarz-type domain decomposition
iterative method — the application of the preconditioner — is logically equivalent
in each subdomain to a conventional preconditioner applied to the global domain,
software developed for the global problem can readily be adapted to the local problem,
instantly presenting lots of “legacy” scientific code for to be harvested for parallel
implementations. Furthermore, since the only sharing of data between subdomains
in domain decomposition codes occurs in two archetypal communication operations
— ghost point updates in overlapping zones between neighboring subdomains, and



PREFACE XV

global reduction operations, as in forming an inner product — domain decomposition
methods map readily onto optimized, standardized message-passing environments,
such as MPL.

Finally, it should be noted that domain decomposition is often a natural paradigm
for the modeling community. Physical systems are often decomposed into two or
more contiguous subdomains based on phenomenological considerations, such as
the importance or neglibility of viscosity or reactivity, or any other feature, and
the subdomains are discretized accordingly, as independent tasks. This physically-
based domain decomposition may be mirrored in the software engineering of the
corresponding code, and leads to threads of execution that operate on contiguous
subdomain blocks, which can either be further subdivided or aggregated to fit the
granularity of an available parallel computer, and have the correct topological and
mathematical characteristics for scalability.

Organizing the contents of an interdisciplinary proceedings is an interesting job,
and our decisions will inevitably surprise a few authors, though we hope without
causing offense. It is increasingly artificial to assign papers to one of the four categories
of theoretical foundations, algorithmic development, parallel implementation, and
applications, that are traditional for this proceedings series. Readers are encouraged
not to take the primary divisions very seriously, but to trace all the connections.

These proceedings will be of interest to mathematicians, computer scientists, and
applications modelers, so we project its contents onto relevant classification schemes
below.

American Mathematical Society (AMS) 1991 subject classifications include:

05C85 Graph algorihms

49J20 Optimal control

65C20 Numerical simulation, modeling

65D07 Spline approximation

65F10 Tterative methods for linear systems

65F15 Eigenproblems

65M55 Multigrid methods, domain decomposition for IVPs
65N30 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods
65NN35 Spectral, collocation and related methods

65IN55 Multigrid methods, domain decomposition for BVPs
65R20 Integral equations

65Y05 Parallel computation

68IN99 Mathematical software

Association for Computing Machinery (ACM) 1998 subject classifications include:
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D2 Programming environments, reusable libraries

E1 Distributed data structures

F2 Analysis and complexity of numerical algorithms

G1 Numerical linear algebra, optimization, differential equations
G4 Mathematical software, parallel implemenations, portability

J2 Applications in physical sciences and engineering

Applications for which domain decomposition methods have been specialized in this
proceedings include:

fluids Stokes, Euler, Navier-Stokes, two-phase flow, reacting flow
geophysics porous media, atmospheric transport
manufacturing processes extrusion, free surface phenomena
physics neutron diffusion, semiconductor device physics
structures thermoelasticity, nonlinear elasticity, modal analysis

wave propagation acoustics, electromagnetics

For the convenience of readers coming recently into the subject of domain
decomposition methods, a bibliography of previous proceedings is provided below,
along with some major recent review articles and related special interest volumes.
This list will inevitably be found embarrassingly incomplete. (No attempt has been
made to supplement this list with the larger and closely related literature of multigrid
and general iterative methods, except for the books by Hackbusch and Saad, which
have significant domain decomposition components.)

1. T. F. Chan and T. P. Mathew, Domain Decomposition Algorithms, Acta
Numerica, 1994, pp. 61-143.

2. T. F. Chan, R. Glowinski, J. Périaux and O. B. Widlund, eds., Proc.
Second Int. Symp. on Domain Decomposition Methods for Partial Differential
Equations (Los Angeles, 1988), STAM, Philadelphia, 1989.

3. T. F. Chan, R. Glowinski, J. Périaux, O. B. Widlund, eds., Proc. Third Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(Houston, 1989), STAM, Philadelphia, 1990.

4. C. Farhat and F.-X. Roux, Implicit Parallel Processing in Structural
Mechanics, Computational Mechanics Advances 2, 1994, pp. 1-124.

5. R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds., Proc.
First Int. Symp. on Domain Decomposition Methods for Partial Differential
Equations (Paris, 1987), SIAM, Philadelphia, 1988.

6. R. Glowinski, Yu. A. Kuznetsov, G. A. Meurant, J. Périaux and O. B.
Widlund, eds., Proc. Fourth Int. Symp. on Domain Decomposition Methods
for Partial Differential Equations (Moscow, 1990), STAM, Philadelphia, 1991.
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7. R. Glowinski, J. Périaux, Z.-C. Shi and O. B. Widlund, eds., Eighth
International Conference of Domain Decomposition Methods (Beijing, 1995),
Wiley, Strasbourg, 1997.

8. W. Hackbusch, Iterative Methods for Large Sparse Linear Systems, Springer,
Heidelberg, 1993.

9. D. E. Keyes, T. F. Chan, G. A. Meurant, J. S. Scroggs and R. G. Voigt, Proc.
Fifth Int. Conf. on Domain Decomposition Methods for Partial Differential
Equations (Norfolk, 1991), STAM, Philadelphia, 1992.

10. D. E. Keyes, Y. Saad and D. G. Truhlar, eds. Domain-based Parallelism
and Problem Decomposition Methods in Science and Engineering, SIAM,
Philadelphia, 1995.

11. D. E. Keyes and J. Xu, eds. Proc. Seventh Int. Conf. on Domain
Decomposition Methods for Partial Differential Equations (PennState, 1993),
MS, Providence, 1995.

12. P. Le Tallec, Domain Decomposition Methods in Computational Mechanics,
Computational Mechanics Advances 2, 1994, pp. 121-220.

13. A. Quarteroni, J. Périaux, Yu. A. Kuznetsov and O. B. Widlund, eds.,
Proc. Sizth Int. Conf. on Domain Decomposition Methods in Science and
Engineering (Como, 1992), AMS, Providence, 1994.

14. Y. Saad, Iterative Methods for Sparse Linear Systems PWS, Boston, 1996.

15. B. F. Smith, P. E. Bjgrstad and W. D. Gropp, Domain Decomposition:
Parallel Multilevel Algorithms for Elliptic Partial Differential Equations,
Cambridge Univ. Press, Cambridge, 1996.

16. J. Xu, [terative Methods by Space Decomposition and Subspace Correction,
SIAM Review 34, 1991, pp. 581-613.

We also mention the homepage for domain decomposition on the World Wide
Web, www.ddm.org, voluntarily maintained with professional skill by Tor FErling
Bjgrstad. This site features links to conference, bibliographic, and personal information
pertaining to domain decomposition, internationally. In particular, there the reader
will find a list with contact information to the authors of all 100 chapters of this book.

The technical direction of the Ninth International Conference on Domain Decom-
position Methods in Scientific and Engineering Computing was provided by a scien-
tific committee consisting of: Petter E. Bjgrstad, James H. Bramble, Tony F. Chan,
Peter J. Deuflhard, Roland Glowinski, David E. Keyes, Yuri A. Kuznetsov,
Jacques Périaux, Alfio Quarteroni, Zhong-Ci Shi, Olof B. Widlund, and Jinchao Xu.

Local organization was undertaken by the following members of the faculty and staff
at the University of Bergen: Petter E. Bjgrstad, Merete Sofie Eikemo, Magne Espedal,
Randi Moe, and Synngve Palmstrgm.

The scientific and organizing committees, together with all attendees, are grateful to
the following agencies, organizations, corporations, and departments for their financial
and logistical support of the conference: The Norwegian Research Council, Statoil,
Norsk Hydro, Sun Microsystems and Silicon Graphics.

It has turned out that the goals of traditional publishers (of proceedings) and
the key objectives of the DDM proceedings as seen by the International Scientific
Committee have become more and more orthogonal. We encourage broad participation
and a complete proceeding showing the breath of contributions to the conference. The
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rapid growth of the Internet for dissemination of papers and the need to publish
the proceedings in a more timely manner have led to the conclusion that the DDM
proceedings shall be published directly by DDM.org starting with DD9 and DD11.
(DD10 was published by AMS.) This is the first proceedings from the International
Conference on Domain Decomposition Methods that is published in this way, by
DDM.org, the established non-profit entity governed by the International Scientific
Committee. The proceedings are freely available on the WEB page www.ddm.org as
well as in book format. The editors are very grateful to Ole Arntzen and Jeremy Cook
at the University of Bergen for their assistance with adapting the Latex macros to
use in source-to-camera-ready preparation of the manuscript. Two distributed rounds
of editing, with thanks to dozens of anonymous referees, and unforeseen technical
difficulties, have delayed the release of these proceedings, but made them more worth
the wait.

Our families graciously forsook much time together for this collection and are
trusting, as are we, in a useful shelf life.

Petter E. Bjgrstad
Bergen, Norway

Magne S. Espedal
Bergen, Norway

David E. Keyes
Hampton, Virginia, USA

January 1998



Part 1

Theoretical foundations

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org






1

Stabilization Techniques for
Domain Decomposition Methods
with Non-Matching Grids

F. Brezzi, L. P. Franca, D. Marini and A. Russo

1 Introduction

The use of domain decomposition methods with non-matching grids is becoming
increasingly popular. In particular, its use is recommended when the splitting into
subdomains is dictated by physical and/or geometrical reasons rather than merely
by computational ones. Without underestimating the relevance of this latter group
of applications (which can be extremely important and even crucial in a number of
practical cases), we shall concentrate on the former one. To fix ideas, let us consider a
“toy-problem” which will show well enough what we have in mind without using too
heavy notation. Suppose therefore that we have a domain Q =] — 1, 1[x]0, 1] split into
Q; =] —1,0[x]0,1[ and Q2 =]0,1[x]0, 1[. In order to solve the problem, say,

—Au = f in Q, u =10 on 012, (1.1)

we decompose separately ; and Q, by means of two finite element grids 7;' and
T2 respectively, and we want to approximate (for i« = 1,2) u’ (restriction of u to
Q;) by ui, continuous and piecewise linear on the grid 7;i. Clearly, on the interface
I' = {0}x]0,1[ we have two 1-d decompositions, induced by 7;! and 72, which, in
general, do not match. A typical solution to this (as in the mortar method [Mar90])
is to choose one of the two, say 7;?, and require that uj, . match u . only in some
weak sense, with the use of suitable Lagrange multipliers. (In the mortar method
terminology, the nodes of 7712‘F will be “masters” and the nodes of 773|F, “slaves”.)

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjgrstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org



2 BREZZI, FRANCA, MARINI & RUSSO

However, in certain cases, it can be useful to choose a third 1-d decomposition on
I, (say 7;7(I') or simply 7*) and have both the 7}, and 7;? . nodes as “slaves”.
An example where this approach can be convenient is when both 7;L1|F and Th2|I‘ are
non uniform (being dictated by approximation problems that might occur in §2; and
s, or by self-adaptive procedures that have been used in both subdomains), but a
uniform grid on I' is recommended in order to apply a better preconditioner on the
final interface problem. This suggests the use of two different Lagrange multipliers, one
for matching u}, with ug, and the other one for matching u2 with ul,:, where, obviously,
we denoted by ul,: the discretization of u . As it is well known, this requires suitable
inf-sup conditions (see e.g. [GPP96]) to be fulfilled, one on each side of I'. Recently, an
intensive study has been carried out in order to avoid this type of inf-sup conditions
by adding of suitable stabilizing terms, thus allowing more freedom in the choice of
grids and multipliers (see e.g. [AG93, GG95]). In turn, in different contexts, these
techniques have been reinterpreted and/or improved as the addition-elimination of
suitable bubble functions to the finite element spaces in use (see e.g. [Pes72, Glo84]).

In this paper, we present a new way for stabilizing Dirichlet problems with Lagrange
multipliers for the particular case where u is approximated by a piecewise linear
continuous function, and the Lagrange multipliers are approximated by piecewise
constant functions on a nonmatching grid. Our stabilization is made by adding suitable
bubble functions only on the triangles having an edge on the boundary. It is interesting
to note that elimination of the bubbles by static condensation leads to a scheme very
similar to that introduced a long time ago by Nitsche [DW95] and recently reproposed
and analyzed in [Osw95].

For the sake of simplicity, we shall only discuss a single-domain problem. The
extension to many subdomains can then be carried out by means of the usual coupling
procedures (Dirichlet-Dirichlet or Neumann-Neumann or something else).

The organization of the paper is the following. In Sect. 2 we present the single-
domain problem, where the Dirichlet condition is imposed via Lagrange multipliers.
In Sect. 3 we discuss its discretization with nonmatching grids and the bubble
stabilization. In Sect. 4 we show that it is possible to eliminate both bubbles and
Lagrange multipliers, thus obtaining a scheme that is easy to implementation and
that strongly resembles the one discussed in [DW95, Osw95]. If needed, the Lagrange
multipliers can be recovered by a simple and economical post-processing. This will be
useful in a true domain decomposition situation, in order to carry out the iterative
procedure.

2 The Single Domain Problem
In order to introduce our stabilization technique we shall consider a problem on a
single domain, thinking of it as one of the subdomains. Always referring for simplicity

to the global problem (1.1), at each step of the domain decomposition procedure we
have to solve, in each subdomain, a problem of the type

—Au = f in Q, U

g on 0N =:T, (2.2)
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where (2 is now the subdomain under consideration (that we assume to be a polygon),
and g denotes any continuous function which, eventually, should be the value of the
solution of (1.1) on 90 = interface between subdomains. By enforcing the boundary
conditions in (2.1) with Lagrange multipliers [Ben95b], the variational formulation of
(2.1) reads
Find v € V, A € M such that
JoVYu-Vvdz — [ wds = [, fode YveV, (2.3)

fruuds = frguds Yu e M,
where ) is the multiplier, and V and M are the spaces
V := HY(Q), M = HY*T)

with their usual norms (see [Ben95a]). With this choice for V and M, the abstract
theory applies (see [GPP96]) so that problem (2.2) has a unique solution (u, A),
verifying

Ay = f in Q
A = g—g onT (2.4)
u = g on I

The usual finite element approximation of (2.2) would be to choose a decomposition
T* of Q for discretizing the u variable, and take as a decomposition of T" for the A
variable the restriction of 7% to I'. Next, finite element spaces verifying the Inf-Sup
condition can easily be constructed in many ways. This cannot be done in our case.
Actually, in order that the discretization of (2.2) mimic the situation occurring in
the domain decomposition procedure, we have to assume that the decompositions for
u and ¢ are given by 7" and 7Y, which do not match. Consequently, we have to
introduce another decomposition of I, say 7*, for dealing with the multipliers A and
p. This decomposition cannot be chosen arbitrarily, since it has to guarantee some Inf-
Sup condition between the \'s and the g¢'s, and therefore either has to coincide with
T9 or depend on it strongly. More precisely, 7* can be chosen finer than 79 without
violating the Inf-Sup condition between the variables p and the interface variables g,
but it can never be coarser. In the next section we shall deal with this problem.

3 Discretization and Stabilization

Let us turn to the discretization of (2.2). Let then 74 be a decomposition of 2 into
triangles {T'}, H being the mesh size, and let 7;} be a decomposition of I into intervals
I, h being the mesh size. We define

Ve = {ve H(Q): vr e Pi(T) VT € T3}, (3.5)

My = {peL’T): pr € P(I)VIe T} (3.6)

We now look for an approximate solution (ug,An) of (2.2), with ug € Vg, and
An € My. As already pointed out, the two decompositions T and 7;l>‘ are not
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compatible, that is, the decomposition 7;f generates a decomposition of I' which is,
in general, different from the decomposition 7;3‘ of I'. Our first step will then be to
relate the two decompositions of I', the second step will consist in the introduction of
the bubble functions, and the final step will be to analyze the stabilized problem.

1%t step - Generation of a new decomposition.

We create a new decomposition of I, say 7~7L>‘, by merging the two decompositions 7
and 773‘, i.e., we add to 773‘ the nodes of 7} belonging to I'. In doing this, it may
occur that some of the nodes of ’7;1’\ get too close to each other, thus complicating
the analysis of our procedure. To avoid this we may proceed as follows: when the
distance between two nodes of 7;3‘ is less than or equal to some tolerance, one of the
two nodes is eliminated. This can be easily done by slightly changing either the 75 or
the 7;3‘ decomposition, so that the two nodes become coincident. In other words, we
are making the following assumption: for every triangle T' in T having an edge £ on
the boundary, let Hr be the diameter of 7', and let hz be the smallest length of the
intervals of 7, belonging to E. We assume that there exists a constant -y independent
of the decompositions, such that

hr > vHr. (3.7)

2dstep - Introduction of the bubbles.

We add to the discretization of u as many bubble functions as the intervals of 7~71>‘.
More precisely, we proceed as follows. Let T' be a triangle having an edge on I'. Let
T' be such an edge; in general, we will have a situation of the type 7" = UI}, Ij, € T}
and, accordingly, T = UT}, (see Fig. 1 as an example). We call bubble a function
by € H*(Q) such that supp(by) C T} , and fIk by, ds # 0. (See Fig. 2). In order to have
uniform estimates, we need however that the bubbles have “similar” shape. For that,
let 7' be the reference triangle: 7' = {(£,7) : 0<€<1, 0<n<1—¢}, and let b be
a function in H!(T"), with b = 0 on the edges £ = 0 and 5 = 0, and fm»,i)ds # 0. (As
a simple example, we can take I;(f, 1) = £n. Many other choices are possible, and the
optimal shape of b is still under investigation.) Our bubble b will then be given by
br(z,y) = b(&,n) under the affine mapping (£,7) — (z,y) from 7' to T} which maps
the edge n = 1 — £ on the boundary edge Ij.

3"dstep - The stabilized problem.

Let By, be the space spanned by the bubbles introduced above. We then write the new
discrete problem with Vi replaced by

Vi := Vg @ By, (3.8)
and M}, replaced by

My = {p€L*I): € Po(I) VI € T} (3.9)
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Figure 1 Figure 2

The approximate problem now reads
Find ug € ‘71{, Ap € Mh such that
JoNug -Vogde — [ Movgds = [, fondz Yoy € Va, (3.10)
Jr pumds = [gpds Yu € M.

Existence, uniqueness, and optimal error bounds for the solution of (3.6) will follow if
we can prove the following Inf-Sup condition relating Vg and My:

d _ — .
Jemds o Ty e BT (3-11)

{ 38 > 0 independent of h such that:
el [ a|vllv

As the Inf-Sup condition holds for the continuous problem, (3.7) will follow from the
general results of [For77], if we prove the following theorem.

Theorem 3.1 There exists a constant C, and, for every H, a linear continuous
operator Illg : V — Vg such that

/(HHv—v),uds =0 Vue M, (3.12)
T

and
|||y < C|lv||lv YveV. (3.13)

Proof. We start by observing, cf. [GPP94], that it is possible to construct a linear
operator I1}, : V = HY(Q) — Vi with the following properties:

Nyv=v VYveVy (3.14)

T olly < Cllvlly  YweV, (3.15)
VT' € (T [Mgollo,e < Clollyg Yo eV, (3.16)
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where, here and in the following, E is the union of the boundary edges in 7 having
at least one vertex in common with E, ||v||o,p is the norm in L?(D), ||v||s,p the norm
in H%(D), and C denotes a constant independent of the mesh size. We want to check
that, for every edge E on I', we also have

llo = yvllo,s < CHy?|[oll, ) 5- (3.17)

For this, using interpolation theory (see [Ben95a, DSW96]) and (3.12), we only need

to show that, for all v in H(E), we have
|lv — go|lo,5 < CHrllv||; g, (3.18)

which easily follows from (3.12) and (3.10) by the following standard argument:

lv=Tgolloe < infp (v —p) — M (v = p)llo.k

. (3.19)
< Cinfpllv—plly 5 < CHr|lv|], 5

where the infimum is taken over the polynomials p of degree < 1 in E. Then, define
another linear continuous operator IT3 : V. — By, as

/F(l'[,zzv —v)pds = 0 Vp € M, (3.20)
It can be proved that II2 is uniquely defined by (3.16), and verifies
Mvllor < CH[lvllos VT € T, (3.21)
IMollr < Chz'|Mollor VT € T (3.22)
Finally, define Iy as
Mgv:=Oxv+ (v —-Txv) veV. (3.23)

It is immediate to check that Iy is linear and verifies (3.8), since, from (3.19), (3.16)
we have

/F(v—HHv)uds = A((U—Hhu)—ﬂ%(v—ﬂ}qv))pds =0 V€ My,. (3.24)

It remains to prove that Il verifies (3.9). We first remark that Ilgv = II}v in all
triangles T" that do not have edges belonging to I'. For the remaining triangles, using
(3.18)-(3.17), and (3.13) gives

102 (0 — v)lir < ChzHy?|lo — yollo,e (3.25)
< Chp'Hr|pll, )5 5,
so that, from the definition (3.19), using (3.11) and (3.21) we have
1 2 1 2 1/2
Mrolly < C|Wyolly + (gl (0 - Thv)|2 1)
< ¢ (bl +(Sphr B3I, 2)1?) (3.26)
< Clpllv,
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where, in the last inequality, we used (3.3) and the fact that

Yl , 5 < 3llolF )2 r < Cllolfi- (3.27)
E

4 Interpretation of the Scheme

We will show in this section that the approximation (3.6) is directly related to Nitsche’s
scheme recently analyzed in Stenberg [Osw95]. For that, we rewrite (3.6) using the
splitting (3.4) for trial and test functions in Vg

ug=u+0, vg=v+b, u,v € Vg, B,b € By, (4.28)
and we obtain

Find u € Vi, B € Bn, An € My, such that

JoNu+Vp)-Vvde — [ vds = [, fode Vv € Vi,
Jo(Vu+YVB) - Vbdz — [-Aybds = [, fbdz  Vbe By,
Jrpw+pB)ds = [.gpds Yy € M.

(4.29)

Let us point out that, by construction, B and Mh have the same dimension, say
NB. As a basis in By, it is natural to use the functions {b;} defined in the previous

Section (2" step), while a natural basis in Mh will be given by the functions p =
the characteristic function of I, for k = 1,.., NB. Then, we can write

B = Z,Bkbk, An = Z Ak k- (4.30)
k k

From the third equation of (4.2) we can derive the coefficients B in terms of the linear
unknown u. Taking p = pp we have

B = /Ik(g—u) ds [ heds e (4.31)

From the second equation of (4.2), taking b = b, we can express the \;’s in terms of
u and By

Ak (fy, Vu- Vb da + B [, [Vbi[?dz — [, fbidz)/ [, bids

(4.32)
— (flk ity ds + By ka |Vbi|? dz — ka fbi da:)/fbc by ds vk

where we have integrated the first integral by parts, and where u/,, denotes the outward
normal derivative of u. Using (4.3), the first equation of (4.2) becomes

/yu-zvdHZﬂk/ bkv/nds—Z)\k/ vds = /fvda: Yo € Vi, (4.33)
Q & I & Q

I,
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where again we have integrated the second integral by parts. From (4.4) and
V/n = constant on I} we have

gﬁk/;k bkv/nds:;/Ik(g—u)u/nds:A(g—u)v/nds. (4.34)

Setting

2
= [ 1Sl da/ ( / be ds) , (4.35)
T Iy
we deduce from (4.5)

Z)\k/Ikvds:Z/Ikvu/nds—i—ZCk (/Ik(g—u)ds> /Ikvds—F(v), (4.36)

where, for the sake of simplicity, we set

F(v) = Z( 5 fbkdm)(/Ikvds)/(/Ik bkds). (4.37)

The second integral in the right-hand side of (4.9) can be rewritten by using the mean
value ¥ of v on I}, leading to

ijckhk/Ik(g—u)ﬁds = Ek:ckhk/Ik(y—n)vds, (4.38)

where, obviously, hy is the length of I,. To simplify the notation, we can also set
Br(u,v) = Y Ckhk/ U ds. (4.39)
k Tk

Substituting (4.7) and (4.9) into (4.6), and using (4.10), (4.12) we finally obtain

Find v € Vg such that :
JoNu-Vvdz — [pvu,,ds — [uv,ds+ Br(u,v) = (4.40)
Jo fvdz — [Lgv/nds+ Br(g,v) — F(v) Vv e Vy.

It is interesting to compare (4.13) with Nitsche’s method that, as studied in [Osw95],

reads
Find u € Vg such that :

JoNVu-Vodz — [, vy, ds - |- uv/nds—{—afr uvds = (4.41)
Jo frdz — [ gv/pds+a [ gvds Yo € Vi,

where « is a positive parameter to be adjusted, typically, to be of the order of the
inverse of the mesh size. As we can see, the only differences between (4.13) and (4.14)
are: i) the use of Br(u,v) (defined in (4.12)) instead of & [ uv ds, and ii) the addition
of the term F'(v) to the right-hand side. In what follows, we will indicate a simple way
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Figure 3

for computing Br(u,v) and F(v) when using quadratic bubbles, thus producing an
estimate of their order of magnitude.

Let then T' be a boundary triangle, and let T} be a subtriangle as in Fig. 1. We
denote by ey,;, ¢ = 1,2,3 the edges of T}, and assume e 3 to be the boundary edge;
Mj, is the midpoint of eg,3, and the \'s are the usual barycentric coordinates of T},
(see Fig. 3.) With this notation, the bubble is bx(z,y) = A1 (z, y)A2(z,y). With usual
techniques we find

3 12
be ds = |ex.s|/6, by ? dg = izt lowal) (4.42)
O lexsl/ Tk| k| 18]T |
so that (4.8) becomes

3( iy lewil?)

ATy lex,sl> -
Since u and v are linear on ey 3, combining (4.12) and (4.16), and noting that in this
case hy, = |ey 3|, we obtain the following expression for Br(u,v)

Cr = (4.43)

NB 3 5
Br(u,v) = % >y %u(m)v(m). (4.44)
k=1

Notice that, when g is used instead of u, the value u(Mj}) has to be replaced by the
mean value of g in Ij,. We also point out that, comparing (4.17) with (4.14), we see
that our method corresponds to choosing, in each I, a value of a of the order of
Hr /1.

We now turn to the computation of the term F'(v), assuming that f is constant
in Ty and v is a basis function in V. Clearly, from (4.10) we have F(v) = 0 if v is
associated with an internal vertex of 77. Otherwise, a simple computation shows that

NB
Fo)=Y" fi 75| vds. (4.45)
=1 2lex.s| Jr,

In addition, it can easily be checked that

T Tr|lv(M 3
il vds=mz—/ vdz. (4,46)
2lex,s| Jr, 2 4 Jr,
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Hence,
3 NB
Floy=>" / fudz. (4.47)
4 k=17 Tk

Finally, we point out that, in domain decomposition procedures, the explicit knowledge
of the Lagrange multiplier A, in (3.6) is needed in order to update the interface
unknown g during an iterative solution. With our approach, once u has been computed
out of (4.13), the value of A, in each I}, can be easily recovered from (4.5), which gives

AL = (u/")Uk + Cy [ (g — u) ds — flekl/(2|ek,3 ) (448)

5 Conclusions

The single-domain Dirichlet problem for a linear elliptic operator can be solved by the
Lagrange multipliers technique, which is well suited when the boundary condition is
given on a grid which does not match with the one used within the domain. If the
problem with Lagrange multipliers is stabilized by boundary bubbles, it is possible
(with “paper and pencil”) to eliminate a priori both bubbles and Lagrange multipliers.
The resulting scheme, which is quite simple to implement, results in a variant of
the Nitsche’s method [DW95]. As needed in domain decomposition procedures, the
Lagrange multipliers can then be computed afterwards, in each subdomain, by an
easy and economical post-processing.
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Preconditioning in H(div) and
Applications

Douglas N. Arnold, Richard S. Falk and Ragnar Winther

1 Introduction

This paper summarizes the work of [Pes72], in which we consider the solution of the
system of linear algebraic equations which arises from the finite element discretization
of boundary value problems in two space dimensions for the differential operator
I — grad div. The natural setting for the weak formulation of such problems is the
space:

H(div) = {u € L*(Q) | divu € L*(Q) }.

Let (-, -) denote the L?(€) inner product of both scalar and vector-valued functions
and

J(u,v) := (u,v) + (divu, divo)

denote the innerproduct on H(div). If f € L?*(Q), the weak formulation is to find
u € H(div) such that for all v € H(div),

J(u,v) = (f,v).
This corresponds to the boundary value problem
(I —graddiv)u = fin Q, divu = 0 on 09Q.

Note that if u is a gradient, then (I —grad div)u = — A u+u, while if u is a curl, then
(I — graddiv)u = u. A simple situation in which the operator I — grad div arises
occurs in the computation of 4 = grad p, where p is the solution of the Dirichlet
problem

—Ap+p=g inQ, p=0 on 9.
Then u € H(div) satisfies

J(u,v) = —(g,dive) for all v € H(div).

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org
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Given a finite element subspace V) of H(div), the natural finite element
approximation scheme is: Find u;, € V' such that

J(up,vp) = (f,vn) for all vy, € V.

We shall consider the case when V', consists of the Raviart—Thomas space of index
k > 0, i.e., functions which on each triangle are of the form

'U(.’L’,y) :p(may)+(may)q(may)7 pepk kaa qepk:

(where Py, denotes the polynomials of degree < k) and for which v-n is continuous from
triangle to triangle. The goal is to find an efficient procedure for solving the discrete
linear system corresponding to this discretization, which we write as Jpup = f.
Denoting the eigenvalues of Jp, by o(J4), since the spectral condition number

max |o(Jp)|

AIn) = o (T

of the operator Jp is O(h~2), we will clearly need to precondition any standard
iterative scheme if we want the number of iterations needed to achieve a given accuracy
to be independent of h.

2 Preconditioning in the Abstract

Let X, C L? be a finite dimensional normed vectorspace. We identify X5, and X 5 as
sets, but put the dual norm on the latter (dual with respect to the L? inner product).
Let A : X, — Xj be an L2-symmetric linear isomorphism. We suppose that X, is
endowed with an appropriate (energy) norm, i.e., we suppose that

Al cxn,x2) AR e xn) = O(1).

Given f, € Xy, we wish to solve Apz, = fr by applying a standard iterative method
such as CG or MINRES to the equation BpApz, = By fr, where By, : X; — X} is an
L2-symmetric, positive definite preconditioner. Qur goal is to define B, so that the
action of By, is easily computable and k(Bp.Ap) is bounded uniformly with respect to
h. Since

max |o(BrAn)| < [1BrArllcix,,xn) < 1Al 2, x0) 1Brllcex; xn)

and

1

[ -1 < —1 . —1 .
min [0 (BaAn)] = |BrAr) ™ [l cxn,xn) < WAL ez, xm 1By llecx,, x)

By, is an effective preconditioner if
I1Bullc(x:,xn) ||B}71”E(Xh,X,:) = 0(1).

In other words, By, is an effective preconditioner if it has the same mapping properties
as A;l. Note that the energy norm, and not the detailed structure of A, determine
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these properties. Thus to solve the problem Jpu, = f;, we need to construct an
efficiently computable operator K, : V, — V', for which

1Kkl cve vy KR evi,vey = O().

We will show how this can be done using domain decomposition and multigrid
techniques.

3 Applications

We are interested in the operator I — graddiv not for its own sake, but for
its appearance in several important problems. Besides the example mentioned in
the introduction, we will restrict our attention to two problems: the least squares
formulation and the mixed formulation of second order scalar elliptic problems.
Other examples are discussed in [Pes72]. We first discuss the least squares variational
principle.

Consider the elliptic boundary value problem

div(A gradp) = g in Q, p=0on 99,

where the coefficient matrix A is assumed measurable, bounded, symmetric, and
uniformly positive definite on . Introducing © = A grad p leads to the first order
system

u—Agradp=0in Q, divu=g¢ginQ, p=0on 9N.
The least squares variational principle characterizes the solution (u,p) as the
minimizer of the functional

|lv — A grad g||* + || dive — g||?

over the space H(div) x H', where | - || denotes the L2(Q) norm and H* denotes the
subspace of functions in H'(f2) which vanish on the boundary of 2. Equivalently, we
have the weak formulation

B(u,p;v,q) = (g,dive) for all (v,q) € H(div) x H?,
where
B(u,p;v,q) = (u — A grad p,v — A grad q) + (divu,divv).
To discretize the least squares forn}ulation, we let X;, = V, x W, be a finite-
dimensional subspace of H(div) x H'. Then z; := (up,pp) is the minimizer over

Xh of
lv — A gradg|® + || dive — g%,

or in weak form,
B(thPh;v’ Q) = (g,diV'U) for all ('U’ Q) € Xh-

Deﬁning Ah 1 Xp = Xp by (Ah-/L',y) = B(.’L’,y) and fh € Xn by (fh: ('U,q)) = (g,le ’U),
we may rewrite our problem as Apz, = fj.

The key to the convergence theory for the least squares method is the following
theorem (cf. Pehlivanov, Carey, Lazarov [Mar90] and Cai, Lazarov, Manteuffel, and
McCormick [AG93)).
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Theorem 2.1 The bilinear form B is an inner product on H (div) X H! equivalent
to the usual one.

A direct consequence of the theorem is that Ap : X, — X, is symmetric, positive
definite and satisfies

Al cxnx2)> AR ez x0) = O(1).

Thus we need a preconditioner with the opposite mapping properties. Since X =
Vi, x Wy, we can choose a block diagonal preconditioner

K, 0
Bh - ( 0 Mh ) ’
where K, is a good preconditioner in H(div), i.e., it maps like J;* : Vi, = Vi,
and My is a good preconditioner in H 1 ie., it maps like A;l : Wy — Wp. Hence
we conclude that a good preconditioner for the discrete least squares system is
obtained using an H (div) preconditioner for the vector variable and a standard H'!
preconditioner for the scalar variable.

We next consider a mixed variational formulation of this boundary value problem.
The mixed variational principle characterizes (u,p) as a saddle point of

1
i(A_1v7'U) + (q’ diV'U) - (g’ Q)a

over H(div) x L2, or, in weak form,
(A" u,v) + (p,dive) =0 for all v € H(div),

(divu,q) = (g9,9) for all ¢ € L2.

Choosing X, = V5, x S, C H(div) x L?, we can define a discrete solution
zp, = (up,pr) € Vi x Sy, by restricting either the variational or weak formulation.
This may be written Az, = fr, with A : X, — X, L2-symmetric but indefinite,

since A;, has the form
a b
we(20).

The convergence of this method depends on the choice of V), and Sp. The key
hypotheses for the convergence analysis are the Brezzi conditions:

(A7, v) > 1|l (i) for all v € V, with dive L Sp,

divo
inf sup (g dive) > 72
4€Shvev, llall vl maiv)
These conditions are satisfied if V', is the Raviart—Thomas space of index k& and S},
the space of (discontinuous) piecewise polynomials of degree k. Brezzi’s theorem states
that if both hypotheses are satisfied, then Ay, is an isomorphism and [|A4; (| £ X7, Xn)
may be bounded in terms of the 7;.



16 ARNOLD, FALK & WINTHER

We thus base our choice of By, on the discrete version of the isomorphism

div 0

We again use a simple block-diagonal preconditioner, which this time takes the form

K, 0
B = ( 0 I ) ’
where I is the identity on S}, and again K, is a good preconditioner in H(div), i.e.,
it maps like J, ' : V), = V.
We remark that most other work on preconditioning such mixed methods uses the
alternate isomorphism

( 4 _grad>:L2x1§r1—>L2xH—1,

( A —grad ) . H(div) x L? — H(div)* x L2

div 0

which leads to a different (and less natural) choice of preconditioner.

4 An Additive Schwarz Preconditioner for J

We let T = {Q,}Y_,, denote the coarse mesh and 7y, a refinement (the fine mesh).
We let {Q,}Y_, be an overlapping covering aligned with the fine mesh such that
Q, C Q. We make the standard assumption of sufficient but bounded overlap. Let
V,, denote the Raviart—-Thomas space approximating H (div, )) with the boundary
condition v - m = 0 on BQ; \ 09. Let V denote the Raviart—-Thomas approximation
to H (div, Q) using the coarse mesh.

Given f € Vy, define uy, € V, by J(un,v) = (f,v) for all v € V,,. The additive
Schwarz preconditioner is then defined by K, f := Eff:o U,. Our main result for
this domain decomposition preconditioner is the following theorem (cf. [Pes72] for the

proof).
Theorem 2.2 There exists a constant ¢ independent of both h and H for which
k(Kpdp) <c.

Following the theoretical framework of Dryja—Widlund [GG95] or Xu [GPP96], a
critical step of the proof is the following decomposition lemma.
Lemma 2.1 For oll v € V', there exist v, € V,, with v = Zﬁ:o v, and

N
Z [9n ]l (aiv) < €llvllzaiv) -

n=0

The standard proof uses a partition of unity {6, })_; and takes vy € V| a suitable
approximation of v and v, = II [0, (v — vo)] with IT}, a suitable local projection into
V1. The analysis leads to the following estimates.

| divo,|| < ¢l div[f, (v — vo)]|l
el grad O, | < [[6 — vol| + |8l | div(w — wo)]
cH™|v — vo|| + || div(v — vo)||.

IAINA
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In the standard elliptic case we bound the first term using ||[v — vo|| < CH||v||;.
However it is not true that ||v — vo|| < CH|v| g(aiv), so this approach fails. We are
able to get around this problem by using a discrete Helmholtz decomposition, which
we now describe.

Let V', denote the Raviart—Thomas space of index k, Sp the space of piecewise
polynomials of degree k, and W}, the space of C” piecewise polynomials of degree
k + 1. Then we have the following discrete Helmholtz decomposition.

Vi =curl W, @ grad S,

where grad : S, — V', is defined by (grad s,v) = —(s,divv).
Returning to the decomposition lemma, we write v = curlw + grad s and observe
that
2 2 2
[0l aivy = [l curlw(]” + || grad s[| g giy)-
We then decompose each term separately. Since || curlw||gaiv) = [[w||1, we can use
the standard decomposition lemma on w to write

n n
w=Y w;, Y |lwll} < cllwl.
j=0 J=0

Taking curls gives us the desired result on the curlw term.

For v = grad s and vo = grad sq, where (sg, vg) is the mixed method approximation
to (s,v) in the space Sp x Vo, we can prove using standard results from the theory of
mixed finite element approximations that

llv = voll < CHIv|m(aiv),

and conclude the proof. The key is that although the above estimate does not hold
for all v € V', it does hold when v = grad s.

5 V-cycle Preconditioner

We consider a nested sequence of meshes, 71,7z,... ,Tn, and let V,, be the Raviart-
Thomas space of some fixed order subordinate to the mesh 7. This gives a nested
sequence of spaces Vi C Vo C .-+ C Vy = V}, and corresponding operators
Jp: V=V,

We also require smoothers R,, : V', = V', which we discuss below and the H (div)-
projection operators P, : H(div) — V,,. Multigrid then defines K,, : V,, —» V,,
recursively starting with K; = J7'. We shall make use of the following multigrid
convergence result.

Theorem 2.3 Suppose that for each n = 1,2,...,N the smoother R, is L2-
symmetric and positive semi-definite and satisfies the conditions

J(I - R,J,]v,v) >0

(RMI — Pyy]v,[I — Ppoy]v) < @J (I — Ppy]v,[I — Ppy]v).
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Table 1 Condition numbers for the operator Jj and for the preconditioned
operator KpJp, and iterations counts to achieve an error reduction factor of 108,

level h elements dimVy  k(Jp) k(KpJp) iterations
1 1 2 5 38 1.00 1
2 1/2 8 16 153 1.32 4
3 1/4 32 56 646 1.68 6
4 1/8 128 208 2,650 2.17 6
5 1/16 512 800 10,670 2.34 8
6 1/32 2,048 3,136 42,810 2.40 8
7 1/64 8,192 12,416 - - 8

Then there exists a constant C independent of h and N such that the eigenvalues of
KnJ} lie in the interval [1 — 6, 1] where § = C/(C + 2m), m denoting the number of
smoothings.

For standard elliptic operators many smoothers can be shown to satisfy the
hypotheses, the simplest of which is the scalar smoother. However, the proof for the
scalar smoother and some others fails in H(div) and the multigrid preconditioner
constructed with these smoothers is not effective. We shall consider an additive
Schwarz smoother, defined in the following way. For each vertex of the mesh, consider
the patch of elements containing that vertex. These patches form an overlapping
covering of Q2 and so determine an additive Schwarz operator. We use this operator as
our smoother. The verification of the first hypothesis is routine. The standard proof
of the second fails, but the difficulty can be surmounted by again using the discrete
Helmholtz decomposition in a manner similar to that used for the proof of domain
decomposition. The complete proof is given in [Pes72].

6 Numerical Results

First we made a numerical study of the condition number of .J; and the effect of
preconditioning. In Table 1.1, the level m mesh is a uniform triangulation of the unit
square into 22™~! triangles and has mesh size h = 1/2™~1. The space V, is taken
as the Raviart—Thomas space of index 0 on this mesh. The preconditioner K} is
the V-cycle multigrid preconditioner using one application of the standard additive
Schwarz smoother with the scaling factor taken to be 1/2. The fifth column of the
table clearly displays the expected growth of the condition number of Jj as O(h~2),
and the sixth column the boundedness of the condition number of the preconditioned
operator KpJp.

As a second numerical study, we used the Raviart—Thomas mixed method to solve
the factored Poisson equation

u=gradp, divu=g in (Q, p=0 on 09,

again on the unit square using the same sequence of meshes as in the first example. We
chose g = 2(z2 +y2? —z—y) so that p = (22 —z)(y% —y). The discrete solution (w,pp)
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belongs to the space Vi, x Sy, with V', the Raviart—Thomas space described above
and Sp, the space of piecewise constant functions on the same mesh. We solved the
discrete equations both with a direct solver and by using the minimum residual method
preconditioned with the block diagonal preconditioner having as diagonal blocks K,
and the identity (as discussed previously). Full multigrid was used to initialize the
minimum residual algorithm. That is, the computed solution at each level was used
as an initial guess at the next finer level, beginning with the exact solution on the
coarsest (two element) mesh. In Table 1.2, we show the condition number of the
discrete operator A, and of the preconditioned operator BpA,. While the former
quantity grows linearly with h=1 (since this is a first order system), the latter remains
small.

Table 2 Condition numbers for the indefinite operator A; corresponding to the
mixed system and for the preconditioned operator By Ap.

level h dimVy, dimS, &(Az) k(BrAp)

1 1 5 2 825 1.04
2 1/2 16 8 150 1.32
3 1/4 56 32 297 1.68
4 1/8 208 128 59.6 2.18
5  1/16 800 512 119 2.34
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Scalable Substructuring by
Lagrange Multipliers in Theory
and Practice

Charbel Farhat and Jan Mandel

1 Introduction

The FETI (Finite Element Tearing and Interconnecting) method is a non-overlapping
domain decomposition algorithm for the iterative solution of systems of equations
arising from the finite element discretization of self-adjoint elliptic partial differential
equations. It is based on using direct solvers in subdomains and enforcing continuity
at subdomain interfaces by Lagrange multipliers. The dual problem for the Lagrange
multipliers is solved by a preconditioned conjugate gradient (PCG) algorithm. The
FETI method was developed in [Far91, FR91, FR92], and discussed in detail in
the monograph [FR94]. Unlike other related domain decomposition methods using
Lagrange multipliers as unknowns [GW88, Rou90], the FETI method uses the null
spaces of the subdomain stiffness matrices (rigid body modes) to construct a small
“coarse” problem that is solved in each PCG iteration. It was recognized in [FMR94]
and proved mathematically in [MT96] that solving this coarse problem accomplishes a
global exchange of information between the subdomains and results in a method which,
for elasticity problems, has a condition number that grows only polylogarithmically
with the number of elements per subdomain, and is bounded independently of the
number of subdomains. For time-dependent problems, one has to solve a linear problem
with positive definite subdomain matrices in each time step. The coarse space built
from null spaces is lost, resulting in deteriorating convergence with growing number
of subdomains. Quasi-optimal convergence properties were retained by introducing an
artificial coarse space [FCM95]. For plate bending problems, the condition number was
observed to grow fast with the number of elements per subdomain [FMR94]. This was
resolved by adding to the coarse space Lagrange multipliers that enforce continuity
at the corners [MTF]. A related idea has been employed in the Balancing Domain
Decomposition (BDD) method for plates [LMV94], where approximate continuity of
the iterates at crosspoints is enforced by adding new basis functions associated with
corners to the original coarse space [Man93, MB96].

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org
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While the underlying ideas of FETI and BDD are in a way dual, FETI is not the
BDD method applied to the dual problem. The distinguishing features of both FETI
and the BDD method is that they are non-overlapping and work for standard plate
and shell finite elements used in everyday engineering practice.

The formulation of the FETI method presented here is based on [MTF], where more
details can be found. This formulation covers the original FETI for solids as well as
extensions to time-dependent problems and plates and shells. The extension to shells
and practical results draw partially on [FCMR95, FM95].

2 Abstract Formulation of FETI

Let © be a domain in ®? decomposed into N, non-overlapping subdomains
Qq, Qa, ..., Qn,. We assume that there is a conforming finite element discretization
defined on €2, such that each subdomain is a union of some of the elements. The discrete
problem arising from this discretization can be formulated as the minimization of the
energy subject to intersubdomain continuity conditions,

E(u) = %’U,TKU — fTu — min subject to Bu = 0. (1)
Here,
Ui fl K 0 e 0
O I I fz D k=| 0 K o0 |
un, i 0 0 .. K,

with wug, K, and f,; being the vector of degrees of freedom, the local stiffness
matrix, and the load vector, respectively, associated with the subdomain Qg, and
B = [B1,Bs,...,Bn,] a given matrix such that Bu = 0 expresses the condition that
the values of the degrees of freedom associated with two or more subdomains coincide.

The local stiffness matrices K and hence K are positive semidefinite. The algorithm
will use a given full rank matrix

Zy 0 ... 0
Z = 0 Z ... 0 , Range Z = Ker K.
0 0 ... Zn

s

We assume that the global structure is not floating, that is, the solution of (1) is
unique, which is equivalent to Ker K N Ker B = {0}.

Introducing Lagrange multipliers A for the constraint Bu = 0, the problem (1)
becomes

Ku + BTA = f
0 (2)

Bu =
A solution u of the first equation in (2) exists if and only if f — BT A € Range K, and
u=K'(f—=BTX) + Za if f— BT\ 1 KerK, (3)
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where « is to be determined. Substituting « from (3) into the second equation of (2)
yields BKt(f — BY\) + BZa = 0. It follows that X satisfies the system of equations

P(Fx—d) = 0, (4)
GTN = e, (5)

where G = BZ,F = BK'BY,d= BK'f, P = I-G(GTG)"'G", e = Z* f. Note that
P is the orthogonal projection onto Ker GT. It can be proved that (GTG)~! exists
[FR94, MTF].

It is easy to see that any two solutions A of (4), (5) can differ only by a vector from
Ker BT, and that any solution X of (4), (5) yields the same solution u of (1) by (3)
with @ = —(GTG)71GT(d — F)).

The physical interpretation is that the Lagrange multipliers A are interface forces
and moments. From (3) and the definition of F', the residual P(FA—d) = —Bu has the
interpretation of jumps in the values of the degrees of freedom between subdomains.
The condition f—BT A L Ker K means that the action of the loads and intersubdomain
forces and moments does not excite rigid body motions.

To obtain more flexibility in the algorithm design, we add to the system (4), (5)
a redundant weighted residual condition, and require that all iterates satisfy along
with (5) a weighted residual condition

CTP(FA—d) =0, (6)

where C is another given matrix. The conditions (5), (6) will be enforced throughout

the iterations by projecting the increments. For applications to static problems with

solid elements, the additional constraint (6) is not necessary, but a proper choice of C

is essential for time-dependent problems as well as plate and shell problems.
Increments that preserve (5), (6) form the subspace

V' = {ulG"pn=0,CTPFp = 0}
The operator PF is symmetric on Ker GT in the sense that
(PFX, XY = (X, PF)X), for all \, X' € KerGT,

and positive definite on the factorspace Ker GT/ Ker BT, cf., [MTF].
To get an initial approximation Ao that satisfies (5), (6), we solve a system of
equations for a given Ag

GTF(A+Ga+CB) + G'Gp = G'd
CTF(Ro+Ga+CB) + CTGu = CTd (7)
GT (X +Ga+CB) = e

for unknowns a, 3, i, and set Ag = Ao + Ga + C3. We will use an analogous process
to update a tentative search direction so that it satisfies (6): given A, one finds a
projected search direction A = A + Ga + C3, with a, 8 determined from

GTFA+Ga+CB) + G'Gp = 0

CTF(A+Ga+CB) + CTGp = 0
GT(\+ Ga+ CPB) =0



SUBSTRUCTURING BY LAGRANGE MULTIPLIERS 23
Then A = Q), with @ given by

GTFG GTFC GG 1'[ GTF
Q=I-[G C 0]| CTFG CTFC C*G CTF |,

GTae GTC 0 GT
where the superscript ! denotes a generalized inverse. It can be proved that [MTF]
Q*=qQ, Range QT + Ker BT = Range PF + Ker BT (8)

Our formulation of the generalized FETI method is now the method of conjugate
gradients in the space V' for the operator PF, preconditioned by QDQT, where D is
symmetric positive semidefinite. It follows from (8) that the preconditioner Q DQT can
be replaced by QD without changing the method. Therefore, the following algorithm
is obtained.

Algorithm 1 (Generalized FETI) Given an initial \o, compute the initial Ao
using (7), and compute the initial residual by

To = P(F)\O —d)
Repeat for k=1,2,... until convergence:
g1 = Drpg
Ye—1 = Qzp_a
& = Th_1Yk—1
P = Yr-1-+ 6—kpk—l (1 = o)
Ek—1
v = Sk
pp PFpy
Ak = Ap—1+ vy
ry = r1p_1 — v PFp

3 Selection of Common Algorithm Components

Continuity Constraint Bu = 0

For a node z; at the intersection of two subdomains 92,.NOS,, we define the continuity
constraint on the displacement degrees of freedom by

(Bw)ps(zi) = ops(wp(z;) — ws(z;)) = 0.

We use a similar condition for derivative or rotation degrees of freedom, if present.
Here, 0,5 = 1 or 6,5 = —1 is a constant assigned to the edge (in 2D) or side (in
3D). In particular, the entries of B are —1,0,+1, and they are constant along an edge
or side between subdomains. Note that this construction of B results in redundant
constraints at all degrees of freedom that belong to more than two subdomain. This
slightly increases the number of the Lagrange multipliers and complicates the analysis,
but makes a simpler parallel implementation possible.
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Dirichlet Preconditioner

Decompose the space of all the degrees of freedom into the space of the degrees of
freedom lying on the subdomain interfaces, and the degrees of freedom internal to the
subdomains

W = Wb X Wz',

where the subscript b denotes the block of degrees of freedom on subdomain
boundaries, and the subscript ¢ denotes degrees of freedom internal to the subdomains.
Then,

B =By, 0],
since B has nonzero entries for the subdomain interface degrees of freedom only. Also,
Z = [ g’f ] , G=BZ=ByZ, KerBY =KerB}.
2

Let S be the Schur complement of K obtained by elimination of the degrees of freedom
internal to all subdomains:

S = Ky, — KpiK;; K. (9)
It is easy to see that
F =BK'+ BT = B,S'BY, (10)

and that KerS = Range Z;. It is well known that the evaluation of the matrix-
vector product Stu reduces to the solution of independent Neumann problems on all
subdomains. Analogously to (10), we choose D = BbSB,T, giving the preconditioner

QD = QBySB; . (11)

This preconditioner is called the Dirichlet preconditioner, since evaluating the matrix-
vector product St is equivalent to solving independent Dirichlet problems on all
subdomains.

Lumped Preconditioner

This is a simplified version of the Dirichlet preconditioner (11), which trades
mathematical quasi-optimality for a lower cost per PCG iteration. The Schur
complement S of K obtained from (9) is replaced simply by its leading term Kpp.
This is equivalent to “lumping” each subdomain stiffness on its interface boundary.
The resulting preconditioner is given by

QD = QByKyBY (12)

4 Special Instances of FETI

FETI for Solid Mechanics (Second-Order Elasticity)

The original FETI algorithm [Far91, FR91, FR92] is obtained by omitting the
condition (6). Then, @ becomes the identity, and an initial approximation )\g is only
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required to satisfy GT \g = e. It was proved in [MT96] that for the Laplace equation,
P1 conforming elements, and the Dirichlet preconditioner both in 2D and 3D, and
under the usual technical assumptions about the shape regularity of the elements and
the subdomains, one has the following upper bound on the condition number

' Amaz(QDPF) o\"
—mﬁC(lﬁ-logﬁ) (13)

where h is the characteristic element size, H the characteristic subdomain size, and
v = 3. If there are no nodes shared between more than two subdomains, and in some
other special cases, (13) holds with vy = 2.

The bound (13) no longer holds for the lumped preconditioner, but one observes a
superconvergence effect instead [FMR94]. Because the operator PF' is a discretization
of the inverse of a differential operator, which is compact, the eigenvalues are
clustered around zero. Since the convergence of conjugate gradients after k steps
is determined by the spectrum left after removing k extremal eigenvalues, this
distribution of eigenvalues results in fast convergence. Unfortunately, as the number of
subdomains increases, the spectrum fills in and the superconvergence effect is observed
to disappear.

FETI for Time-dependent Problems

The solution of time-dependent problems by an implicit method calls for the repeated
solution of linear systems with the subdomain matrices K, of the form

K, =K, + (At)"' M,, (14)

where K, now denotes the subdomain stiffness matrix, M, is the subdomain mass
matrix and At is the time step. Because the mass matrix is positive definite,
Ker K = {0}, Z is void. Therefore, the natural coarse problem for the unknowns
a is lost and the number of iterations increases with the number of subdomains. This
can be corrected by the selection C = BZ, where Z is chosen so that Z = diag Zs,
Range Z, = Ker K,. Then, it was again observed that the number of iterations is
independent on the number of subdomains. It was proved that the iterates approach
the static case in the following sense. Consider the FETI iterative process on a linear
system with the matrices K, from (14) with 0 < At < 400, and a fixed right hand
side. Let A¥(At) denote the approximate solution after k iterations of FETI for a given
At. Then, for all k,
lim  AF(At) = A*(+00).
At—+oo

For further details, see [FCM95].

FETI for Plates

Here, the columns of C' are chosen as vectors with a one at the position of the
Lagrange multiplier that enforces the continuity of the transversal displacement at
a crosspoint, and zeroes elsewhere. A crosspoint is an interface node adjacent to at
least three subdomains or to two subdomains and the complement of Q. That is,
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Figure 1 The domain splitting for a general operator A (n =3 & N =4)

Lagrange multipliers that correspond to crosspoints are enforced exactly throughout
the iterations.

The condition number bound (13) was proved in [MTF95, MTF] for a general class
of plate bending elements that have the property that the local stiffness matrix of
the element is spectrally equivalent to that of the HCT element for the biharmonic
equation [LMV94]:

a KT < Kr < oo K77 (15)

where KHCT is the reduced HCT element stiffness matrix of the biharmonic
equation [CT66], with the rotations interpreted as derivatives of the transversal
displacement, and K7 is the element stiffness matrix for a triangular or rectangular
element with one displacement and two rotation degrees of freedom per node. The
spectral equivalence (15) was proved in [LMV] for the particular case of the DKT
element [BBH80], and for a general class of non-locking P1 Reissner-Mindlin elements
that have the element energy functional equivalent to

1
2 Ly .2
/T|V0| d$+t2+h2/T|0 Vu|® dz

with u € P1(T),6 € (Pi(T))?%, h = diam(T'), u the transversal displacement, and 6 the
rotation. This includes the DKT plate bending element as restated in [Pit87].

FETI for Shells

The ideas and theory governing the FETI method for plates [FCMR95, FM95]
suggest that, for shell problems, the continuity of the component of the displacement
field that is normal to the shell surface should be enforced at the substructure
crosspoints throughout the PCG iterations. One approach for implementing this
requirement and bypassing the difficulties associated with defining normals for non-
smooth shell surfaces consists in enforcing the continuity of the displacement field at
the substructure crosspoints in the direction of all three coordinate axes. Clearly,
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Figure 2 A 30-substructure mesh partition

this would automatically enforce the continuity of the normal component of the
displacement field at the crosspoints, while requiring only a minor modification of the
implementation of the FETI method for plates. More precisely, only the construction
of the C' matrix needs to be modified to have a one at the position of each of the three
Lagrange multipliers that enforce the continuity of each of the three displacement
degrees of freedom at a crosspoint. In [FCMR95], the authors have shown numerically
that, even for irregular shell problems with junctures, such an extension of the FETI
method preserves the quasi-optimal convergence properties proved mathematically
in [MTF95, MTF] for plate problems.

However, the extension of the FETI method to shell problems summarized above
generates a coarse crosspoint problem that is three times larger than that for plate
problems, because the continuity of all three displacement degrees of freedom rather
than the transversal displacement is enforced at the substructure crosspoints. Hence,
wherever the shell structure has a smooth surface, one can enforce only the continuity
of the normal component of the displacement field at a crosspoint. This is done by
setting Ci; = ng, Ciy1 j = ny, Ciyo j = n, at that crosspoint and C;; = 0 elsewhere,
and incurs the same computational cost as for plate problems. Here, n,, ny, and n,
denote the three components of the normal to a shell surface at a given crosspoint.

5 Parallel Implementation and Computational Results

The parallel implementation of the FETI method is straightforward, except for the
solution of the coarse problem, which has been discussed in detail in [FC94, Far95].
Because of space limitation, we focus here on illustrating only the scalability properties
of this method with respect to the number of substructures and processors. The
additional scalability of the FETI method with respect to the mesh size has already
been demonstrated and reported in all the FETI references cited in this paper.

For this purpose, we consider the stress analysis on a Paragon XP/S system of
a submarine structure loaded by a standing pressure wave (Fig. 1). The finite element
model contains 60332 nodes, 120064 three-noded shell elements, a total of 361735
active degrees of freedom, and many structural junctures. The mesh is partitioned
into 30, 40, 60, and 80 substructures with good aspect ratios [FMB95] for parallel
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Table 1 Performance results for a submarine shell structure with 361735 degrees of
freedom on a Paragon XP/S parallel processor

H # of substructures | # of processors | # of iterations CPU time Total CPU time ‘
coarse problem

| 30 | 30 | 93 | 182 sec. | 875 sec. |

| 40 | 40 | 94 | 178 sec. | 751 sec. |

| 60 | 60 | 105 | 203 sec. | 483 sec. |

| 80 | 80 | 87 | 162 sec. | 309 sec. |

computations on a Paragon XP/S system (2).

Four structural analyses were performed using the FETI method for shells. The
corresponding performance results are summarized in Table 1.

Clearly, scalability is well demonstrated for the solution of the coarse problems as
well as the solution of the overall problem. The size of the coarse problem increases with
the number of substructures and processors, but the CPU time elapsed in forming and
solving iteratively the repeated coarse problems is shown to remain almost constant.
Moreover, the convergence rate is observed to be almost independent of the number
of substructures, and the measured total solution time decreases superlinearly with
the number of processors.
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An Asymptotically Optimal
Substructuring Method for the
Stokes Equation

Boris N. Khoromskij and Gabriel Wittum

1 Introduction

In this paper, we propose and analyze an asymptotically optimal Schur complement
interface reduction for the Stokes equation on plane polygonal domains. It is based on
using special Poincaré-Steklov (PS) operators, see also [QV91]. We refer to [KW96] for
the related results based on a coupling of the stream function-vorticity formulation and
the decomposition approach from [GP79]. The multigrid methods of finite elements
(FE) for the Stokes and Navier-Stokes equations have been considered, e.g. in [Wit89).

The main ingredient of our method is an appropriate factorization of the matrix-
valued traction operator S;l :u = (0pn,0nr)T which maps the trace of the velocity
vector into the normal and shear stress components o,, and o,,. We introduce
a symmetric and positive definite (s.p.d.) Poincaré-Steklov operator Sy for the
Stokes equation, see (10), which maps the trace of the pressure into the normal
velocity component under the constraints u,r = divujr = 0. This interface operator
admits a stable FE approximation providing an asymptotically optimal stiffness
matrix compression. We study the mapping properties of the continuous PS operator
and briefly discuss the corresponding discrete FE approximations. In the case of a
rectangular domain, we apply the algorithm of the complexity O(N log® N) for the fast
Schur complement matrix-vector multiplication, where N is the number of degrees of
freedom on the (subdomain) boundary, see [KW97]. For domains composed of M > 1
rectangular substructures, our interface reduction is shown to have a complexity
O(MNlog?™ N), where ¢, = 2 for the multilevel BPX interface preconditioner
[JHBX90] and ¢, = 3 in the case of a BPS type [BPS86] preconditioner. Using an
interface reduction by the refined skeleton in the case of polygonal boundaries, see
[Kho96, KP95, KS96, KW96], yields an algorithm of the same complexity as above,
where ¢, + 1 must be substituted for g,.. The approach proposed may be extended to
the 3D case.

Let © € R? be a bounded domain with either a smooth or convex polygonal
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boundary ' = szl T'; composed of linear pieces I';. For given a, v > 0, f € L*(Q)?
and g € {u € H/2(T')? : (un, 1) 2y = 0}, consider the Stokes equation:
Find (u,p) € X x M such that

ou—vAu+Vp=f inQ € R?
divu =0 in Q (1)
u=g onT,

where M = L}(Q) = {p € L*(Q); [pdz =0}, X = H (Q)>.
r

For ease of presentation, consider the case a = 0. Denote by n = (n;,ny)T and
T = (—ng,n1)T the unit outward normal and tangential vectors, respectively. We use
the standard notations Xo = H}(Q)2, V = {v € X : divv =0} and Vj = V N X, and
define the continuous bilinear form a : X x X — R by

= 223/ v)d g = 5o ) O (2)
a(u,v) = 2. eij(u) : €45(v)dz, €ij = 3 9z, " omi)"

The Vp-ellipticity of a(-, -), the trace theorem and validity of the LBB inf-sup condition

q,divv) 2
B>0:  sup LIVL@ S g e M, 3)
veXo |V|1,Q

(I£11-1.0 + llgll1/2.r ) see [GR86, Lad6)].

2 Poincaré-Steklov Operators for the Stokes equation

Introduce the Poincaré-Steklov (traction) operator

1. _( Son SE, Un) _ (Onn )
STu_(Sm S v ) = o, X = X0,

by the identity

(S;lu7 V)r = (Onn (W), V) L2(r) + (Onr (1), v ) 2(r) = va(Tu, Tv), (4)

Vu,v € X, (T), where T : X,,,(I") — V is the Stokes solution (extension) operator
defined by (1) with f = 0. Here, X,,-(T') is a trace space of the normal and tangential
velocity components

Un
Xnr (T) :={vpr = ( ) v € HY2(D)?, (vp, D2y = 0}, [[Varllxn, = V[0

e

Our purpose is the construction of an efficient FE approximation to the PS operator
S;l. To that end, we construct such approximations for the inverse to the block-
diagonal components S,,,! and S} defined as the PS operators on the subspaces
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Vi=Av € X, :v, =0} and V, := {v € X,,; : v,, = 0} respectively, each of which
may be identified with a certain subspace of Y’, where
!
H1/2(T) = (Hl/z(I‘)) , if T e oLt
~ !

H;:1 H-Y2(Ty) = (szl H/? (Fj)) if T is a polygon.
Denote Yy = {u € Y': (u,1)r>r) = 0}.

Consider more precisely the block structure of the 2x 2 matrix valued-operator S;l.

First introduce the basic PS operators associated with the Laplace and biharmonic
equations (see [KW96, KS96] for the corresponding variational formulations)

Y =

~ 9 _ Au=0 UEHl(Q)

1 o 1/2(17. ’

Sa = mour € H/A(I); { ur = p € HY/2(T), ®

- A% =0, ¢ € H*(Q)N Hy(Q

iy —AYr €Y L L O ©
3n|1"_7€ )

Introduce the operator Sa : g — Y|, where 9 € H 1(Q) solves the equation

{ Ay =—Lo[gds in Q
r

g—:/;:g onT.

(7)

This operator coincides with Sa for g € Hl_l/Z(F) ={u€ HY2(I): (u,1)r2(r) = 0}.
Let D = & and D~'u = [ u(s)ds, Vu € H;*(T'). Note that the operators Sy * and D

7o
provide isomorphisms from Hy/*(T) = {u € HY2(T) : (u, 1)z2(ry = 0} onto HYA(T)
and Ker Sy' = Ker D = span{1}. The operator Sy' : HY*(T) - H-Y2(T) is s.p.d.,
while D = —D' is a skew-symmetric one. Due to [KS96], we know that the mapping
Zgl :Y' - Y is continuous and s.p.d.

Lemma 2.1 The operator S;l : Xnr — X, is continuous, symmetric and positive
semidefinite. The representation

~D 'Sx'SASA'DTY —DT1S:'SKy — 2D “
S:lu = " () ®
SxaSx'D™Y +2D ~
holds for Yu € X,,.(T).

Proof. The first assertion follows from definition (4) along the line of the proof of
Theorem 3.1. To prove (8), we pass to the stream function-vorticity formulation
u=curly, v € H3(Q) , ¥(z9) =0, 70 € T

V(A¢7 A()D)L2 Q) = <f7 C'I.lI‘l(p) V(p € Hg (Q)
Y= [gnds; GE=-g. onT ©)
o
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using the properties of the biharmonic PS operator S;% studied in [KS96]. More
detailed analysis of the representation (8) may be found in [KW96]. O
Since FE discretization to the operators D, D~! and Sgl is a rather standard topic,
a crucial point in the implementation of the matrix-valued operator (8) is an efficient
approximation to the operator S;% associated with the bi-Laplacian. A mixed FE
approximation S Az to Saz by Pi — P; elements has been developed in [KS96]. It was
shown to have the complexity C(Sx2) = O(N log? N), where ¢ = 2 for a rectangular
domain and ¢ = 3 in the case of convex polygons. However, the corresponding mixed
formulation turns out not to satisfy a uniform LBB condition with respect to the mesh
parameter h > 0. Thus, an optimal error estimate was not achieved in [KS96].

3 A New Interface Reduction by the Trace of the Pressure

To overcome the above drawback and to develop an approach which may be
potentially extended to the 3D problems, we introduce the new Poincaré-Steklov
operator associated with the Stokes equation, which admits a stable FE approximation
and provides a stiffness matrix compression scheme of the same complexity as for the
biharmonic operator S A2 Let €2 be either a convex polygon or a domain with a smooth
boundary. Introduce the operator S;; : Y — Y’ by

Apy =0, par =A€Y
Set : A — _(uk)mr , where vAuy — Vpy =0, (10)
d’L"UuMF = 0; (U)\)Tlr = 0,

which maps the trace of the pressure A into the normal velocity component (uy), of
the solution to (10) (cf. the decomposition approach developed in [GP79]).

Theorem 3.1 The operator Sg : Y — Y' is continuous and s.p.d. on Y /R, such that
KerSg = span{1}, implying

Set = —DSASA28AD and Sp> = —Sx*D7SD7ISXt on Y. (11)
There exists continuous and s.p.d. pseudoinverse S;;* : Y{ — Y/R. There holds

St S;1DSA —2D u
S;lu= ( ") (12)
—SADS;' +2D —SaDS;'*DSa tr
Sketch of the proof. To prove the mapping properties of Sy, we first note that the
constraint divujr = 0 implies divu = 0 in Q for any u € H?(Q) satisfying (10). We
then apply the basic variational formulation of the second equation in (10) (due to
the corresponding Green’s formula): u, € X,

va(uy,v) — (p,divv) = —/Aunds Vve X, ={z€X:z =0}
r (13)

which is valid since the conditions divuyr = 0 and (uy), |, = 0 yield the representation

T‘[‘

Onn(ur) = —px + 2vdivayr = —px onT.
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The symmetry and continuity of Sy is derived by the variational equation

(SstA, pyp2ry = va(un,uy), VA peY. (14)
Indeed, due to the trace theorem and Korn’s inequality, it follows for uy € X,

1S3 = )nll}r < ellune /ey < caluy,my) = (15)

C C
= St A N2y < ZlSstAllyr - [IAlly-

The positive definiteness of S,; follows from:
a) the norm equivalence (see [KS96])

lApllzz@) = llully  Vrey, (16)

where the continuous mapping A : Y — L?(Q2), such that Ay = ¢ denotes a solution
operator of the Dirichlet problem for the Laplace equation in a very weak form

/(pAZdI = (/“’ Z_:;)Lz(l") Vz € Hz(Q) n H&(Q), IS Y;
Q

b)inf-sup condition (3) for the subspace Xp.
In fact, we use (16), (3), the continuity of a(-,-) and obtain

i
joa < sup P2EY)

[Ally < cllpa
veXo |v|1,Q

a(uy,v)

= v sup < cya(u,\,u)\)l/2 < cul/Z(Sst)\, A)}:/zz(r).

vexo [VlLe
The representations (11) and (12) follow from (8) and from the equivalence between
(19) and (7), see also the proof of Theorem 3.2. O
The operator Sy provides an alternative representation (12) to the matrix-valued
PS operator S;l. In this case, we may avoid the stream function-vorticity formulation
and construct a stable FE approximation to Ss;. Moreover, the representation (12)
involves only the operators in the normal-tangential (i.e., dimensionally invariant)
form and provides a natural base for an extension of the underlying techniques to the
3D case. The operator Sy also provides an efficient boundary reduction to the Stokes
equation (if f = 0) with respect to the trace of the pressure.

Theorem 3.2 The trace A = pir of the solution (u,p) to the Dirichlet problem (1)
(with £ = 0) satisfies

AEY/R: (Si'\mrer) = (9n — (Wo)n, w2y  Vp € Y/R, (18)
where ug solves the following mized problem for the vector Laplace equation

—vAuy =0 in (w), =g-, divug=0 onT. (19)
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Proof. The unique solvability of (19) is checked by using the substitution uy =

curley,p € H2(Q), (zo) = 0, where 1) satisfies (7) such that &£ = g, and

on
g—’f = —(ug)n. Then the assertion follows from Theorem 3.1. O

Remark 3.1 Equation (13) has an equivalent form
vd(uy,v) + (Vp, V)2 =0 Vv eEX,, (20)

where the bilinear form d : X x X — R is defined by
d(u,v) := (curlu, curlv)pz(q) + (diva, divv) (). (21)

3’02

Here, the operator curl : X — R is given by curlv = e g—;;. For technical reasons,

we further construct a discrete scheme on the base of above defined form d(-,-).

4 A Stable FE Approximation to the Interface Operator

Let © be a rectangular domain. Assume M, € M and X,, € X, to be the spaces
of Py iso P,/ P, FEs, see [Pir89], defined on the regular hierarchical triangulations 7
and Ty /2 of Q. Let uop, be the discrete solution of (19) based on the FE approximation
of the Poisson equation (7) with respect to Mj. Introduce the equations

Given Ap € Yy, := My, r, find pxp € My, such that pxp = Ap on T' and

(VDan, Van)rz) =0 Van € M N H(Q) ; (22)
Find uy, € X,p, such that:
vd(uap, Vi) — (Pan, divvy) = —(An, (Vi)n) L2(1) Vv € Xop . (23)
For any A\, € Y}, define FE approximation P, to S by
(PrAn, pn) = vd(uxp, ugn), Yun €Yy, . (24)

The s.p.d. operator Py, admits a fast matrix-vector multiplication. The discrete system
related to (18) can now be written as a boundary equation with respect to the trace
of the pressure

(Pnn,pn) = —((8 —uon) 0, pn)r2ry  Vpn € Ya . (25)

With A, satisfying (25), the approximate velocity uy and the pressure p, are given by
up = Ugp + Uxp, Ph = Pan- Assuming Tp to be the uniform triangulation, we may
prove the main result.

Theorem 4.1 The operator P, : Y, — Y} is s.p.d. on Y,/R providing the norm
equivalence

v{(Pupn, pn) = lenlly/p - Vin € Ya (26)
with constants of equivalence not depending on h. There holds

IA=Anlly < ch(|ulz + |plhe) - (27)
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Sketch of the proof. Applying the trace theorem and Korn’s inequality, we obtain

(Pudns An) = vd(uxn, un) < ¢Anlyyr 1(uan)nllmizmy < [Anlyyr d(uan, uan) 2.

The other direction follows from the norm equivalence ||punllo,0 = ||unlly, Vin € Y,
see [KS96], the discrete inf-sup condition and continuity of d(-,-). Indeed,

D, divvy
DPan € My, : IAelly/r < cllpanllo,e < ¢ sup (pan, divvs) =
vrE€Xon |Vh|1,Q

d(urp, va)
1,0

=vc sup < 1/0(1(U>\h,u,\h)l/2 = 1/? c(Ph)\h,)\h)l/2 .

vrEXon |vh

Now (27) follows from (26) and standard error estimates for (22) and (23), see [KW97]
for more details. O
Finally, the symmetric and positive definite FE approximation to S;l from (12) is

obtained by a substitution of Dy, §Ah and P, into (12) instead of the corresponding
continuous operators.

Remark 4.1 Using the discrete operator Py, we immediately obtain an s.p.d.
FE approrimation to the biharmonic Poincaré-Steklov operator Saz by SA% =
—SgiD;lPhD;@;i yielding an optimal approrimation error and efficient matrix
compression. This means that our interface reduction for the Stokes equation provides
an efficient solver for the stream function-vorticity formulation as well.

5 An Interface Reduction by the Domain Decomposition

We consider the s.p.d. approximation of Ar, by using the operator P,. To fix the
idea, we assume = U;Q; to be composed of rectangular subdomains €2;. First derive
an interface reduction to the equation (1) with the given right-hand side f # 0 and

g = 0. For any subdomain 2;, assume the traction vector g; = (ZMEEE;)‘ of the
nr(u0s)/ |,

corresponding particular solution ug; € Ha (2;)? to be given. Define the related trace
space on the skeleton I'g = U;I"; by

Yr, :={u=vr, : v € Hy(2)?, (Vi)n,)r, =0, i=1,..., M} (28)

and equip it with the norm  |lul|y;, = eVinf |z]| 711 () - The interface reduction
z€Vp;z|py =u

to (1) takes the form:
Find u € Yr,, such that u = Up, (U solves (1) ) and satisfies

M M
(Apoll, V)l"o = Z(Sz'_Tluia vi)ri = Z(d)Oi; vi)l"i Vv € Yl"o' (29)
i=1 =1

Due to Vp-ellipticity of a(-, -), the continuous and symmetric operator Ar, : Yr, = Y{

is also positive definite. We approximate S{T1 given by (12) using the s.p.d. operator

Py,. To avoid the divergence-free constraints ((u;)n,1), =0,i=1,... M and then to
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apply the standard preconditioning techniques, we first extend the interface operator
Ar, to the constraints-free trace space Yp, := {u = vir, : v € Hj(Q)?} preserving the
symmetry and the norm equivalence on Yr,. This extension is based on a scaling of the
trace of the pressure on any subdomain boundary I'; (by an appropriate choice of the
constants p; = (p, 1) 2(r;)) and on using of a special coarse mesh space Y; responsible
for the divergence-free constraints on I';.

Let Y1 = span{gi}¥, C Yr, be the coarse mesh space of the dimension
dimY; = M (in general I'; C suppg?), where the normalized basis functions g’
and the corresponding Gram matrix G satisfy

detG #0, G ={gij}5=1, 9ij = (& 1)r,, 1°=(1,0" on Ty (30)

Then the following splitting into the direct sum )N’FO = Yr, @ Y7 holds, such that
Yy = span{1}M, = Y. Let S;' : ¥, — Y be the Poincaré-Steklov operator
corresponding to the weighted vector Laplacian. Define the operator 4; : ¥; — Y/ on

Y; (by an inexact h- harmonic extension of g¢) providing the norm equivalence

(Aig.8)r, = (Sx'g.8)r, VgeEY. (31)

We then obtain (Ar,u,g)r, = 0 and (A1g,u)r, = 0 Yu € Yr,, g € Y1 by an
appropriate scaling of pr; and by the definition, respectively. The desired extension

Z]_"O is now defined for any u,v € Yr, and g,,8, € Y1 by

(AVFU (ll + gu)a v+ gv)FO = (AFU u, V)Fo + <A1gU7 gv>F0 . (32)

If we assume the right-hand sides 1)p; to satisfy the compatibility conditions
(%0i, &), = 0 (by an appropriate scaling of ., (110;)), then (29) becomes equivalent
to the equation

M
ueYr,: (Ar,(u+gu)VIr, = (oi,vir; Vv € Yr, (33)

i=1

posed on the constraints-free trace space }N’po and providing g, = 0. Clearly, the opera-
tor Zpo is symmetric and positive definite. It may be shown to be spectrally equivalent
to SZI. Thus, one may apply any standard preconditioners (which remain verbatim for
the piecewise Laplacian) to solve the equation (33). In particular, the BPS, balancing
type and multilevel BPX preconditioners may be constructed for the iterative solving
of the interface equation (33). More detailed analysis of the abovementioned precondi-
tioning techniques (also in the presence of right triangular subsructures) may be found
in [KW97]. An efficient computation of the residual for the equations (29) and (33)
is based on a fast matrix-vector multiplication for the local Schur complement matri-
ces SZ._Tl associated with SZ._Tl. In the case of rectangular domains, the corresponding
matrix compression scheme of the complexity O(N log® N') was presented in [KW97).
Here N denotes the number of degrees of freedom on the subdomain boundary. With
such compression algorithm, we arrive at the estimate O(M N log?" N) for the over-
all computational complexity of the PCG methods applied to the system (33). Here,
qr = 2 for the multilevel BPX preconditioner on the interface and ¢, = 3 in the case
of the BPS preconditioner.
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Non-overlapping Domain
Decomposition Preconditioners
with Inexact Solves

James Bramble, Joseph Pasciak and Apostol Vassilev

1 Introduction

In this paper, we consider the solution of the discrete systems of equations which
result from finite element or finite difference approximation of second order elliptic
and parabolic boundary problems. To effectively take advantage of modern parallel
computing environments, algorithms must involve a large number of tasks which can be
executed concurrently. Domain decomposition preconditioning techniques represent a
very effective way of developing such algorithms. The parallelizable tasks are associated
with subdomain solves.

There are two basic approaches to the development of domain decomposition
preconditioners. The first is the so-called non-overlapping approach and is
characterized by the need to solve subproblems on disjoint subdomains. Early work
was applicable to domains partitioned into subdomains without internal cross-points
[BW86], [BPS86b], [Dry89]. To handle the case of cross-points, Bramble, Pasciak
and Schatz introduced in [BPS86a] algorithms involving a coarse grid problem
and provided analytic techniques for estimating the conditioning of the domain
decomposition boundary preconditioner, a central issue in the subject. Various
extensions of these ideas were provided in [Wid88] including a Neumann-Dirichlet
checkerboard like preconditioner. Subsequently, these techniques were extended to
problems in three dimensions in [BPS89] and [Dry88]. A critical ingredient in the
three dimensional algorithms was a coarse grid problem involving the solution averages
developed in [BPS87]. Related work is contained in [CMW95], [Nep91], [Smi90].

The papers [BPS86b], [BPS86a], [BPS87], [BPS88], and [BPS89] developed domain
decomposition preconditioners for the original discrete system. The alternative
approach, to reduce to an iteration involving only the unknowns on the boundary,
was taken in [BW86], [BPX91], [CMW95], and [Smi90]. The difference in the two
techniques is important in that for the first, it is at least feasible to consider replacing
the subproblem solves by preconditioners.
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The second approach for developing domain decomposition preconditioners involves
the solution of subproblems on overlapping subdomains. For such methods it is
always possible to replace the subproblem solution with a preconditioning evaluation
[BPWX91]. However, in parallel implementations, the amount of inter-processor
communication is proportional to the amount of overlap. These methods loose some
efficiency as the overlap becomes smaller [DW94]. Theoretically, they are much
worse in the case when there are jumps in coefficients (see, Remark 3.3 below). In
contrast, the convergence estimates for correctly designed non-overlapping domain
decomposition algorithms are the same as those for smooth coefficients as long as the
jumps align with subdomain boundaries.

Thus, it is natural to investigate the effect of inexact solves on non-overlapping
domain decomposition algorithms. Early computational results showing that inexact
non-overlapping algorithms can perform well were reported in [GW87]. References
to other experimental work can be found in [DSW94]. Analysis and numerical
experiments with inexact algorithms of Neumann—Dirichlet and Dirichlet types, under
the additional assumption of high accuracy of the inexact solves, were given in [B89]
and [HLM91]. Their analysis suggests that the inexact preconditioners do not, in
general, preserve the asymptotic condition number behavior of the corresponding
exact method, even when the forms providing the inexact interior solves are uniformly
equivalent to the original.

In this paper, we develop new non-overlapping domain decomposition precondition-
ers with inexact solves. We provide variations of the exact algorithm considered in
[BPS87]. We develop algorithms based only on the assumption that the interior solves
are provided by uniform preconditioning forms. The inexact methods exhibit the same
asymptotic condition number growth as the one in [BPS87] and are much more ef-
ficient computationally. Our algorithms are alternatives to and in many applications
less restrictive than the preconditioners in [B89] and [HLM91]. The convergence es-
timates developed here are independent of jumps of the operator coefficients across
subdomain boundaries.

An important aspect of the analysis provided in this paper is that the non-
overlapping preconditioners are shown to be of additive Schwarz type. Even though
the new methods are inspired by and implemented according to the classical non-
overlapping methodology, they can be reformulated as additive Schwarz algorithms
with appropriately chosen subspace decompositions.

The first algorithm of this paper involves a coarse subspace utilizing a simple
extension defined in terms of the the average value of the function on the boundary.
After preparing this manuscript, it has come to our attention that this extension
was also used in a recent paper by Bjgrstad, Dryja and Vainikko [BDV96] which
was presented in the Eight Domain Decomposition meeting in the summer of 1995.
Both the present paper and the one just mentioned rely on the use and analysis of a
boundary form defined in terms of boundary averages. This boundary form was also
analyzed in [BPS87].

The second algorithm in the present paper is a classical domain decomposition
algorithm with inexact solves. It is shown to be an additive Schwarz procedure with
special subspace decomposition. The particular decomposition depends on the inexact
solve and thus needs to be investigated differently from the standard additive Schwarz
approach. Finally, the results and analysis of the current paper were presented by the
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second author at the Seventh Copper Mountain Multigrid Conference in April of 1995.

2 Preliminaries and Notation

In this section we formulate a model elliptic problem and introduce the corresponding
finite element discretization. We also outline the guiding principles in constructing our
preconditioner.

We consider the Dirichlet problem

Lu=f in Q, (1a)
u=0 on 019, (1b)

where f is a given function, @ C R” (n = 1, 2, 3) is a bounded polyhedral domain
with Lipshitz boundary, and

"9 ov
Lo=—)" o, (a,-ja—mj) : (2)

ij=1

Here the n x n coefficient matrix {a;;} is symmetric, uniformly positive definite, and
bounded above on 2. This is a classical model problem for a second order uniformly
elliptic equation.

The generalized Dirichlet form on 2 is given by

Alv,w) = Z /Qa,-jaivajw dz. (3)

i,j=1

This symmetric bilinear form is well defined for functions v and w in the Sobolev space
H'(Q). The L?(Q)-inner product and the related norm are defined by

(v,w)q = / vw dx
Q

and
lvllg = (v,v)-

Let H}(2) be the Sobolev space obtained by the completion of smooth functions
with support in Q with respect to the norm in H(Q). The weak formulation of (1) in
H}(Q) is then given by the following.

Find u € H}(Q) such that

A(u, ) = (f,¢), forall ¢ e Hi(Q). (4)

Given a finite dimensional subspace S3(Q) of Hj(Q2), the standard Galerkin
approximation to (4) is defined by:
Find up, € Sp(Q) such that

A(un, ) = (f,¢), forall ¢ € SH(Q). (5)
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To define SP(2), we partition Q into triangles {7/} (or tetrahedra) in the usual
way. Here h is the mesh parameter and is defined to be the maximal diameter of
all such triangles. By definition, these triangles are closed sets. We assume that the
triangulation is quasi-uniform. The collection of simplex vertices will be denoted by
{ZI,','}.

By convention, any union of elements T;-l in a given triangulation will be called a
mesh subdomain. In the sequel 2 is assumed partitioned into ny mesh subdomains
{Qr}4, of diameter less than or equal to d. The notation Qj will be used for the set
of all points of a subdomain including the boundary 0€2.

We now define the finite element spaces. Let SP(2) be the space of continuous
piecewise linear (with respect to the triangulation) functions that vanish on 1.
Correspondingly, SP(€2;) will be the space of functions whose supports are contained
in Q and hence each function in SJ(Q) vanishes on Q. S,(Q) will consist of
restrictions to Qj of functions in Sp(2). Let I' denote |J, 8 and let Si(I') and
S1(0Q) be the spaces of functions that are restrictions to I' and 9, respectively,
of functions in S9(2). We consider piecewise linear functions for convenience since
the results and algorithms to be developed extend to higher order elements without
difficulty.

The following additional notation will be used. Let the L?(9Q;)—inner product be
denoted by

(u, v)oq, :/ uv ds
o9,

and the corresponding norm by

1/2
|U|aQ,c = <”v”)aézk-

On Sp(09Q4), the discrete inner product and norm are defined by

(U, v)o0,,n =B Y u(zi)v(wi)
z; €00,
and
1/2
(V1o n = (U,0) 50 1

Because of the mesh quasi-uniformity, the norm equivalence
2 2 2
C|v|30k < |U|Bﬂk,h < C|U|an (6)

holds for function v € S, (0Q).

Here and in the remainder of the paper, we shall use ¢ and C to denote
generic positive constants independent of discretization parameters such as h, d, and
subdomain index k. The actual values of these constants will not necessarily be the
same in any two instances.

Finally, Dg(-,-) denotes the Dirichlet inner product on € defined by

Dr(v,w) = Z A Owdw dz, forall v, w € H'(Q). (7
— k
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The development of a method for efficient iterative solution of (5) is the subject of
our considerations in this section. In particular, using the decomposition of 2 described
above, we shall define a bilinear form B(-,-) on S)(Q2) x S9(Q2) which satisfies the
following two basic requirements. First, the solution W € S)(€) of

B(W,¢) = (g,p)a forall ¢ e SpQ), (8)

with g given, should be more efficient to compute than the solution of (5). Second,
the two forms should be equivalent in the sense that

MB(V,V) < A(V,V) < XB(V,V) forall Ve SYQ), (9)

for some positive constants A\; and Ay with Ay/A; not too large. These conditions,
though somewhat vague, serve as guidelines for our construction.

3 The Preconditioner B(-,-)

To define our domain decomposition preconditioner, we will need boundary extension
operators. For each k, let us define linear extension operators & : Sp(0Q%k) — Sn(Q4)
by

¢($z) for x; € 6Qk,

Exdlzi) =
k(e:) {0 for z; € Qi \ .

We remind that the functions in the finite element spaces defined above are fully
determined by their values at the grid nodes and thus it is sufficient to define the
extensions &, at the nodal points z;. Also, & can be viewed as a linear operator
S2(Q2) — SY(Q2) with a trivial modification of the above definition, namely

¢(.’L‘l) for z; € 6Qk,
Erd(x;) =
k() {0 for z; € 0\ 0.
We shall use & in both contexts since it will be easy to determine which is the right

one from the functions &}, is applied to.
Similarly, let £ : Sp(Q) — SP(Q) be defined by

¢(z;) for z; €T,

10
0 for z; € Q\T. (10)

Ep(x;) = {

For each k, let By(-,-) be a bilinear form on Sj(£2)) x S2(Q) which is uniformly
equivalent to Ag(:,-), where Ax(:,-) is defined as in (3) but with integration only on
Q.. By this we mean that for each k there are constants ¢ and Cy, with Cy /¢ bounded
independently of h and d such that

By (V,V) < Ap(V,V) < CpBi(V,V), forall Ve Sg(Qk) (11)

The preconditioning form is given by
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B, V) = ZdBk(U — Uy — E(U = Tx),V = Vi = E(V = Vi)

k=1

n (12)
d — —
+ 07 ar(U — U, V = Vi)ogy n-
k=1
Here, Uy, denotes the discrete mean value of U on 82, i.e.,
_ 1
g, = \U:Doown
(1, 1)aqy,.n
In (12), ag, k = 1,... ,ng are parameters. For example, if gy, is taken to be the smallest
eigenvalue of {a; ;} at some point 2 € ) then
Ci @Dy (v,v) < Ag(v,v) < CrarDy(v,v), for all v € Sp(Q), (13)

where C}, depends only on the local variation of the coefficients {a;; } on the subdomain
Q. Consequently, we will assume that (13) holds with Cy/c, bounded independently
of d, h, and k.
We introduce some standard assumptions about the domain {2, the subdomain
splitting and the associated finite element spaces which are needed for the analysis.
We start by requiring that the collection {2} be quasi-uniform of size d. Also, we
shall assume that

[ulag, < Cle llullg, + eDrlu,u)}, (14)

holds for any € in (0,d] and all k. Finally, we assume that a Poincaré inequality of the
form

[vllg, < Cd*Di(v,v) (15)

holds for functions v with zero mean value on Q.

The inequalities (14) and (15) hold for all but pathological subdomains. A sufficient
but by no means necessary condition for the above two inequalities is given in the
following assumption.

Each Qj, is star-shaped with respect to a point. This means that for each €, there
is a point &, and a constant ¢ > 0 such that (z — &) - n(z) > cgd for all z € 9Qy,
which are not mesh vertices. We further assume that ¢; > ¢ for some constant ¢ not
depending on d, k or h. Here n(z) denotes the outward unit normal vector to 9 at
a nonvertex point z.

The following theorem establishes bounds for the asymptotic behavior of the
preconditioner B(-,-).

Theorem 3.1 Let A(-,-) and B(-,-) be given by (3) and (12), respectively. Then there
ezist positive constants ¢ and C not depending on d or h such that

cA(V,V) < B(V,V) < C%A(V, V), (16)

for all V € S ().
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Remark 3.1 The preconditioning form B(-,-) defined above is mnot wuniformly
equivalent to A(-,-). Nevertheless, its preconditioning effect is very close to that of
a uniform preconditioner for many practical problems, particularly in three spatial
dimensions. The number of subdomains often equals the number of processors in a
parallel implementation and it is now feasible to keep d on the order of h'/?. Applying
a conjugate gradient method preconditioned by B(-,-) for solving (5) would result in
a number of iterations proportional to h=1/%. In R®, if Q is the unit cube, h = 1072
corresponds to a very large computational problem whereas 10'/2 ~ 3.2. Also, it is well
known that classical overlapping domain decomposition algorithms with small overlap
exhibit the same condition number growth but in contrast to our method the overlapping
preconditioners are adversely sensitive to large jumps in the operator coefficients (see
Remark 3.3 below).

Remark 3.2 The constants ¢ and C in Theorem 3.1 depend on the local (with respect
to the subdomains) behavior of the operator and the preconditioner. Clearly, one of the
most influential factors on the local properties of A(-,-) and B(-,-) is the coefficient
matriz {a; ;}|o,. In fact, the constants Cy, in (13) depend on the local lower and upper
bounds for the eigenvalues of {a; ;}|o, and in general so do the constants ¢, and Cy,
in (11). Therefore, in applications to problems with large jumps in the coefficients, it
is desirable, if possible, to align the subdomain boundaries with the locations of the
Jjumps. In this case the preconditioner (12) will be independent of these jumps.

Remark 3.3 The utilization of the averages Uy, plays the role of a coarse problem
especially designed to take into account cases with interior subdomains and also
applications with large jumps in the operator coefficients, provided that the locations
of the jumps are aligned with the subdomain boundaries. To illustrate that the role of
the averages in overcoming difficulties coming from large jumps of the coefficients is
essential, we consider a conventional additive Schwarz preconditioner with minimal
overlap [DW94]. The asymptotic condition number bound provided in [DW94] is the
same as that of our theorem in the case of smooth coefficients. However, because of
the deterioration in the approzimation and boundedness properties of the weighted L>
projection into the coarse subspace [BX91], the condition number of the preconditioned
system for the minimal overlap algorithm when n = 3 can only be bounded by (d/h)?.

Our preconditioner is very economical computationally. In fact, it allows the use of
efficient subdomain preconditioners such as one multigrid V-cycle (cf. [Bra93]). The
use of the simple extension £ also results in enhanced efficiency.

4 An Additive Schwarz Reformulation of the Domain
Decomposition Algorithm

A very important observation for the subsequent analysis is that the preconditioner
B(-,-) can be viewed as an additive subspace correction method (cf. [BPX90] and
[Xu92]) with judiciously chosen subspaces. Let the linear operator £ : S9(Q) + S9(Q)
be defined by

EV =EV 4+ (Vi — ExVi).
k=1
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In the above definition, V} is a constant function with support in the closed subdomain
Q.
Furthermore, define

S59Q)={ve S |v=0 onT}

and
Sr(Q) ={Ev|ve SN}

Thus $9(Q) and Sr(Q) provide a direct sum decomposition of S%(9).
The additive Schwarz preconditioner applied to g € S} (£2) based on the above two
spaces results in a function Y = Yj + Yr where Y € S'g (Q) satisfies

Bo(Yo.9) = (9,¢), for all ¢ € 53(2) (17)
and Yr € Sp(Q) satisfies
Br(Yr, ¢) = (9, ¢), for all ¢ € Sp(Q). (18)

Here Bo(-,-) and Br(:,-) are symmetric and positive definite bilinear forms.
We shall see that the preconditioner in (12) is equivalent to the additive Schwarz
method above when

k=1
and
Br(p,¢) =h™" Z ak{p — B, — Pr)oq,n- (20)
k=1

Let W be the solution of (8). Then
BW,p) =B(W™,¢) = (9,0)a, forall ¢ e Sp(h), (21)
where W) = W — Wy, — E (W — Wy,). The function Yy satisfying (17) is given by
Yo=W —EW on Q.

The form given by (20) depends only on the boundary values of ¢ and ¢. Also, the
function Yr solving (18) equals the solution W on I'. From the definition of £,

Yr = EW =EW + Z(Wk — ngk)-
k=1

Thus, the solution W of (8) is the result of the additive Schwarz algorithm with
subspace decomposition given by S9(Q) and Sr(f2), with forms defined by (19) and
(20).
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5 Alternative Inexact Additive Preconditioners

We now consider a classical technique for developing nonoverlapping domain
decomposition preconditioners. The behavior of such methods has been investigated in
the case when the boundary form is uniformly equivalent to the corresponding Schur
complement subsystem [B89], [HLM91]. Here, we show that this method also reduces
to an additive Schwarz preconditioner. In addition, we show that the inexact solve
technique combined with the boundary form discussed earlier provides an effective
preconditioner. Indeed, our results are much better than what would be expected
from the analysis of [B89], [HLMO1].

The classical inexact domain decomposition preconditioners are easily understood
from the matrix point of view. In this case, one orders the unknowns so that the
stiffness matrix corresponding to A(-,-) can be written in a block form as

A A
Asr A/’
Here A, corresponds to the nodes on I' and Aj; to the remaining nodes. With this

ordering, the form corresponding to a typical domain decomposition preconditioner
(e.g., [BPS86a],[BPS87],[BPS88], [BPS89]) has a stiffness matrix of the form

A _ (A A
A= (Azl Z )’
where Z = By + A21A1_11A12 and Bjs is the domain decomposition boundary
preconditioning matrix. Inverting A is a three step block Gaussian elimination
procedure.
The classical inexact method is defined by replacing Aj; with By; where By; is

another symmetric and positive definite matrix. This defines a new preconditioning
operator B given by

_ (Bu A
B= (A21 7 ) . (22)

Here Z is given by Z = B22 + A21B1_11A12.

Generally, the inexact algorithm may not converge as well as the exact version.
Even if one takes Bss to be the Schur complement, Asy — A21B1_11A12, the inexact
preconditioner may perform poorly unless the difference between the two matrices By,
and Aj; is sufficiently small in an appropriate sense (see Theorem 5.1).

We now show that the inexact preconditioners correspond to additive Schwarz
methods. The first subspace in this decomposition is 5’2 (Q). Let By(:,-) be the form
on S’g (Q) x S’g (Q) with stiffness matrix B1;. The second subspace is given by

8u(T) = {&o+ po |9 € SYQ);
(23)
Bolgn,§) = A€, ), o all p e 530 .
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Clearly, the functions in Sh (T") are completely determined by their traces on T'. Let
Br(-,-) be the form on S (") x S, (L) with stiffness matrix Baz. Br(u, v) depends only
on the boundary nodal values of u and v and thus naturally extends to S)(22) x S9(£).

Clearly, 89(Q) and S, (L) provide a direct sum decomposition of S9(Q2). This
decomposition is tied strongly to the bilinear form By(-, ). In particular, if By(-,-) =
A(-,-) on Sg(Q) X S*g (Q) then the space Sy (I') consists of discrete harmonic functions
and the decomposition is A(:,-)-orthogonal. In general, the decomposition is not
A(-, -)-orthogonal.

The preconditioner defined by (22) can be restated as an operator B : SP(Q2) —
S2(2). In fact, it is a straightforward exercise to check that it corresponds to the
preconditioning operator defined in the following algorithm.

Algorithm 5.1 Given g € SY(Q) we define B™'g = U where U is computed as
follows:

1. Compute Uy € S2(Q) by solving

Bo(Uo,9) = (9,) for all o € 3)(Q). (24)
2. Compute the trace Ur on I' by solving
Br(Ur,€4) = (9,£¢) — A(Uo,E¢)  for all ¢ € Su(T).
3. Compute Ury by solving
Bo(Urg,9) = —A(EUr, @) for all ¢ € Sp(9).
4. Set U =Up + EUr + Urg.

Although the above algorithm appears as a multiplicative procedure, we shall now
demonstrate that it is equivalent to an additive Schwarz method. It is easy to see that
the problem solved in Step 2 of Algorithm 5.1 is independent of Uy. Indeed, for any
¢ € Si(T), we decompose ¢ = £¢ + ¢ as in (23) and observe

—A(€¢,Uo) = Bo(o,Uo) = (g, bo)-
Thus, Steps 2 and 3 of the above algorithm reduce to finding Ur € S'h(l“) such that

Br(Ur,$) = (9,¢) forall ¢ € Su(T). (25)

Hence, B™1g = U = Uy + Ur where Uy and Ur satisfy (24) and (25) respectively, i.e.,
Algorithm 5.1 is an implementation of an additive Schwarz procedure.

Notice that Algorithm 5.1 avoids the need of knowing explicitly a basis for the space
S’h(l") which could be either a computationally expensive problem or a significant
complication of the overall algorithm. Obviously this procedure provides inexact
variants of the methods given in [BPS86a], [BPS87], [BPS88], and [BPS89).

It follows that the preconditioning form B(-, ) corresponding to the operator defined
in Algorithm 5.1 is given by

B(V,V) = Bo(Va, Vo) + Br(Vr, Vi). (26)
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Here V = Vj + V& with Vg € 89(Q) and V¢ € $,(T).
In the remainder of this section we provide bounds for (26). We take

By (us U) = Z B, (ua ’U)
k=1

where By(-,-) is defined as in Section 3 (with C} /¢, in (11) bounded independently of
h, k, and d). The first theorem in this section was given by Borgers [B89] and Haase
at al. [HLM91] and provides a result when Bo, is uniformly equivalent to the Schur
complement Ags — A21A1_11A12. This is the same as assuming that the quadratic form
Br(-,-) is equivalent to the boundary form with diagonal

inf A(u+¢,u+¢), foral ue SyT). (27)
$€89(0)

Theorem 5.1 Let A(-,-) be given by (3) and B(-,-) by (26). Assume that the quadratic
form Br(-,-) is uniformly equivalent to the quadratic from induced by (27). In addition,
let v be the smallest positive constant such that

|A(p, ) — B, 0)| < 7A(p,9) for all ¢ € SH(R). (28)
Then

c (llj)_ A(U,U) < B(U,U) < CLZA(U,U)

holds for all U € S(Q) with constants ¢ and C independent of d and h.

Remark 5.1 Condition (28) requires that Bo(-,-) should be a good approzimation to
A(:,-) for the preconditioner (26) to be efficient. The result of the theorem shows
that if (28) holds with v on the order of h'/? then the preconditioner B(-,-) is
uniform. However, the development of a form By(-,-) satisfying (28) usually involves
significant additional computational work since v must tend to zero as h becomes
small. Alternatively keeping 7 fized independent of h may result in a rather ill-
conditioned method when h is small. However, there are examples of reasonably
accurate preconditioners Bo(-,-), e.g. multigrid V- or W-cycles, which appear to
perform well when h is not very small (cf. [B89]) due to the fact that the corresponding
v’s are comparable to h'/?.

The main result of this section is given in the next theorem. It is for the case when

Br(u,v) = h™! Z&k(u — U, v — Dp)aq,.n, forall u, v e Sy(T). (29)
k=1

Theorem 5.2 Let A(-,-) be given by (3), B(-,-) be given by (26), and Br(-,-) defined
by (29). Then

AU, U) < BU,U) < C’%A(U, U) (30)

holds for all U € SY(Q) with constants ¢ and C independent of d and h.
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Remark 5.2 The result of Theorem 5.2 shows that introducing inexact solves in
the interior of the subdomains does not deteriorate the overall preconditioning effect
of the corresponding exact method analyzed in [BPS87]. As we have pointed out in
Remark 3.1, the adverse effect of h approaching zero on the condition number can be
compensated for easily by adjusting the parameter d. This balance is an alternative to
(28) and could be a better choice when h is small relative to . In fact, the utilization
of the bilinear form (29) leads to computationally efficient algorithms, unconstrained
by accuracy conditions like (28). The differences in the preconditioning effect of the
inezact (Algorithm 5.1) and exact (cf. [BPS87]) methods are negligible. However, the
savings of computational time are significant in favor of Algorithm 5.1.

REFERENCES

[B89] Borgers C. (1989) The Neumann-Dirichlet domain decomposition method with
inexact solvers on the subdomains. Numer. Math. 55: 132-136.

[BPS86a] Bramble J., Pasciak J., and Schatz A. (1986) The construction of
preconditioners for elliptic problems by substructuring, I. Math. Comp. 47: 103—
134.

[BPS86b] Bramble J., Pasciak J., and Schatz A. (1986) An iterative method for elliptic
problems on regions partitioned into substructures. Math. Comp. 46: 361-369.

[BPS87] Bramble J., Pasciak J., and Schatz A. (1987) The construction of
preconditioners for elliptic problems by substructuring, II. Math. Comp. 49: 1-16.

[BPS88] Bramble J., Pasciak J., and Schatz A. (1988) The construction of
preconditioners for elliptic problems by substructuring, ITII. Math. Comp. 51: 415—
430.

[BPS89] Bramble J., Pasciak J., and Schatz A. (1989) The construction of
preconditioners for elliptic problems by substructuring, IV. Math. Comp. 53: 1-
24.

[BPWX91] Bramble J., Pasciak J., Wang J., and Xu J. (1991) Convergence estimates
for product iterative methods with applications to domain decomposition. Math.
Comp. 57: 1-21.

[BPX90] Bramble J., Pasciak J., and Xu J. (1990) Parallel multilevel preconditioners.
Math. Comp. 55: 1-22.

[BPX91] Bramble J., Pasciak J., and Xu J. (1991) A multilevel preconditioner for
domain decomposition boundary systems. In Proceedings of the 10’th International
Conference on Computational Methods in Applied Sciences and Engineering. Nova
Sciences, New York.

[Bra93] Bramble J. (1993) Multigrid Methods, volume 294 of Pitman Research Notes
in Mathematics Series. Longman Scientific & Technical, London.

[BW86] Bjgrstad P. E. and Widlund O. (1986) Iterative methods for the solution of
elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal.
23: 1097-1120.

[BX91] Bramble J. and Xu J. (1991) Some estimates for weighted L? projections.
Math. Comp. 56: 463-476.

[CMW95] Cowsar L., Mandel J., and Wheeler M. (1995) Balancing domain
decomposition for mixed finite elements. Math. Comp. 64: 989-1015.

[Dry82] Dryja M. (1982) A capacitance matrix method for the Dirichlet problem on a
plygonal region. Numer. Math. 39: 51-64.

[Dry88] Dryja M. (1988) A method of domain decomposition for three-dimensional
finite element elliptic problems. In Glowinski R., Golub G., Meurant G., and
Périaux J. (eds) First International Symposium on Domain Decomposition Methods
for Partial Differential Equations, pages 43-61. STAM, Philadelphia, PA.



52 BRAMBLE, PASCIAK & VASSILEV

[DSW94] Dryja M., Smith B., and Widlund O. (1994) Schwarz analysis of iterative
substructuring algorithms for elliptic problems in three dimensions. STAM J. Numer.
Anal. 31(6): 1662-1694.

[DW91] Dryja M. and Widlund O. (1991) Additive Schwarz methods for elliptic finite
element problems in three dimensions. Technical Report 570, Courant Institute of
Mathematical Sciences, New York, NY.

[DW94] Dryja M. and Widlund O. (1994) Domain decomposition algorithms with
small overlap. STAM J. Sci. Comp. 15: 604-620.

[GW87] Gonzalez R. and Wheeler M. (1987) Domain decomposition for elliptic partial
differential equations with neumann boundary conditions. Parallel Comput. 5: 257—
263.

[HLM91] Haase G., Langer U., and Meyer A. (1991) The approximate Dirichlet domain
decomposition method. Part I: An algebraic approach. Computing 47: 137-151.

[Nep91] Nepomnyaschikh S. (1991) Application of domain decomposition to elliptic
problems with discontinuous coefficients. In Glowinski R., Kuznetzov Y., Meurant
G., and Périaux J. (eds) Fourth International Symposium on Domain Decomposition
Methods for Partial Differential Equations, pages 242-251. STAM, Philadelphia, PA.

[BDV96] Bjgrstad P. E., Dryja M., and Vainikko E. (1996) Additive schwarz methods
without subdomain overlap and with new coarse spaces. In Glowinski R., Périaux
J., Shi Z., and Widlund O. (eds) Domain Decomposition Methods in Science and
Engineering.

[Smi90] Smith B. (1990) Domain Decomposition Algorithms for the Partial Differential
FEquations of Linear Elasticity. PhD thesis, Courant Institute of Mathematical
Sciences, New York, NY.

[Xu92] Xu J. (1992) Iterative methods by space decomposition and subspace
correction. STAM Review 34: 581-613.



6

A New Approach to Domain
Decomposition Methods with
Non-matching Grids

Abdellatif Agouzal and Naima Debit

1 Introduction

Attempts at solving actual problems, e.g. heterogeneous equations, have revealed
limitations of many classical domain decomposition methods. As a result, there has
been renewed interest in new and alternative approaches.

In the context of non-matching grids, to our knowledge, three approaches
are considered in literature: Mortar element methods, in primal formulation
([AMMP90],[BDM90],[BMP92]), or mized or equilibrium formulation ([Ago96]);
hybrid methods ([AT95],[RT97]); and primal-equilibrium coupling methods ([AL94al).
Mortar element type methods are based on the explicit construction of an
approximation space. The approach we present here is a conforming one, in which
no global approximation is constructed. The domain is decomposed in two block-
subdomains allowing for internal subdomain decomposition. A primal variational
formulation is used in one region, whereas an equilibrium one is used on the other. The
flexibility of the method allows for use of different discretizations on each subdomain;
of low-order type (e.g. finite element methods [Cia91]) or high-order type (e.g. spectral
element methods [CHQZ88]). We will use in this paper either finite element or spectral
element versions of the method. The solution is discontinuous on the interface, and
the matching is implicitly contained in the equations formulation.

The main characteristics of the approach we introduce can be summarized as:

e Flexibility on the choice of discretizations on each subdomain;

e No global discrete space to contruct : The global space is a product of local
ones; the solution is ”discontinuous” on the interface;

o No Lagrange multiplier is used to take into account the constraint on the
interface.

This paper describes recent advances in the development of the present approach. We
give here the main results and leave the detailed analysis for related papers.
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2 Problem Formulation

The Continuous Case

The discussion here is restricted to second-order linear partial differential equations.
We consider the solution of the Poisson equation on a domain Q : Find « such that

Lu —Au4+u=f inQ,
u = 0 on I' =90Q.

where f € L?(Q).

Remark In all what follows, L can be replaced by Lu = —div(K grad u) +
3. grad u -+ ou, provided that all corresponding problem is satisfy standard solvability
hypotheses.

We suppose (for simplicity) that Q is rectangularly decomposable, that is, there exist
rectangular subdomains 2; and - such that

Q=02UQ, Q1 NQy =0.

In the sequel, we set
Y= 691 N 692

Figure 1

S

n [0} Q [P

First, we remark that this Problem can be factored to give the coupled system :

grad u; = p; in Qq,
—divpy +u1 = f in Qq,
—AU2+U2:fin Qz,
U3 = U On X%,

(751 =0 on Fl = 691/2,
U2:0 on ].-‘2:892/2,

p1.n1+%=0 on X
an

(1)
a

where Fns is the outward normal derivative, and p;.n; is the outward normal trace of
p.

In the framework of the numerical solution of (1) by finite element type or spectral
element type methods [Cia91], it is essential to work in a suitable variational context.
Otherwise stated, one has to use variational forms leading to a well-posed problem
equivalent to system (1) in a given sense.
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The weak form of (1) is given by seeking a pai (p1,us) € H(div, Q) X H%Z,O(QZ)
such that :

Vg, € H(div,Q,), /Q (p1-q1 + divp, divgy)dz— < q1.nq,us >x=— A f divg,dz,
1 1
Yuy € H%%O(Qg), { grad us. grad vs + ugvs }dz+ < p1.n1,v2 >n= / fuadz
" RN
where < .,. >y is the duality pairing between the function spaces HO%,O(E) and
H~2(%), and

Hj 1, () = {v € H'(Q22); such that v =0 on I'>}.

Note that the unknowns p; and us are coupled only through the boundary integrals
appearing in (2).
One can also write the problem (2) in another useful form, namely
Find (p1,u2) € H(div, ) x Hp, ;(Q2) such that,
V(q1,v2) € H(div, ) x H%Q,o(ﬂz),

B((p17u2);(QI7v2))=_ 0 deQ1d$+ 0 fUzd.’L' (3)

where

B((p1,u2); (q1,v2)) = le(pl-QI + divpr divgr)dz— < g1.n1,u2 >x
+  Jo,{ grad uz. grad vy + ugvp}dz+ < p.ng,ve >y

Concerning the existence and uniqueness results, we have

Theorem 2.1 There exists a unique solution (py,usz) of problem (2). Moreover,

P11 = grad ulﬂl’
Ug = U|Qg’

(4)
where u is the weak solution of the Helmholtz problem (2.1).

Proof: First remark that the bilinear form B(.;.) is H(div, 1) x Hg 1, (Q2)-elliptic. We
prove easily the continuity of this form. So by Lax-Milgram theorem, problem (2) has
a unique solution. The second part of the theorem is obtained by a slight modification
of standard arguments.

The Approzimated Problem

For its numerical solution, the variational problem (2) must first be approximated
by a problem with a finite number of unknowns [Cia91]. In the finite element or
spectral methods context, this approximation is realized by replacing the space
H(div,Qy) x H&,Fz () by a finite dimensional space. In this method, we want to
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approximate separately the spaces H(div, ;) and H&}FZ (Q22). Therefore, we introduce
finite dimensional spaces :

Vi, C H(div,$1), dim Vj, < 400

Vi, C HE, 5(Q2),  dimVp, < +o0.
The classical conforming Galerkin approximation of (2) is
Find (pp,,un, € Vi, x Vi, such that ,
V(thavhz) € Vhl X Vh27

B((ph1 ) uh2); (qh1 ) Uh2)) = - f di’l)thd.T + fvh2 dz. (5)
Q1 Q2

Similarly to problem (2), problem (5) has a unique solution. Moreover, it is possible
to prove the following

Theorem 2.2 Let (p1,uz) € H(div,) x Hyp, (Q2) be the solution of (2) and let
Vi, and Vy, defined as above. Problem (5) has a unique solution (pn,,un,) and there
exists a constant C which does not depend on dimensions of Vy, and V}, such that

”pl — Phy ”H(dz’v,ﬂl) + ”u2 - uhZ”LQz <
lnf(th Whg )EVhy X Viy {llp1 — gn, ”H(div,(h) + |luz — vn,

|1,92}'

Proof: Follows easily from Lax-Milgram Theorem and Céa Lemma.

An Ezample of Discretization

A basic choice of V4, and V},, in the spectral methods context consists of introducing:

Vi, = RTn1(21) = Pnvi,nvi—1(1) X Pyi—1,n1(21)
and
Vi, = Qn,(Q2) N Hy 1, (Q2).
With this choice, a consequence of (2.2) is the following
Theorem 2.3 Assume that the solution (p1,us) of problem (2) is such that, p; and

divpy belong to (H(21))? and H?' () for a real number o1 > 0, and uy belongs to
H°2(Q3) for a real number o2, 1 < o5. Then the following estimate holds

Ipr — Pyl E(@iv,00)  + U2 — Unsll0, < .
Ce ANT*(Ip1llor,00 + Idivpilloy0,) + Ny 7 Huzllgy,0,}-

for all e > 0.

By post-processing, we can easily obtain an approximation of u;. More precisely, if we
set

upn, = Iy, —1(divpn, + f)
where I, 1 is the projection operator defined from L?(£2;) onto Py, —1(1), we have

llur = un llo,@y < CANT 7 “(IIp1llos,0n + ldivprlloy,0.) + Ny 7 luzlloz0, }-

for all € > 0.
These results are illustrated in the following figure.
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Figure 2 We consider here the solution of problem (2.1) on the domain
Q = (—1,1). A spectral element discretization is used on each subdomain. The
right-hand side f is given by the exact solution ez (z,y) = sin (7z) sin (wz). We plot
in (a) the H' - error of u in Q2 as a function of related polynomial order; and in (b)
the L? — error of u in Qy, obtained by post-processing. The error decreases
exponentially fast as would be expected for spectral approximation of a smooth
solution.

0.1 T T T T 0.1 T T T T
@ ® o

0.001 | 0.001 | °

0.0001 | 0.0001 | o

. .
L-2 Error (Uexact - Ucalc)
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6 8 6 8
Polynomial order N2 Polynomial order N1

Figure 3 Case of the operator — div (v(.) grad ) with discontinuous coefficients.
We consider here the numerical approximation of the solution of the Helmholtz
equation —vAu(z,y) + u(z,y) = f(z,y). The domain is split into two physical

subdomains: The diffusivity parameter varies from one subdomain to other;

Vig, > Vg, (a) A conforming spectral element method is used with degree
polynomial N = 5. Obviously, one needs more refinement to has good approximation.
However this objective is achieved in (b) with a least polynomial degree using the
spectral element version of the present approach.
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3 Extension to Other Cases

Heterogeneous Domain Decomposition

Heterogeneous domain decomposition have broad applications in engineering and in
natural science. In this section, we give an extension of our ideas to the heterogeneous
domain decomposition methods.

As an example, we consider the coupling between elliptic diffusion equations and
hyperbolic convection (transport) ([AL94b],[AD96]). The idea of this procedure is
that in convection-diffusion problems where the convection is dominant, the diffusion
terms play a role only in the vicinity of boundary or internal layers. From the physical
information, these regions can be detected a priori, it is logical to suppose that
only there the complete equations have to be solved, whereas elsewhere the reduced
equations can serve as a correct model. Here, we consider the following problem.

8. grad u; +u; = f1 in Qq,

—AUZ + Uuo = fz in Qg,

U1 = Uz, On 3,

% + ,B.nlul =0on E,
6n2

u; =0onI7,

us = 0 on I's,

where
Fl_ = {SE' c ].-‘1;,8.”1 < 0}

and
0 € W1’+°°(Q).

we assume that
B(x)mni(z) <0 ae z€eX , divB=0.

Using similar arguments as in [AL94b], we can state that this problem has a unique
solution.
First, as in the elliptic case, we transform (6) into an equivalent problem

B. grad u; + v = f1 in Qq,
p2 = grad us in Q,
—di’Upz + ug = f2 in QQ,

U1 = U2 On E,

pa.n2 + B.nsu; =0 on X,

up =0on Iy,

us = 0 on I'y

(7)

Let us now set 7, a regular triangulation of the domain §; with triangular (d = 2)
or tetrahedral (d = 3) finite elements whose diameters are less or equal to h, and let
k and N be positive integers. We define the finite dimensional spaces V}, and V by

Vi = {Uh S Co(ﬁl);VT € ﬁ,vh‘T S Pk(T)},
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and
VN = RTN ().

The discrete problem is now

Find (up,pn) € Vi X Vi, such that

Vgn € Vi, / (pn-gn + divpy divgy)dz— < qn.n2,un >o0,5= —/ [ divgndz,
Q2 QZ

Yo € Vi, Z (8. grad up, + up)(vy + dhB. grad vy)dz —|—/ |B.n1|upvpdo

TER T z

+/pN.n2vhda+/ |B.n1|upvpdo = Z /(hﬁ grad vy, + vp,) fdz.
p> Iy T

TETH

(8)

where § is a stabilization parameter.

We have the following

Theorem 3.1 The problem (8) has a unique solution (up,pn) € Vi X Viyv. Moreover
if the solution (uy,p>) of problem (6) is such that, p» and divps belong to (H?2(Q2))¢
and H?2(Qs), respectively, for a real number o2 > 0, and uy belongs to H* (Q) for a
real number o1, 1 < 01 < k + 1, then the following estimate holds

1
Ip2 = PN llmaio sy +  llus —unllog, + R[5 grad (ur —un)llog, <
Ce {N_02+E(I|p2”02,92 + ||divp2||02,92) + horts I|u1”61,91}'

for all e > 0.

Partial Differential Equations in Nonstationary Invariant Geometries

The so-called sliding schemes have been already presented in either a finite difference,
[Gil88, Rai87], or mortar element framework [Ana91]. Sample candidate applications
include rotating machinery and turbomachinery.

For the sake of simplicity, the method is presented for the following model problem:

ot

{@—Au — f  inQx]0,T]
u(,t=0) = wu inQ

where Q = Q(t) is a nonstationary domain, f is a given force that may depend on
time, and wug is a given initial condition. It is obvious that we are not interested
here in numerical simulation of physical situation, in that problem (3) does not take
into account the equation of motion of the fluid medium. Our intent is to present the
formulation of sliding interfaces problem that couples primal and equilibrium variables.
We shall also focus our presentation on the simple case where (t) is decomposed into
two subdomains, one sliding with respect to the other along an interface I'(¢):

Q) = UL,
L) = Qnt),
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Figure 4 One dimensional example: The domain 2 = (—1.,1.)? is split into two
physical subdomains. A spectral method is used to discretize the elliptic equation on
Q; = (—1.,0.), while a stabilized finite element method is used for the hyperbolic
equation on Q2 = (0.,1.). B is constant and the right-hand side f2 on Q2 is
piecewise-constant. (a) The solution is discontinuous on the interface, and the non
physical oscillations on the hyperbolic domain do not affect the elliptic domain. The
continuity of the fluxes could also be illustrated. (b) A best approximation can be
recovered on the hyperbolic solution using an adaptive finite element method based
on a posteriori error estimates established for this one-dimensional problem.

1
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T oy —
@y —

08

06

Figure 5

Q.0 Tv

as illustrated in Figure 5, where I'(¢) is a segment.

The basic formulation is of spectral element type, but the methodology we introduce
is appropriate to finite elements as well. We just point out the fact that since no
matching conditions are imposed on the meshes, in case of complicated geometry, one
does not have to exhibit C°° mappings to use isoparametric elements. This method
could then be a tool for analysing fluid flows in truly complex moving geometries,
where the moving interfaces are in general curvilinear.

The scheme presented here is locally conservative, and the aliasing errors induced by
numerical quadrature have no effect on the stability. This remark is mainly of interest
for the implementation issue.

This variational method also preserves element-based locality, and the flexibility is
evident in the treatment of mesh refinement or moving boundary problems by sliding
meshes that do not introduce any mesh distortion or expensive interpolation.

Let us denote by V the velocity of Q5(t) and suppose it constant in time. We



A NEW APPROACH TO DDM WITH NON-MATCHING GRIDS 61

introduce the Lagrangian variable X in Q5(¢) by

{6—X(:c,t;7') = V(X(z,t;1)
X(z,t;7) = =

Problem (3) is then expressed as,

Ou(X(z,t;7),1)]

5 ot
Vz € Qy, 6_1:(%” - Au(z,t) = f(z,t).

Vz € Qa(t), — Au(X (z,t;7),t) — V.Vu(X (2,8 7),t) = f(z,1),

In practice, we can also perform internal decompositions of ; and Q5(¢). We can

Figure 6 Plot of discretization error ||u — us||z1 as a function of polynomial order
for the diffusion equation on the domain given by Figure 5. The exact solution is
given by u(z,y,t) = exp(—2w>t)sin (r) sin (7y). The simulation is carried out to a

final time Ty = .05, with At insuring stability.
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choose any temporal discretization. For sake of simplicity, we deal here with a simple
implicit scheme for the treatment of diffusion term, and an explicit (for example
Adams-Bashforth) for the convection term. With the superscript ™ referring to the
time " = n At, and u™ denoting u(t",.), the semi-discrete problem states now as

Vo € Qo(t™th),  w™t — ATt = Attt AH(V.VUR),
Vz € Qq, u™t — Au™t = At pn,

The functional framework introduced in the previous section completes the
discretization.
The proposed scheme for the approximation of problem (3) in the case of a first
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order time discretization reads now as follows

Find pyt' € RTn, (1), ujt' € Qno (57,  ufit!|so,\rner =0 such that
Vg"t! € RTy, (),

(PR g™ + AtV V") de — At/ N g nuttdl =
Q1 r»
- le (At.f™+ 4wl ) Vg™t da
Vot € Qu, (251, v agu\rner = 0,

At /Q Vuitt. votlde + /Q uitt " de + At /1“ N PRyt dl =
2 2 "
Ja, (At + uf, + At (V.VuR,))v" ! da.

From the analysis of the previous section, we deduce that this discretization
generates a unique sequence (u%;), of solutions.

The analysis of the discrete problem and stability analysis of this scheme give that
the error in (u,p) is bounded by a temporal error of the scheme order and spatial
errors as in the Helmholtz equation. The related details of approximation results are
left to a forthcoming report.
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Classical and Cascadic Multigrid—
A Methodological Comparison

Folkmar A. Bornemann and Rolf Krause

1 Introduction

We consider second order elliptic boundary value problems on a polygonal domain
QcRr?
u € Hy(Q) : a(u,v) = (f,v) 2 Vv € Hy ().

Here a(-,-) denotes a H}-elliptic bilinear form and f € L?(Q). Let
XoCX1C...CX;C...CH;(®)

be a sequence of finite element spaces belonging to successively finer triangulations of
2. On each level j the finite element solution u; is given by a linear system

Aju; = fj.

For its solution we think of an iterative scheme such that the result of m iterations
with initial data u) will be denoted by Zj*u§. The multilevel structure of the sequence
{X,} suggests as a good idea to start the iteration on level j with the result of level
j — 1. Especially, this is of advantage in an adaptive setting where the space X; is
constructed only after a solution on level j — 1 was obtained. Thus, on the final level
£ an approximation u} of u, is computed via the multilevel scheme

Uy = ug, uj =I;nju;_1 j=1,... 4 (1)
If we choose for 7; the multigrid V-cycle on level j and the number of iterations as
a constant my, i.e., my = ... = my = m,, this algorithm gives us the so-called full
multigrid method [Hac85, Bra92]. Some authors call it nested multigrid.

Bornemann and Deuflhard [BD96a] considered standard iterative schemes like the
damped Jacobi, the Gauss-Seidel, and the conjugate gradient iteration for Z;. They
showed that a proper choice of the number of iterations m; on each level could
make this method an “optimal” device—theoretically and practically. They named
it the cascadic multigrid method. Its history can be obtained by browsing through
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[Deu9d4, Sha96, BD96a, BD96b]. A distinctive feature of the cascadic multigrid method
is the total absence of coarse grid corrections which means that coarse grids can be
completely forgotten once they are refined. Therefore, the method is algorithmically
attractive when a given finite element program cannot provide tree data structures of
the refinement history but is used with a pre- and postprocessing device.

To be specific, the multilevel iteration (1) is called optimal with respect to an error
norm || - || if we can choose for each final level £ a sequence of numbers of iterations
mai,... ,my such that simultaneously

o the method is accurate, i.e., the algebraic error on level £ is a fraction 6 below
the error of discretization,

llue — ug|l < Ollu — wl,

where 6 is a user given constant,
e the method has multigrid complezity, i.e., the total computational work for
the iteration is bounded by

work < c-ny, (2)

where ¢ is some constant independent of £, and n, denotes the number of
unknowns on level £.

The full multigrid method is well known to be optimal with respect to the energy
norm and the L2-norm [Hac85, Bra92]. Bornemann and Deuflhard [BD96a, BD96b]
proved optimality of the cascadic multigrid method with respect to the energy norm.
However, optimality with respect to the L2-norm remained an open question. For
linear finite elements simple numerical experiments suggested that the answer to that
question is negative. In this paper we will give a theoretical explanation of this fact and
show that the case might be different for higher order elements. This will be done by a
careful analysis of the two grid variant of the cascadic multigrid method. Moreover we
will provide a setting where one can understand the methodological difference between
the cascadic multigrid method and the classical multigrid V-cycle almost immediately.
As a rule of thumb we will establish that whenever the cascadic multigrid works the
classical multigrid will work too, but not vice versa.

2 Two-grid Methods — the Abstract Setting

In the Galerkin framework, a typical setting for two grid methods is given by two
finite dimensional spaces
Xon C Xp

parametrized by some discretization parameter h. These spaces should be provided
for at least a sequence of parameters h converging to zero. They itself are subspaces
of certain function spaces which measure smoothness. In the following we have to
compare two different measures of smoothness, given by the spaces X, X_,

X, C Xy X_.
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The Galerkin method is given by a projection
P X, = Xy,
which obeys an approximation property, or Jackson inequality,
lu — Prullx_ < ch”||lu|lx, Vu e Xq.

Here, o > 0 denotes some positive constant. The Galerkin method is called optimal if
this property is complemented by an inverse inequality, or Bernstein inequality,

lunllx, <ch™unllx_  Yun € X

Notice that the Jackson inequality implies [Bra92] the compactness of the embedding
X4 — X_ thus making the two measures of smoothness really different and therefore
showing the necessity of introducing them. The Bernstein inequality implies that the
order o of convergence as stated in the Jackson inequality is the best possible one
[Bor94, Bra92].

Moreover, the two measures of smoothness allow an abstraction of the notion of
low and high frequency in the space Xp. A function v, € X}, is of high frequency if
the X -norm gives much larger values than the X_-norm, i.e., taking the Bernstein
inequality into account,

lonllx, = h™7[|vnllx_-

It is of low frequency if both norms give roughly the same value,

llvnllx, = llvallx_ -

Using this abstract notion of frequency one can easily understand and formulate the
properties of basic iterative schemes for the solution of the computational problem,

up = Phu,

which constitutes a large, badly conditioned linear system. The error propagation after
m steps of such an iterative scheme,

up — Ul = S™(up — ul),

will be characterized by the smoothing property [BD96a, BD96b)

ch™?
||Sm’l)h||X+ < —”'Uh“X, Yo, € Xp,.

$(m)

Here, we suppose ¢(m) — oo for m — oco. With respect to the X, -norm such a
smoothing iteration reduces high frequency errors with a h-independent rate whereas
low frequency error components are handled increasingly less efficient for smaller and
smaller h.

1 Here and in what follows we denote by ¢ a generic constant independent of h.
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Both the classical and the cascadic two grid method are designed to handle low
frequency errors in a better way. For a given initial value u) € X}, the classical two
grid method first performs m smoothing iterations,
up, —up = S™(up — ug)
followed by a coarse grid correction,
up = up' + Pap(up — up').
The combined error of these two steps is given by
lun —upllx. = [l(un —up') — Pon(un —up’)llx_ < ch?|lun — up'llx,

< —lun —wdllx
= $(m) -

where we have used first the Jackson inequality and second the smoothing property.
Thus, we end up with an error reduction in the X_-norm which is independent of the
discretization parameter h.

The cascadic two grid method changes somewhat the order of the two steps of the
classical method. It first performs a coarse grid projection

uy) = Papup,
followed by m smoothing iterations,
up —up = S™(up — ul).
Here the combined error is given by

ch™° ch™°
MHU,L — Papunllx_ = ——ll(un — up) — Pon(un — up)llx_

$(m)

IA

lun — upllx,

< ——lun —udllx
= $(m) +

using first the smoothing property and then the Jackson inequality. Here we end up
with an error reduction in the X, -norm which is independent of the discretization
parameter h.

Notice, however, some important differences between the two methods. Since the
order of the smoothing iterations and the coarse grid problem are interchanged,
and therefore the Jackson inequality and the smoothing property (which resembles
the Bernstein inequality) are applied in reverse order, the error reduction occurs in
different norms: For the classical two grid in X_, for the cascadic two grid in X, . As we
will see later on this is the reason for essentially different behavior in certain settings.
A second methodological difference is of algorithmic nature: Unlike the classical two
grid method, the cascadic two grid method has no choice of an initial value, which
precludes it from being part of an iterative scheme itself.
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3 Application to Finite Element Spaces

Here, we apply the abstract theory of the preceding section to k-th order finite
elements. We consider two choices for the norm in which error reduction of the iterative
scheme is measured: energy norm and L2-norm. These two examples clearly reveal the
general principle.

Energy Norm and Classical Multigrid

Here, error reduction is obtained in the X_-norm and we thus put X_ = H'(Q). The
more smooth space is set to X, = H't*(Q) where a > 0 is chosen such that the
corresponding Jackson and Bernstein inequalities hold:

o= Paullen < ch®llullmre,  llunllmse < ch™[ullm 3)

for all u € H't® and u, € Xp. The smoothness parameter? « is restricted by the
regularity of the elliptic problem and by the order of the chosen finite elements: For
H'*#_regular elliptic problems we can take any a as large as

a < min(y, k).

For a > 1/2, the term ||un || g1+« is meant to denote the corresponding discrete Sobolev
norm [Bra92]. Now, our abstract theory yields the h-independent error reduction

C
lun — upl|m < Wllm —up |l

Energy Norm and Cascadic Multigrid

Here, error reduction is obtain in the X,-norm and we thus put X, = H(Q).
Whenever the Jackson and Bernstein inequalities (3) of the (H!, H'*%) pair holds we
get by a Aubin-Nitsche type of duality argument corresponding Jackson- and Bernstein
inequalities for the pair (H!=%, H'),

lu — Prullg-o < ch®[lullg,  llunllar < ch™||lunllgi-- (4)

for all w € H! and up € Xj. As in the case of the classical multigrid method we thus
get the h-independent error reduction

* C 0
- < jup — .
=z < s lhun =
L2-Norm and Classical Multigrid
Here, we put X_ = L?(Q) and assume enough regularity for @ = 1 in (3) and

(4). Taking X, = H'(Q) the Jackson and Bernstein inequalities (4) lead to the h-
independent convergence rate

c
lun — uhllze < = llun — up|lze-

~ ¢(m)

2 For a polygonal domain 2 and piecewise smooth coefficients of the elliptic operator we
always get some a > 0.
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L?-Norm and Cascadic Multigrid

We have to put Xy = L2(2). Thus, X_ must be a Sobolev space of negative order,
say X_ = H™ (), € > 0. Our argument would work, if we had a Jackson inequality
like

llu— Prullz-« < chllullzz. (5)

Assuming the same regularity as for the classical two grid method, i.e., at least a =1,
and replacing u by u — Pyu in (5) we get

lu — Poul| - < ch€|lu — Phul|g2 < ch*€||u — Phul| g1

However, for a right hand side f € H¢(2) this would be possible only if we could
impose enough regularity: By duality

(u—Ppu, fr2 _ a(u — Pru,u — Pyu) llu — Prull3,

e 71Tz = Ml

we would get the H!-estimate

v — Prull g >

llu — Poullgs < ch'™*€ (|| e,

which means that o = 1 + € would be admissible, cf. [Bor94].

In particular, the hypothetical Jackson inequality (5) does not hold for linear finite
elements, £k = 1, where we are restricted to a < 1. In this case the only estimate we
can prove for the cascadic two grid method is

o = iz < S o =
Using a damped Jacobi or Gauss-Seidel iteration, we have ¢.(m) = m¢/? as shown in
[BD96a]. Assuming that our estimate is essentially a sharp one we would expect that
the number of iterations mp, which is needed to reduce the algebraic error a given
amount, increases like
mp, o< h 2.

This was observed in several numerical experiments. Hence our estimates appear to
be rather sharp and there is not much to improve.

Discussion

The Aubin-Nitsche duality argument and the reverse duality argument of the last
paragraph show that Jackson and Bernstein inequalities for the finite element spaces
are located exactly in the smoothness range between H'~™® and H'*® which is
symmetric with respect to H'. For this reason the classical and the cascadic two grid
method have the same chance to locate the partner space X of the space Xt that
measures the energy norm. However, since the space L? is located in this smoothness
range in a way leaving more place for more smooth spaces than for less smooth spaces
it gives preference to the classical two grid method which puts X_ = L? and needs a
more smooth partner space X .
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4 Remarks on Optimality in the L2-NORM

As we have seen, the cascadic two grid method works for the L2-norm if we have o > 1.
Assuming this regularity we will discuss shortly whether we can prove optimality of
the cascadic multigrid method with respect to L2 on uniform triangulations. We follow
quite closely the proof given in [BD96a, BD96b] for the energy norm case.

By linearity the basic error estimate governing the multilevel iteration (1) is now
given by

lluj = ujllee < NS™ (uj —uj—1)lle2 + 15™ (uj—1 — uj_1)llz2.
Applying that recursively we get by setting M; = m; + ... + m; the estimate

—x

lue — willzs < ZnsM s — s 1||L2<c2 W — sl — sl

£
1
CZ M,y(a_l) ”uj - U’j—1“L27
J=1 "7

IA

where we have used the smoothing property and the Jackson inequality (5) with
€ = a — 1. Moreover we specified the function ¢ of the smoothing property by
¢(m) = m*Y, where v = 1/2 for the damped Jacobi or Gauss-Seidel iteration and
v =1 for the CG-iteration [BD96a, BD96b]. As discussed in these references we set

m; = [,Bl_jmg-l.
Taking into account the L2-error estimate
llug = wj—1llze < chi™|lul| grta,
we finally get the estimate

e — w0 < 2 H( il )j Jul
Ug —UyllL2 S ezl 2 la—1) U||H1+-
mz(a )j:0 Br(e=1)

Thus, accuracy of the method is guaranteed if the sum can be bounded independently
of the final level £. This is the case if and only if

B>2vatt,
As shown in [BD96a, BD96b] multigrid complexity is obtained if and only if 8 < 29,
where d is the dimension of the domain 2. Thus, a sufficient condition for the cascadic
multigrid to be optimal with respect to the L2-norm is

1 a+1
=T (6)
Y a
If we relax the demand (2) for multigrid complexity to
work < ¢ - nylogP ny, (7

for some p > 0, one can show exactly in the same way as in [BD96a] for the energy
norm that equality is admissible in condition (6).
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Ezxzamples

This restrictive condition will be illuminated by several specific cases:

e d =2, v = 1 (CG-iteration): Condition (6) is equivalent to a > 3, which
means at least H?-regularity with ¢ > 4 and order k > 3 finite elements.

o d =3, v = 1 (CG-iteration): Condition (6) is equivalent to o > 2, which
means at least H?-regularity with o > 3 and order k > 2 finite elements.

o d=2,v=1/2 (damped Jacobi or Gauss-Seidel iteration): Condition (6) is
not satisfied for any o > 1. In this case the cascadic multigrid method is not
optimal with respect to the L2-norm for any regularity and any order of finite
elements!

e d=3,v=1/2 (damped Jacobi or Gauss-Seidel iteration): Condition (6) is
equivalent to a > 5 which means at least H?-regularity with ¢ > 6 and order
k > b finite elements.

For the relaxed multigrid complexity (7) equality is admissible in all cases.
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Schwarz Preconditioners for the
Spectral Element Stokes and
Navier-Stokes Discretizations

Mario A. Casarin

1 Introduction

We consider fast methods of solving the linear system

Au+Bip=f

1)
Bu=0.

resulting from the discretization of the Stokes problem by the spectral element method;
see (3).

The efficient solution of this and analogous systems, generated by a variety of
discretization methods, has been the object of various studies. The Uzawa, procedure
is a relatively standard technique [GPARS6], and more recently block-diagonal and
block-triangular preconditioners have been proposed [Elm94, K1a97]. Global pressure
variables are used in [BP89] and [TP95] as Lagrange multipliers to constrain the
interface velocities and to guarantee that the divergence free condition holds.

Rgnquist has proposed an iterative substructuring method that is based on a
decomposition of the domain into interiors of subregions, faces, edges, and vertices.
The coarse problem is a Stokes problem approximated by a lower-dimensional
pair of discrete spaces on the coarse mesh. Stokes problems are solved within the
subregions, while a diagonal scaling using elements of the matrix A is performed on
the interface velocity variables. This scheme avoids costly inner iterations, and its
built-in parallelism is certainly a very desirable feature. In [Rgn95], relatively large
problems in three dimensions are solved with modest computer resources. The small
iteration count and the excellent approximation properties of the spectral element
method for flow problems makes this a very efficient scheme.

Inspired by Rgnquist’s scheme, we have developed iterative substructuring methods,
for which the velocities are restricted to the space of discretely divergence-free
functions in the spectral element sense. The PCG method is applied to the resulting
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symmetric, positive definite linear system. The condition number of our algorithms
grows at most like
C(1 +log(N))3
BN ’
where Gy is the Babuska-Brezzi constant; see Lemma, 2.1. Our approach is also related
to the methods of [BP89] and [TP95].

The next section introduces the details of the discretization method. Section 3
presents an important extension operator, while in Section 4, the Q2 — Qo pair is used
to generate a coarse space for the Stokes problem. The theory carries over without any
substantial change to a variety of mixed discretizations using a discontinuous pressure
space.

In Sections 5 and 6, we extend the Schwarz theory for indefinite and non-symmetric
problems to the Navier-Stokes problem, taking advantage of the Stokes preconditioner
developed here. In each step of Newton’s method, only the velocity of the previous
step is used. The pressure is computed only when required, typically after the velocity
has been obtained to the prescribed accuracy. The key point in the success of this
method is the construction of an appropriate coarse space.

2 Discretization Method

Let Q be a domain in IR?, d = 2 or 3. We triangulate Q into non-overlapping
substructures {Q;}M, of diameter H;. Each ; is the image of the reference
substructure 2 = -1, -i-l]3 under a mapping F; = D; o G; where D; is an isotropic
dilation and G; a C'* mapping such that its Jacobian and the inverse thereof are
uniformly bounded by a constant. We assume, e.g., in three dimensions, that the
intersection between the closures of two distinct substructures is either empty, a vertex,
a whole edge or a whole face.

We define the space PV (Q) as the space of polynomials of degree at most N in each
of the variables separately. The space P (€2;) is the space of functions vy such that
vn o F; belongs to PN (Q). The conforming discretization space PN (Q) ¢ HE(Q) is
the space of continuous functions the restrictions of which to £; belong to PN (Q;).

Let A = [-1,1]. For each N, the Gauss-Lobatto-Legendre quadrature of order N
is denoted by GLL(N) and satisfies: Vp € P2N~1(A), f_llp(m) dr = Ej-vzo p(&)p;-
Here, the quadrature points {; are numbered in increasing order, and are the zeros of
(1 —2?)Ly(z), and Ly (z) is the Legendre polynomial of degree n.

In three dimensions, the discrete L?(Q)-inner product is defined by

(w)N =Y Y (uoF)-(voF)-|Ji|(&,& &) - piprpr, (2)

i=1 j,k,I=0

where |J;| is the Jacobian determinant of F;.

We next consider the variational form of the Stokes equation in the velocity-pressure
formulation, discretized by the spectral elements. While the velocities are taken
to be continuous functions, the pressures can be discontinuous across substructure
boundaries. The restriction of the pressure space PY~=2(Q) to each Q; is PN =2(Q;).
We note that PN=2(Q) C L2(Q), but PN=2(Q) ¢ H1(Q).
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The discrete problem is given by:
Find (u,p) € (P{(2))? x PN=2(Q) N L3() such that:

ag(u,v) +b(v,p) = (f,v)y Vve(F(Q)?,
_ 3)
b(u,q) = 0 Vge PN-2(Q)NnL(Q).
Here, ag(-,-) is given by ag(u,v) = z;l,jzl (g;, , g;,, ) N We assume, for simplicity,

that b(v,q) = — fQ gV - v dz; see [MPR92]. The right-hand side is assumed to be in
L2(Q). Our analysis also applies to the more general non-homogeneous problem, and
also to mixed Dirichlet and Neumann boundary conditions, with only minor changes.

For the velocities, we choose standard nodal basis functions qﬁjv € (PY(Q))4. We
number the GLL(N) nodes ¢ within the subregions {2; by an index r, and define a
basis for PN=2(Q) by By, (&r,) = 6pyry, for all 71,79, where § is the Kronecker symbol.
We note that any function of PV~2(Q) is uniquely represented by its values at the
interior GLL(N) nodes &.. By writing the system (3) in terms of these two bases,
we arrive, in a standard way, at the system (1). To each component of the velocity,
there corresponds a diagonal block of A which is equal to the standard scalar spectral
element stiffness matrix K. The entries of B are given by Bj, = b(qS;V ,Br), and £ is
a vector with components f; = (f, ¢}).

The next lemma is the key point in the error analysis of this discretization; see
[MPR92].

Lemma 2.1 For each N, there exists a Bn > 0 such that

. b(v,q)
_inf sup >
g€PN-2)NL3(Q)  very (@) IVIa@)llallzz@)

If the geometry is rectilinear, i.e. the F; are affine mappings, then there exists a
constant 3, independent of N, and such that By > ,BN%, ford=1, 2, or 3.

We remark that very good convergence properties are predicted by the theory and
have been extensively verified in practice; see, e.g., [FR94].

3 An Extension Operator

For a subregion 2;, we define an extension operator E;S N (PN ()R —

(PN (;))3, where u; = E>™(g;) is the velocity component of the solution to the
following Stokes problem:
Find (u;,p;) € (PN (%))?, PN=2(Q;) N L3(£Y;)), such that:

aQ(ui, vi) + ba, (vi,pi) =0 Vv; € (P ()4,
bo, (0;,q;) =0 Vg € PN72(Q;) N L&), (4)
u;|aQ; = 8i-

The subscript €2; indicates that the integration or quadrature is taken on 2; only. In
other words, u; is the solution of a homogeneous Stokes problem with g; as boundary
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data, and zero right-hand side within €2;. We remark that u; always exists, even if the
outward fluxes fan g; -ndS are not equal to zero, since the pressure test space does
not include the constant function, and the Babuska-Brezzi condition is satisfied for
the problems restricted to each subregion.

We remark that if u; = E>™ (g;), then

1
ag., (u,w) = min  agq,(vi,vi) VYvi € PY(Q), (5)
Vilon; =8:
where Pg(ﬂz) = {Vz’ € (PN(Qz))d | bQi (vi;Qi) =0 Vg € PN_Z(Qi) n L%(Qz)}
Let P(fYV( ) be the space of discretely divergence-free functions i.e. functions
that satisfy the second equation of (3). For v € (P{())%, let v be defined by
Vg, = EZS’N(V|391,). It is easy to see that if [,, v-ndS =0 Vi, then v € PO’V(Q).

4 A Domain Decomposition Preconditioner

We describe the construction in detail for two dimensions. The three-dimensional case
is analogous; see [GPAR86], Section II.3.1, and Remark 4.1 below. For a reference
square 2 = [—1,1]2, let

VH( ) (Ql( ))2®Spa'n{p17p2ap3ap4}7

where p; € (Q2(Q))? vanishes on the edges & for j # 4, and is normal to &;. For
example, for the edge & given by z =1, p; = (1 + z)(1 — 3?),0).

The space V,7 () C (Hg(Q2))? is the space whose restrictions to each €; is the image
of VH({2) under the mapping F;, which is here taken to be isoparametric with respect
to the space (Q1({))2; see [GPARS6], Section A.2. There are 12 degrees of freedom
per element, namely the nodal values at each vertex and the fluxes across each of the
edges.

Let Q& () be the space of functions of zero mean on (2 that are constant within each
substructure 2;. It is well-known that for the discretization of the Stokes problem on
the coarse mesh, the pair V.7 — QI yields a stable discretization in the Babuska-Brezzi
sense, with a stability constant bounded away from zero independently of H.

Let V%5, () be defined by: VI (@) = {u € V]| [, V-udz = [, u-ndS = 0}.
This space plays the role of our coarse space, but it is clearly not contained in
Py (Q), since a function u € VI, () in general fails to have a divergence
orthogonal to the space PV~2(Q) in L%(Q). We therefore define a transfer operator
Ik . Vl’f,{VH Q) — P(fYV () by:

Ity (um)lo: = unloq,
(6)
I (um)la, = BN (umlsn,)-
This operator satisfies the usual H'-stability and L2-approximation properties used
in the Schwarz theory.
For u,v € H'(2), we define the bilinear form a(u,v) := [, Vu- Vv dz. The coarse
solver T} is given by

a(T,qu, w) = ag(u, I}}w) Vw € VerH ().
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For each edge &, shared by two subregions ; and €2, let Q;; be the union of Q;,
Q;, and &. The local space Vg, C P({YV(Q) consists of functions ug, with support
in Qz-j, and whose values in the interior of §2; and (2; are given by Ef N and E]-S’N,
respectively. This definition implies that Yug, € Vg,, |, g, U, -1 dS = 0. The bilinear
form associated with Vg, is ag(-,-).

For each interior vertex v,, let £(v,) be the collection of all edges having v, as
an endpoint. We define ¢, , € P({YV(Q) by assigning values at the interface nodes,

and using the EZS "N to extend these values to the interior of the substructures. We let
bw,, z(vn) = (1,0), let ¢y, » be equal to zero at all the interface nodes not adjacent to
U, and Y&, € E(vy,), we let ¢, , be equal to a constant vector at the node v], next
to v, on the edge &. This constant vector is taken to be normal to the interface at
v},, and so that [, & Ov, ¢ -0dS = 0. We define ¢,,, , analogously. The one-dimensional
vertex spaces are given by:

Vo2 = span{¢,, »} and V,, , = span{ e, 4}

The bilinear form associated with the vertex spaces is aq(, ).

The interior spaces are Vo, = POJYV(QZ-), and the bilinear form associated with all of
them is ag(-,-).

The preconditioned operator is now

M
Toa=IETE +Y (Tono + Tony) + O Te + Y To,. (7)
Uy Ex i=1

This operator does not exactly fit the Schwarz framework, but an analyisis similar
to the proof of that result, together with a decomposition lemma, involving the local
spaces and bilinear forms just described, yield the following theorem. For the proof,
see [Cas96]; cf. [Bre94, Caid5].

Theorem 4.1 The condition number of Ty, satisfies:

C(1+1og(N))?
BN )

Remark 4.1 In three dimensions, edge and face functions play the role of the vertex
and edge functions of the two dimensional version, respectively. For each edge, the edge
function is the analogue of the ¢, above; it is nonzero for the interface nodes adjacent
to the edge, and have zero flux across all the faces of the subregions. The condition
number estimate is the same as in Theorem 4.1, where By is now the Babuska-Brezzi
constant for the three-dimensional discretization.

K(Tn) <

5 Schwarz Methods for the Stationary Navier-Stokes Equations

Following [Rgn95], we consider a Galerkin spectral element discretization of the
velocity-pressure formulation of the Navier-Stokes equations, given by:
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Find (iiy,pn_2) € PN (Q) x (PN~2(Q) N L2()) such that
a(iy, vn) + c(an; N, vN) + (v, Bn_2) = [of - vn dz Vvy € PV (Q),
b(fin,gn—2) =0 Van—_2 € PN=2(Q) N LE(NQ). (8)

For u,v, and w € H'(Q), the trilinear form c(-;-,-) is given by:

c(uyv,w) := Z/uj 8vzw,d:c

2,j=1

Numerical computations show that ty is a good approximation for u, the exact
solution of the Navier-Stokes equations, at least for Reynolds number Re = 1/v on
the order of 50; see [Ron95].

We will develop Schwarz preconditioners for the system representing the k* step
of the Newton iteration used to solve (8). We fix k, and to simplify notations, set
uy = uk, w = ufv_l, and g := f¥. Then, uy is the solution of the following
problem:

Find uy € Py'y () such that

Bw(uN,vN) = (g,VN) VN € P({YV(Q)’ (9)
where
Bw(un,vN) = a(un,vN) + c(W;un, Vi) + c(un; w,v). (10)

We assume that Gy is a solution of (8) which is non-singular i.e. (9) is uniquely
solvable if we let w = . If the Reynolds number Re = 1/v is small enough, this
can be proved by classical arguments (see [GPARS6], Theorem IV.2.4); our analysis
does not assume Re is small enough, although the iteration count of the method may
deteriorate when that parameter increases.

6 A Schwarz Preconditioner with a New Coarse Space

We propose a Schwarz preconditioner for B(-,:), by viewing B(-,-) restricted to
PéYV () as a perturbation of the symmetric bilinear form a(-,-). We assume that
the coarse triangulation 7 = UM, (), is a shape regular triangulation, not necessarily
quasi-uniform, and set H = max; H;, where H; is the diameter of 2;.

We start the definition of our coarse space by first defining an extension operator
1%, similar to the operator I}, defined in (6). Let I} : VI () — PG (), and

let iy = TP (ug) for uy € VfVH (). The restriction of @i to a subregion (2; is the
solution of the following non-homogeneous Stokes problem:

Find ag € PY(Q;), with g = ug on 8Q;, and pg € PN~2(Q;) N LE(€2;) such that

a(p, vN) +b(vN,Pr) = a(um,vy) Vvn € Py (),
(11)
b(ﬁH5QN—2) =0 VQN—z (S PN_2(Ql) n L(Z)(Qz)
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By restricting the test function vy to have zero discrete divergence,i.e. vy € P&’V (),
ug can also be determined by:
Find ug € Pg(ﬂl), ug = ug on 02;, and such that

a(le,VN) = a(uH,vN) Vvy € PéYV(Ql) (].2)
The new coarse space is defined by:
Vo, () = I5(V5,, (Q).

n,Vy

An easy argument using Green’s formula shows that Vr{:IVH Q) c PéYV (Q); it is also
easy to see that iy is the function of P(f’v () which coincides with ug on I', and which
is the best approximation of ug in the a(-,-)-semi-norm (and in the H!-semi-norm,
since they differ only by a fixed factor v).

The operator Qg : Py'y (Q) — f/lva () is defined by

B(Qgu,vyg) = B(u,vyg) Vvg € V,va (). (13)
We remark that although B(,-) is not necessarily positive definite, (13) is guaranteed
to have solutions for sufficiently small values of H; see property P3 below.

Let V, s > 1 be the local spaces used to define the operator Ty; see (7). In three
dimensions, there is one local space associated with the interior of each £2;, one space
related to each face, and one for each edge. For s > 1, the operator P : P(fYV(Q) — Vs
is defined by

a(Psu,vs) = B(u,vs) Vv, € V. (14)

Theorem 6.1 There exists a positive constant Hy, depending only on the domain
Q and on the solution ty, and positive constants c¢(Hyp), and C(Hy) such that the
operator

Qa:QH+ZPs

s>1

satisfies, Vu € Py'y (), and for H < Hy,
a(Qaua Qau) S C(Ho)a(u7 u):

and
¢(Ho)Cya(u,u) < a(Qqu,u).

The proof of this result is given in [Cas96].
This estimate immediately implies an upper bound on the iteration count of the
GMRES method applied to the preconditioned system

Qa, EN = b)

where b is chosen so that uy is the vector of nodal values of uy. This result is an
extension to the Navier-Stokes equation of the Schwarz method for scalar second-order
non-symmetric problems studied in [CW92].
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Incomplete Domain Decomposition
LU Factorizations

J. C. Diaz, M. Komara, and J. Hensley

1 Introduction

The incomplete domain decomposition LU factorizations for the solution of systems
of linear equations arising from the discretization of two-dimensional non selfadjoint
PDEs are introduced. The construction of the factorizations is presented for positive
definite M-matrices. The theoretical discussion is for two subdomains. Multidomain
numerical illustrations are also included.

Consider a decomposition of the computational domain 2 into two overlapping
subregions, arbitrarily ordered €2; and €2». The original method due to Schwarz
[Sch70] consisted of alternating the solution on each subdomain until convergence was
achieved. Domain decomposition methods have evolved this idea to the construction
of preconditionings. Consider LU factorizations on each subdomain. Using these
factorizations, a symmetrized domain decomposition preconditioning solves in domain
4, then solves in domain 22, and finally corrects in domain Q;, see [BW86]. The cost
per iteration is the cost of 3 LU solves.

The method proposed here has the feel of an LU factorization: forward elimination
followed by back substitution. First using the subdomains L U factorizations, forward
eliminate in domain 27, carry that information to domain {25 forward eliminate there.
Then, the back substitution is completed in the reverse order: first, in domain Qs and
then in the original domain €2;. The cost per iteration is equivalent to the cost of 2
LU solves. Thus, the cost per iteration of the incomplete domain decomposition LU
factorizations is approximately 2/3 of the cost of traditional domain decomposition
factorizations.

Just as the original idea of Schwarz and the multiplicative domain decomposition
methods have the feel of a Gauss-Seidel iteration on the subdomains, the factorizations
proposed here have the feel of a block symmetric Gauss-Seidel. This should make
the factorizations proposed here somewhat more robust than traditional domain
decomposition factorizations. This is born out in the application to time dependent
problems where the step size is adaptively changed for the accuracy of the solution,
[Kom96]. Incomplete domain decomposition LU factorizations are able to solve the
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linear systems for larger time steps.

The combination of less cost per iteration and robustness makes this factorization
an attractive preconditioner. The incomplete domain decomposition LU factorizations
can be extended to multiple subdomains, [DK97]. Furthermore, the multiple
subdomains factorization is parallelizable through the use of coloring.

In Section 2, the domain € is decomposed into overlapping subdomains and the
incomplete domain decomposition factorization is derived. A brief analysis of the
factorization is presented in Section 3. The factorization is related to a regular splitting
of an expanded matrix, whose dimensions exceed the original matrix according to
the amount of overlap. Section 4 reports the results of some numerical experiments
illustrating the potential of the factorization.

2 Incomplete Domain Decomposition LU Factorizations

The presentation centers in the solution of the linear system
Az =b (1)

arising from the finite difference discretization of two-dimensional PDEs on a
rectangular domain 2. A is an n X n nonsingular matrix, b is a given n-dimensional
vector, and z is the n-dimensional unknown vector. The matrix A is assumed to be
a positive definite M-matrix. The linear system will be solved using preconditioned
conjugate gradient type methods [SSF95, VdV92].

The construction of incomplete domain decomposition LU factorizations is
presented for the case of two overlapping subdomains. The extension to several
subdomains will be presented elsewhere due to space limitations.

Start by first subdividing 2 into two overlapping subdomains. Then the matrices
constructed from the discretization of the restriction of the PDEs on these subdomains
are used to construct a matrix G that has a dimension larger than that of A. The
incomplete factorizations of A are obtained from the incomplete LU factorizations of
G.

Decompose {2 into two non overlapping subdomains O; and O, and an internal
boundary < such that @ = O; Uy U Os; see Fig. la. The internal boundary 7 is
extended to create subdomains Q; and Qs that overlap and cover . Extend «y to
the right and denote the new boundary by 71 and the region between v and 7; by
O1,. Similarly, extend v to the left and denote the new boundary by 7> and the
region between vy and 2 is denoted by Os,. The two overlapping regions are defined
by @ = 01 U0, Uy, and Qp = Oy U Oz, U y2, and the overlap between them is
Qo =71 U014 UyU Oz, Us; see Fig. 1b. Also, let Q, = Q2 \ @1 and Q, = Q3 \ Q.
Then Q; and , are disjoint and cover 2, and 2, and Q, are disjoint subdomains
covering {s. It can be seen that Q, = Q..

Now let w be the set of grid points introduced in Q after discretizing 2 with mesh
size h. Define by w; = w N the set of grid points in Q;, we = w N Qs the set of grid
points in Qs, w, = w N2, the set of grid points in ,,, and w, = wN, the set of grid
points in 2,.. Note that w = w; Uw,, since ; and Q,, are disjoint subdomains covering
Q. Note also that ws = w,, Uw, since 2, and 2, are disjoint subdomains covering .
Denote by ny, na, 1y, and n, the number of grid points in w;, ws, w,, and w,. The
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Figure 1 (a) Nonoverlapping subdomains and (b) Overlapping subdomains

| |
| |
| |
O, Y 0, : Y :
| |
| |
| |
| |

(a) (b)

order of the matrix A of Equation (1), n, is equal to the number of grid points in w,
ie.n=mn1 + n,.

Let Gi1, Ga2, AY,, and A%, be the matrices arising from the discretization of the
restriction of the PDEs on wq, ws, wy, and w,, respectively. The matrix G32 can be
represented in 2 x 2 block form as

oo [ A A @
27 A Ay, Wy
since w, and w, are disjoint subsets of ws such that ws = w, U w,,. Similarly, w; and

wy, are disjoint subsets of w such that w = w; U w,, and hence, the matrix A can also
be represented in 2 x 2 block form as

All A :| w1
A= w A : 2
[ Ay A% Wy @
where
0 w1 \ Wy w1 \ Wr Wy
A1 =G Al = d AY¥, = ;
11 11, 12 |: Agg :| Wy B an 21 [ 0 Ag;- ]

Let I be the identity matrix of order k£ and m = n; + ny. Consider Py, P, and P,
respectively ny X ny, ny X n, and m X n matrices given by

Pl =In17 P2 = |: IO :| ZT ; and P = |: zl 22 :| Z: . (3)

Let G132, G21 and G be respectively ni X na, na X ni and m X m matrices defined by

AY Wy G2 G2 w2

Wr Wy 0 , G G
Gia = [0 Aqu] , Gop = [ ] w , and G = [ 11 12] w1 (4)

Then, the identities hold
A11L2=P1TG12P2, 121'1=P2TG21P1, and A121'2=P2TG22P2.
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Furthermore, it can readily be checked that the equality A = PTG P holds.
A is an M-matrix and so are G711 and Ga2 which are principal submatrices of A. It
follows that the matrix
Gu=| 42 40 |

ur u
A22 A22

obtained by setting some of the off-diagonal entries of G2 to zero is also an M-matrix.
Therefore, there exist traditional splittings [BP94] of G11 and Gz such that

Gi1=Q:1—E, and 622 = Q2 — B,

where Ql_l, 2_1, E; and E, are nonnegative matrices, i.e. the entries of Ql_l, Qz_l,
E; and E, are all nonnegative. The matrices ()1 and @2 are derived from the (block)
ILU factorizations of G11 and Go2 and have the form

Q1= (L1 +B1)B'(B1 +U;) and Qs = (La + Bs)By;' (B + Us),

where L; and Lo are the strictly lower parts of Gi; and (N}'zz; and U; and U, are
the strictly upper parts of Gi; and Gaz. The matrices By and Bs are M-matrices
constructed during the factorization process.

Now let B, L, U, Q and G be matrices of order m defined by

_ Bl 0 w1 _ L1 0 w1 _ U1 G12
B = [0 Bz:| Wao ’L_ [Gzl L2:| Wa ’ and U= [0 U2:|

(5)

Q=(L+B)B'(B+U) and G = [Gn glz] w1

Ga1 G2 w2
The incomplete domain decomposition preconditioner of A is defined by
Qoo = (PTQ7'P)™! (6)

where () and P are given in Equation (5) and (3), respectively. Note that the
preconditioner has the feel of an LU factorization. Computing the action of Ql_rl, D
on a vector requires a forward elimination followed by a back substitution. From
Equations (2), (3) and (4) it follows that the matrix PAPT can be written as

[ Gu G12 -|

pAPT = [0 0 ]
G
|_ o 4 J
= G_Gur_Gru; (7)
where
0 0 0 0

Gur = 0 A, 0 and G, = 0 0 ALY

Ay 0 0 0

Note that G,,P = 0 and G=G- Gry.

w1
W
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3 Analysis

The matrix G was constructed, in the previous section, from principal submatrices of
the matrix A which has been assumed to be a positive definite M-matrix. From these
assumptions the following Lemma can be established [Kom96, DK97].

Lemma 1 There ezists a matriz E such that G = Q — E is a regular splitting, i.e.
the entries of Q=1 and E are all nonnegative.

The stability of the incomplete domain decomposition factorization is established
in the following Theorem.

Theorem 1 The preconditioned system K = Q7! A is a principal submatriz of Q_lé

IDD
given by K = PTQ™1GP, and all of the eigenvalues of the preconditioned system K
have positive real part.

PRrOOF: First note that PTP = I,,, Gy+P = 0 and G=0G- G- Using these and
Equations (6) and (7), it follows

K = Q;},A=P'Q 'PA=PTQ 'PAPTP
= PTQ Y (PAPT)P = PTQ"Y(G -~ Gyr — G )P = PTQ7'(G - G,,)P
= PTQ'GP.

This establishes the first part of the Theorem.

Using Lemma 1 and the above result, I can be rewritten as
K PTQ™'GP =P'Q™Y(Q - E)P =P"(I,, - Q'E)P
= I,-PTQ'EP.

Since G = Q — E is a regular splitting, it follows that the spectral radius p(Q~'E)
of Q7E is less than unity ([BP94], page 181). Also, since PTQ~EP is a principal
submatrix of the nonnegative matrix Q1 E it follows that p(PTQ 1EP) < p(Q™'E)
([BP94], page 28). Finally, the spectral radius p(I,, —K) of I, — K satisfies the inequality

p(I —K) = p(PTQ™'EP) < p(Q7'E) < 1,

which shows that all the eigenvalues of JC have positive real parts. QED

4 Numerical Experiments

The potential of the domain decomposition preconditioners is best illustrated by
applying it to cases where the domain {2 has been decomposed into several subdomains.
Both box and stripe decompositions of the computational domain Q are considered;
see Fig. 2.

The coefficient matrix of Equation (1) is obtained from the discretization of the
PDEs on the unit square Q = (0,1) x (0,1). The following PDE is solved

ou ou

—Au-i—’y(ma—x +y6_y) +pu=f in Q
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Figure 2 (a) Stripe decomposition (b) Box decomposition. Non overlapping and
enlarged subdomains

(a) (b)

with Dirichlet boundary conditions where v = 1000 and g = —100. The function f is
chosen such that the exact solution is u = 2(1 — z)y(1 — y) exp(y).

The five-point finite difference scheme is used for the discretization of the PDE on a
uniform grid. The first and second order derivatives are approximated using centered
differences. Note that although this problem is highly non symmetric, its discretization
matrix remains a positive definite M-matrix.

For n = 32,64,128, a uniform grid is introduced with spacing h = 1/(n + 1) in
). The matrix A arising from the discretization of the above PDE is a nonsingular
M -matrix of order n? for each problem.

The linear system Az = b obtained from the discretization of the PDE is solved
using preconditioned Bi-CGSTAB [VdV92] and GMRES(50) methods. The latter is
the GMRES method [SSF95] that is restarted after every 50 iterations. The iterative
solvers are considered to have converged when the initial residual is reduced by a factor
of at least 107¢, that is, the stopping criterion is || r; ||2< 107 || 7o [|2, where r; =
b— Az; is the it" residual, z; is the i*" approximation to the solution z, and ||  ||2 is the
Euclidean norm. The initial guess is £op = 0 in all the test runs. The preconditioners
used are the incomplete domain decomposition LU factorizations presented in this
paper. To construct the preconditioner, compute the block ILU factorizations of the
coefficient matrices derived from the discretization of the restriction of the PDE on
the overlapping subdomains. The incomplete factorizations for these local matrices
are their INV (1) factorizations [CGM85, CM86, Meu89]. The ordering is the natural
order. No effort is made to select a particular ordering for the grid points or for the
subdomains.

The performance of the preconditioner @,,, is investigated. Throughout, the Bi-
CGSTAB and GMRES(50) used in conjunction with a preconditioning matrix C' will
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Table 1 Number of iterations required for various grid sizes and overlaps

Box Decompositions Stripe Decompositions

n =32 n==64 || n=128 n =32 n=64 || n=128
Ov DM Bi |{GM || Bi |[GM ||Bi | GM (| DM (| Bi | GM || Bi | GM || Bi | GM
Oh 1 4 | 5 6 | 8 ||11 | 14 1 4 |5 6 | 8 || 11| 14
2h 4 4 | 5 6 | 8 ||10] 14 || 2 4 | 5 6 | 8 || 11| 14
4h 4 | 5 6 | 8 ||10 | 14 4 | 5 6 | 8 || 11| 14
6h 4 | 5 6 | 8 ||10 ]| 14 4 |5 6 | 8 || 11| 14
8h 4 | 5 6 | 8 ||10 ]| 14 4 |5 6 | 8 || 11| 14
2h || 16 5| 6 719 || 11|16 | 4 4| 6 719 | 11| 15
4h 5| 6 709 || 11| 16 4| 6 719 | 11| 15
6h 5| 6 719 || 11| 16 51 6 719 || 11| 15
8h 719 || 11| 16 719 || 11| 15
2h || 64 8§ |10 8 | 12| 13|19 || 8 5 7 7 |10 10| 16
4h 8§ | 12| 13 | 19 7 110 | 11 | 16
6h 9 | 12| 13 | 19 7 110 | 11 | 16
8h 13| 19 11 | 16
2h || 256 14 | 18 || 19 | 25 || 16 10 | 13 || 15| 19
4h 19 | 24 16 | 19
6h 19 | 24 16 | 19

be denoted by Bi-CGSTAB/C and the GMRES(50)/C, respectively.

A test is carried out for obtaining the solution of the above problem using the
Bi-CGSTAB/Q®,,, and GMRES(50)/Q,,,,, solvers. The numerical calculations were
carried out in double precision on a Sun workstation. All calculations are serial.
The numerical performance of the preconditioners is considered herein. Their parallel
implementations which will be presented elsewhere.

Results

The test results are gathered in Table 1. The overlap between the subdomains is labeled
Ov and is the same for any two subdomains that overlap. For instance, if 0v = n,,h,
where n,, is a nonnegative integer, then the overlap between any two overlapping
subdomains is nyyh. In other words, the overlap between the grids corresponding
to any two overlapping subdomains is 7., grid lines. The number of subdomains is
reported in the column labeled DM. The number of iterations taken by Bi-CGSTAB
and GMRES(50) methods are reported in columns labeled Bi and GM, respectively.

In all the test runs, the case DM = 1 corresponds to using the INV (1) factorization
of A as preconditioner; i.e. Bi-CGSTAB/INV (1) and GMRES(50)/INV (1) methods
are used.

In all the test runs, the number of iterations seems to be independent of the
size of the overlap. On the other hand, Bi-CGSTAB/Q®,,, and GMRES(50)/Q,,,
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require more iterations as the number of subdomains increases. Preconditioners
based on box decompositions take more iterations than those derived from
stripe decompositions. The coefficient matrices of the subdomains, however, are
larger for stripe decompositions than for box decompositions. Therefore applying
the preconditioners requires more computation on the subdomains in the stripe
decompositions case than the box decompositions case.
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An Additive Schwarz method for
Elliptic Mortar Finite Element
Problems in Three Dimensions

Maksymilian Dryja

1 Introduction

In this paper, we discuss a domain decomposition method for solving linear systems
of algebraic equations arising from the discretization of elliptic problem in 3-D by the
mortar element method; see [Mar90, AG93] and literature given therein. The elliptic
problem is second-order with discontinuous coeflicients and the Dirichlet boundary
condition. Using the framework of the mortar method, the problem is approximated
by the finite element method with piecewise linear functions on nonmatching meshes.

The domain decomposition method is of iterative substructuring type and is
described as an additive Schwarz method (ASM) using the general framework of ASMs;
see [DW95, Ben95a]. It is applied to the Schur complement of our discrete problems,
i.e., interior variables of all subregions are first eliminated using a direct method.

In this paper, we consider the mortar element method in the geometrically
conforming case only. The region €2 is a union of simplices {2; on which a coefficient p;
of the problem is constant. The described ASM uses a standard coarse space defined
on the triangulation formed by Q; of diameter H, i.e., Vo = V¥, a space of piecewise
linear continuous functions which vanish on 952.

The algorithm described is almost optimal, i.e., the number of iterations required to
decrease the energy norm of the error in a conjugate gradient method is proportional
to (1 + log%)g, where g = 1 or g = 3 with the constant independent of the coarse
and fine meshes (H and h) and the coefficient p;. This result is proved assuming a
special distribution of the p; on €;, called quasi-monotone (introduced in [DSW96])
and weak quasi-monotone (introduced herein). This is the main result of the paper.
There are indications that this result is sharp in 3-D with respect to the distribution
of p;, see [Osw95] and [Xu91]. In the case of arbitrary distribution of p;, the number
of iterations can be bounded by (H/h)z.

The results of this paper are generalizations of results obtained in [Ben95b] for 2-D.
The idea of using a standard coarse space is taken from [Glo84], where the 2-D case
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with regular coefficients is considered. The mortar element method in the geometrically
nonconforming case for problems with discontinuous coefficients is not discussed here.
The reason is that it is not clear how to design and analyze ASMs for either the
standard coarse space or for others; see, for example, the new coarse space used in
[Ben95b] in the 2-D case.

The outline of the paper is as follows. In Section 1.2, the discrete problem
obtained from the mortar element method is described. In Section 1.3, an iterative
substructuring method is described in terms of an ASM for the Schur complement
system. In this section, Theorem 1.3.1 is formulated as the main result of the paper.
A proof of this theorem is given in Section 1.5. In Section 1.4, technical tools are given
which are needed for the proof.

Some of the results of this paper have been obtained in joint work with Olof
Widlund.

2 Mortar Discrete Problems

We solve the following differential problem: Find u* € H}(Q) such that
a(u*,v) = f(v), ve Hy(Q), (1)

where

a(u,v) = ZPi(V%Vv)LZ(Qi): f) = (f,v)r20),

Q =UN,Q;, and p; is a positive constant in ;.

Let Q be a polygonal region in 3-D and ; be tetrahedral elements. They form a
coarse triangulation with a parameter H. In each Q;, a triangulation is introduced
with tetrahedral elements eg-') and a parameter h;. The resulting triangulation of Q2
is nonmatching. We assume that the coarse triangulation and the h; triangulation in
each §; are quasi-uniform, see [GPP94]. Let X;(Q2;) be the finite element space of
piecewise linear continuous functions defined on the triangulation of €2; and vanishing
on 9%; N OS). Let

X™MQ) = X1(21) x -+ x Xn ().

To define the mortar finite element method, we introduce some notation and spaces.
Let
I = (U;00;)\09

and let Fj;, E;; denote the faces, edges of ;. The union of Eij forms the wire basket
W; of Q;. We now select open faces 7, of I, called mortars (masters) such that

T'=UnYm and v, Ny, =0 if m #n.

By Ym(i) we denote a face of €2;. Let v,,,(; be a face common to €2; and ;. As a face
of Q; it is denoted by d,,(;) and it is called nonmortar (slave). The rule for selecting
Ym(i) = Fij, a common face to ; and (;, as mortar is that p; > p;. Let Wh (Fij) be
the restriction of X;(£2;) to Fj;. Note that on Fy; = 7¥p,(;) = dpn(j), the common face to
2; and Q;, we have two triangulation, denoted in terms of h; and h; and two different
spaces W (v, i) and Wi (6,5 )-
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Let M"i(8,,(;)) denote a subspace of W"i(d,,;)) defined as follows: Let v €
Whi(6m(j))- A function & € MM (8,,(;)) has the same values as v at the interior
nodal points of d,,(;). The value of ¥ at a nodal point zy € 9d,,;), the boundary of

dm(j), is equal to
Nk Nk
o(zr) =Y aw(ziy) » oi=1,
i=1 =1

where a; > 0 and the sum is taken over interior nodal points ;) of d,,(;) such that
an interval (zx,Z;k)) is a side of the triangulation and its number is equal to ny, for
details see [AG93].

We say that u;(,,) and u;(y), the restrictions of u; € X;(;) and u; € X;(Q;) to
0m, a common face to {); and (2, satisfy the mortar condition if

[ (i) = s s =0, W € 2 (5,). ®)
[

m

This condition can be rewritten as follows. Let Il (4i(m),v;(m)) denote a projection
from L2(8,,) on W"i(8,,) defined by

/ Hm(ui(m),vj(m))‘l’d8=/ Uim)Vds, ¥ € M"i (5,) 3)
) )

m m

and

I (Wigm) s Vj(m)) |96, = Vj(m)- (4)

Thus Uj(m) = Hm (ui(m),uj(m)) if 'Uj(m) = Uj(m) on 65m.

By V" we denote a space of v € X" which satisfies the mortar condition for each
8 C T. The discrete problem for (1) in V" is defined as follows: Find u} € V" such
that

b(u;knvh) = f(Uh)a vp € Vh7 (5)
where
N N
b(un,vn) = Zai(uihavih) = Zpi(vuih, vvih)LZ(Qi)
=1 =1

and vy, = {vip}Y,; € V", It is known that V" is a Hilbert space with an inner product
defined by b(u,v). This problem has an unique solution and an estimate of the error
is known, see [AG93].

3 Additive Schwarz Method

In this section, we describe an additive Schwarz method for (5). It will be given for
the Schur complement system. For that we first eliminate all interior unknowns of €2;
using for u; € X;(2;) (here and below we drop the index h for functions)

u; = Pu; + Hu;, (6)
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where Hu; is discrete harmonic in 2; in the sense of (yu, VU)LZ(Qi) with Hu; = u;
on 012;. Using this, we get

s(u*,v) = f(v), veVhQ), (7)

where here and below V" denotes a space of discrete harmonic functions in each Q;
and
s(u,v) = b(u,v), wu,v € VH(Q).

An additive Schwarz method (ASM) for (7) is designed and analyzed using the
general ASM framework, see [Ben95a]. Using this framework, the method is designed
in terms of a decomposition of V", certain bilinear forms given on these subspaces,
and the projections onto these subspaces in the sense of these bilinear forms.

The decomposition of V" is taken as

N
VR =v@+ Y v+ S v ). (8)

Ym CT i=1 2, EWip,

Here V, = VH is a space of piecewise linear continuous functions, on the coarse
triangulation, which vanish on 9. The space V#LF) (Q2) is a subspace of V" associated
with the master face 7,,. It is the restriction of V" to v, and 6, (Ym = 6m), and the
zero on 0y, and 8d,,, the remaining master and slave faces, and on 9. Wy, is the set
of nodal points of W;. Vk(Wi) is an one-dimensional space associated with z € W;; and
spanned by ®;. The function & is discrete harmonic with data on the boundary of
the substructures defined as follows: Let zj be a nodal point of dv,,(;), the boundary
of the mortar face v,,,(;y of ;. We set & = @ () on v,,(;), where @ (z) is a nodal basis
function associated with zy. Let &,,(;) = Ym(i) = Fi; be the face common to ©; and
Q. @y, is equal to I, (¢k,0) on d,,(j); see (3) and (4). @ is defined on the remaining
mortar faces of Q; in the same way if x}, is a nodal point of their boundaries. ®y, is zero
on the remaining mortar and nonmortar faces of I'. Let z; be a nodal point of 9d,,(;,
the boundary of a nonmortar face of ;. ®x(z) is equal to II,, (0, %) on dp,(;. This
means that ®; = 0 on the mortar face v,,,(j) = dyn(i)- @& is defined on the remaining
nonmortar faces of ; in the same way if z; is a nodal point of their boundaries. ®y,
is zero on the mortar and nonmortar faces belonging to remaining substructures. If
zx is a nodal point common to the boundaries of mortar or nonmortar faces, ®;, is
defined on these faces as above.

Let us now introduce bilinear forms defined on the introduced spaces. bg ) associated

with Vy(nF) X Véf’ — R is of the form

bﬁf) (um(z’)avm(i)) = (pi + Pj)(VUm(z'),va(i))Lz(ni)a 9)

where u,,(;) is the discrete harmonic function in €; with data u,,(; on the mortar face
Yi(m) of i which is common to €2; and zero on the remaining faces of ;.

We set by : VWD x ") 5 R and by : Vo x Vo — R equal to b(u,v).

Let us now introduce operators T,(,LF), T,SW"), and Ty by the bilinear forms bg,f ),
biWi), and by, respectively, in the standard way. For example, Ty(nF) o VAL VT,(lF) is the

solution of

bENT )y, v) = b(u,v), ve V. (10)
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Let

N
T=To+ > TP+Y S ™.
Ym CI i=1 2, EW;p
The method described is almost optimal assuming a special distribution of the
coefficients p;, called quasi-monotone, introduced in [DSW96]. The quasi-monotone
distribution on substructures with common vertex x; requires a monotone path from
each substructure to the substructure having the largest coefficient, traversing through
faces of substructures only. If the vertex z, € 052, we additionally assume that 0€2;N92
contains a face of the substructure €2; with the largest coefficient p;. This is a local
condition. The distribution p; in 2 is quasi-monotone if it is quasi-monotone at each
vertex of the substructures; for details see [DSW96]. We also introduce the concept of
a weak quasi-monotone distribution of p; for which the traversing path is also allowed
to go through edges. In this case, for a vertex z, € 0N, we assume that 0€; N O
contains the face or the edge of Q; for which p; is the largest in ;.
There are indications that the estimates given below are sharp; see [Osw95] and
[Xu91].

Theorem 3.1 For all u € V"

Co(1+log )6 alu,w) < a(Tw, ) < Crafu,w), (1)

where C; are positive constants independent of H, h; and p;, h = inf;h; and

when p; is quasi-monotone
+log &) when p; is weakly quasi-monotone (12)
when p; is not even weakly quasi-monotone

0=

sm= =

4 Technical Tools

In this section, we formulate some auxiliary results that we need to prove Theorem
3.1.

Lemma 4.1 Let ¥i(m) = 0;(m) be a face common to Q; and Q;, and let ui(y,) and wjimy)
be the restrictions of u; € X;(;) and u; € X;(825) to Yim) and &y, respectively.
If uitm) and uj(y) satisfy the mortar condition (2) on 0jm) and ujy,) vanishes on
B(Sj(m), then

||“J‘(m)||2LZ(6J-(m)) < C||Ui(m)||2L2(7i(m))a (13)
where C' is independent of h; and h;.
This lemma, follows from Lemma 2.1 in [AG93].

Lemma 4.2 Let the assumptions of Lemma 4.1 be satisfied and additionally w;y,)
vanishes on 8dy(,,). Then,

< Olluim)ll? 2

1 ; (14)
H020 ('Yi(m))

lujemI? 4
7m) H020(5J(M))

where C' is independent of h; and h;.
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A proof of this lemma follows from Lemma 4.1 and properties of the standard L2
projection on Wi (8;(m)) NHg (8;(m))- In the 2-D case, Lemma 4.2 is a particular case
of Lemma 1 in [Pes72]. Alternative proofs of this result, also in the 2-D case, are given
in [Glo84] and [Ben95b)].

Lemma 4.3 Let ¢ be a function defined in Section 1.3 and associated with a nodal
point x, € W;. Then

b(q)k,q)k) S Cpihi, (15)
where C is independent of h; and p;.

A proof of this lemma follows from Lemma 4.1 and the definition of ®y.
Let R(z) be a union of the substructures ; with a common vertex zy.

Lemma 4.4 Foru e Vh

Inf [fu — alte(ray SC D, Helulipa,, (16)
Q,-CR(zk)

where C is a positive constant independent of h; and H.

A proof of this lemma in the 2-D case is given in [Glo84]. An alternative proof
follows from

Nk
|l — a“iZ(R(mk)) < 22 (Il — ﬂi”%Z(Qi) + |l@; — a||22(9i))- (17)
i=1
Here the €2; with a common z; are ordered from ¢ = 1,...,n, in such a way that

Q; and 2,41 have a common face F; ;11 and 4; is the average value of u; over Fj ;1.
Using now Poincare’s inequality, we get (16).

Let QF denote the L2 projection from V" to Vo = V¥ in the weighted inner
product.

Lemma 4.5 Foru € V"
b(qu,qu) < Céob(u,u) (18)
and
lu — Q23 0y < CH8b(u,), (19)

where § is given by (12) and C is constant independent of H, h; and p;.
A proof of this lemma is a slighted modification of the proof of Lemma 9 in [DSW96].

5 Proof of Theorem 1.3.1

Using the general theorem of ASMs, we need to check three key assumptions; see
[DW95] and [Ben95a).
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Assumption (ii) It is shown that p(¢) < C in view of Lemma 4.3.
Assumption (iii) Of course, w = 1 for by(u,u), u € V; and bgv")(u,u)7 u € Vk(W").
We now show that for u € V(F)

b(u,u) < CbE) (u,u). (20)

Let Yi(m) = 0(m) be the mortar and nonmortar sides of (2; and ;, respectively. We
have for u € V(F)

b(u,u) = a;(us, u;) + aj(uj,uj) < C(pi|ui|2 1 + pJ|uj| )
[l

o(Yi(m)) 00(51(m))

Using now Lemma 4.2, we get (20) with w = C.
Assumption (i) We show that for u € V", there exists a decomposition

N
u = ug + Z ug)ﬁ-z Z uscwi), (21)

Ym CT i=1 2, EW;ip

where ug € Vo, u$f’) € V) and uiWi) € Vk(Wi), such that

N
bo(uo,uo) + D b (ulP,ulP) + 3 3T b (@™ uf")

Ym CT i=1 2 €Wip

<Cs(1+ log%)zb(u,u). (22)

Let uo = Q}'u, w = u — uo, and w; be the restriction of w to ;. It is decomposed
on 09); as

w; = Z w(F”) (W’ , wEW") = Z w;(z) Py, (23)
F,_,C(?Qih T €EWin
where ng“)(a:) is the restriction of w; — (W) to Fjj;, the face of ;, and zero on

To define usf) let Fij = Yim) = dj(m) be a face common to Q; and ;. We set

ug) = {ng“) on 0f); and uJ;.F“) on GQ]-}

(W)

and zero at the remaining nodal points of I'. The function u; "’ is defined as

ul™) = w;(z) @ (2). (24)

It is easy to see that these functions satisfy (21).
To prove (22) note first that

bo(ug,ug) < Cob(u,u) (25)

by Lemma, 4.5.
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Let us now consider the estimate for uﬁf ) e VA(,IF) when v, iy = 0@y = Fij, a face

common to ; and ;. It is known that

0wl ) < Cloit ™Iy
Ho(Yi(m)

H
<Cpi(l+ lOgE)ZHUi — 0|3 (0,5
(3

see, for example, [DW95]. We have used here also the fact that p; > p;. Summing with
respect to v, and using Lemma 4.5, we get

S B0, ) < CO(1 +log ) blus u). (26)
Ym CI

We now prove that

N
> > B @™ u"™) < C6(1 + log )b, ). (27)
i=1 2, EWip

For that note first that, see (24),
b (™ i) < Cu (an)b(Bx, Bi) < Cpihiw ()

in view of Lemma 4.3. Summing with respect to z; € W;,, we get

W; W; Wi
> 0 @™, w™) < Opillwil Faqwsy < Cpi(1 +logi)lwillips a,)-
Tz €EWin ¢

Summing now with respect to 4 and using Lemma 4.5, we get (27).
To get (22), we add the inequalities (25), (26), and (27). The proof of Theorem 3.1
is complete.
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Overlapping Schwarz for Parabolic
Problems

Martin J. Gander

1 Introduction

The basic ideas underlying waveform relaxation were first suggested in the late 19th
century by Picard [Pic93] and Lindel6f [Lin94] to study initial value problems from
a theoretical viewpoint. Much recent interest in waveform relaxation as a practical
parallel method for the solution of stiff ordinary differential equations (ODEs) has
been generated by the publication of a paper by Lelarasmee and coworkers [LRSV82]
in the VLSI literature. Recent work in this field includes papers by Miekkala and
Nevanlinna [MN87], Nevanlinna [Nev89, Nev90], Bellen and Zennaro [BZ93], Reichelt,
White and Allen [RWA95], Jeltsch and Pohl [JP95], Burrage [Bur95] and Lumsdaine,
Reichelt, Squyres and White [LRSW96].

There are two classical convergence results for waveform relaxation algorithms for
ODEs: (i) for linear systems of ODEs on unbounded time intervals one can show linear
convergence of the algorithm under some dissipation assumptions on the splitting;
(ii) for nonlinear systems of ODEs (including linear ones) on bounded time intervals
one can show superlinear convergence assuming a Lipschitz condition on the splitting
function.

For classical relaxation methods (Jacobi, Gauss Seidel, SOR) the above convergence
results depend on the discretization parameter if the ODE arises from a partial
differential equation (PDE) which is discretized in space. The convergence rates
deteriorate as one refines the mesh.

Jeltsch and Pohl propose in [JP95] a multi-splitting algorithm with overlap. They
prove results (i) and (ii) for their algorithm, but the convergence rates are mesh-
dependent. However they show numerically that increasing the overlap accelerates the
convergence of the waveform relaxation algorithm. We quantify their numerical results
by formulating the waveform relaxation algorithm at the space-time continuous level
using overlapping domain decomposition; this approach was motivated by the work
of Bjgrhus [Bjg95]. We show linear convergence of this algorithm on unbounded time
intervals at a rate depending on the size of the overlap. This is an extension of the
first classical convergence result (i) for waveform relaxation from ODEs to PDEs.

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org
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Discretizing the algorithm, the size of the physical overlap corresponds to the overlap
of the multi-splitting algorithm analyzed by Jeltsch and Pohl. We show furthermore
that the convergence rate is robust with respect to mesh refinement, provided the
physical overlap is held constant during the refinement process. The details of the
analysis can be found in [GS97].

Independently Giladi and Keller [GK97] studied superlinear convergence of domain
decomposition algorithms for the convection-diffusion equation on bounded time
intervals, hence generalizing the second classical waveform relaxation result (ii) from
ODEs to PDEs.

2 Continuous Case

Consider the one-dimensional inhomogeneous heat equation on the interval [0, L],

Ju %H(x,t) O<z<L, t>0
u(0,t) = g1(t) t>0 (1)
w(L,t) = gt t>0
u(z,0) = wo(z) 0<z<L,

where we assume enough smoothness on the data such that (1) has a unique bounded
solution [Can84]. Given any function f(t) : R™ — IR we define

I1f ()lloo == sup | f(¢)]-
t>0

We decompose the domain © = [0,L] x [0,00) into two overlapping subdomains
Q; =[0,BL] x [0,00) and Qy = [aL, L] x [0,00), where 0 < a < 8 < 1. The solution
u(z,t) of (1) can now be obtained by composing the solutions v(z,t) on ; and w(z,t)
on )5, which satisfy the same inhomogeneous heat equation on the subdomains with
the new interior boundary conditions v(8L,t) = w(BL,t) and w(aL,t) = v(aL,t),
respectively. Note that v(z,t) = w(z,t) in the overlap. The system, which is coupled
through the boundary, can be solved using an alternating Schwarz iteration, where
the new function v**+!(z,t) on Q; is obtained using the previous iterate w*(z,t)
at the interior boundary and similarly on Q. Let d*(z,t) := v*(2,t) — v(z,t) and
e*(z,t) .= wk(z,t) — w(x,t) and consider the error equations

6dk+1 _ 62dk+1
S = 9 O0<z<pBL,t>0
d*+10,t) = 0 t>0 (2)
d*Y(BL,t) = e*(BL,t) t>0
d**(z,0) = 0 0<z<pL
and
dektl  GRektl
ettl(aLl,t) = d*¥(aL,t) t>0 (3)
et (L,t) = 0 t>0
efl(z,0) = 0 aL <z < L.
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Given any function g(z,t) : [a,b] x Rt — IR we define

l9Cs)Mloo,00 :== sup  |g(z,1)]-
a<z<b,t>0

Theorem 2.1 The Schwarz iteration for the heat equation with two subdomains
converges at a rate depending on the size of the overlap. The error on the two
subdomains decays at the rate

2k+1(, a(l —pB) &0 .
e < (2020) e, (@
o oL =B\* | o |
4 e < (S2ZD) o, ) Q

Proof The proof is obtained using the maximum principle of the heat equation and
can be found in [GS97]. |
3 Semi-Discrete Case

Consider the heat equation continuous in time, but discretized in space using a

centered second order finite difference scheme on a grid with n grid points and
Az = . This gives

%y = A(n)u—i—f(t) t>0

t 6
u(0) = 1wy, (6)
where the n x n matrix A, is given by
-2 1 0
1 1 -2 .
Apy = —=

(n) (Az)? SR (7)

0 1 -2

and f(t) = (f(Az,t) + &, f2Az,1),..., f(n — 1)Az, 1), f(nAz,t) + LT,
ug = (uo(Azx), ... ,uo(nAz))T.

We decompose the domain into two overlapping subdomains €2; and Q2. We assume
for simplicity that a.L falls on the grid point ¢« = a and SL on the grid point i = b. We
therefore have aAxz = aL and bAz = BL. As in the continuous case, the solution u(t)
of (6) can be obtained by composing the solutions v(t) on Q; and w(t) on Q2, which
satisfy the corresponding equations on the subdomains. Applying a Schwarz iteration
one obtains the error equations

k+1 k
Tad t = A(b_l)dk+1 + f(e ) t > 0 (8)
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k+1
66@: = A(n_a)ek+1 + f(dk) t>0 (9)
et = o

with £ = (40 o o).
Given any vector valued function h(t) : Rt — IR™ we define

h(-,- = h(j,t
[1B(>Mloo,00 = max sup [h(j, )],
where h(j,t) denotes the j-th component of the vector h(t).

Theorem 3.1 The Schwarz iteration for the semi-discrete heat equation with two
subdomains converges at a rate depending on the size of the overlap. The error on the

two subdomains decays at the rate
a(l-p) ) g 0
a1\ e (b— G, )||co
(55=2) Tl - a0l
(

2k+1 a(l-7) k 0
1€l < (G200) @l
Proof The proof uses the discrete maximum principle and follows as in the continuous
case [GS97]. |
The results shown for two subdomains can be generalized to an arbitrary number
of subdomains, although the analysis is more involved. The theorems corresponding
to Theorem 2.1 and 3.1, and their proofs, can be found in [GS97].

[ i CR |

4 The Algorithm in the Framework of Waveform Relaxation

For a linear initial value problem
du(t)
dt
the standard waveform relaxation algorithm is based on a splitting of the matrix A
into A = M + N, which yields

= Au(t) + f(t), u(0) =uo

du(t
% = Mu(t) + Nu(t) + f(t), u(0) = wuo.
This system of ODEs is solved using an iteration of the form
dok+t
o = My Nok 1 f, 0 1(0) = uo, (10)

where the starting function v°(¢) is usually chosen to be constant. In the case of Block-
Jacobi the matrix M is chosen to be block diagonal, for example for two subblocks

M:[Dl D2], (11)
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and N contains the remaining off diagonal blocks. This allows for solution of the
subsystems D;, 1 = 1,2 in equation (10) in parallel. In the case where A equals
A(ny from the semi-discrete heat equation (6), the waveform relaxation algorithm
with Block-Jacobi splitting computes the same iterates as the Schwarz domain
decomposition algorithm presented in subsection 3 with overlap Az (i.e. one grid
point only). This result can be generalized to an arbitrary number of subdomains, as
shown in [GS97].

To extend this analogy to arbitrary overlaps, the concept of multi-splittings is
needed, which was first introduced by O’Leary and White in [OW85] for solving large
systems of linear equations on a parallel computer. Jeltsch and Pohl generalized multi-
splittings to linear systems of ODEs and waveform relaxation in [JP95].

Let A, M;, N; and E;, i = 1,2 be real n x n matrices. The set of ordered triples
(M;, N;, E;) for i = 1,2 is called a multi-splitting of A if

1. AZMi—Ni fori=1,2.
2. The matrices E; are nonnegative diagonal matrices and satisfy

Ei+EBEy=1. (12)

Using the waveform relaxation algorithm, we get two new approximations 'u’f“ and

vE+! at each step according to
do®t?! . ) »
—c;t = Myv;" (t) + Nyvi + f;, vi7 (0) =uo, i =1,2 (13)

which are combined using the matrices E; to form a new approximation v**! by
vl = Eioftt 4 Eyvktl. Note that the two equations in (13) can be solved in
parallel and in addition, components of vf"’l where F; has a zero on the diagonal do
not have to be computed at all provided they do not couple to other components of
v¥*! where E; has a non zero diagonal entry. Jeltsch and Pohl prove in [JP95] that
the multi-splitting algorithm converges superlinearly on a finite time interval for all
splittings and matrices A, and linearly on an infinite time interval if A is an M-matrix
and the splitting is an M-splitting. However in the case of the semi-discrete heat
equation, the rate of convergence in their analysis depends on Az since their level of
generality includes the Schwarz method with one grid point overlap and spectral radius
1 — O(Az?) - the block Jacobi algorithm (11). Jeltsch and Pohl also observe, on the
basis of numerical experiments, that increasing the overlap accelerates the convergence
rate of the algorithm. Our analysis substantiates and quantifies this observation in the
specific case of the heat equation, since the E; can be chosen in such a way that the
domain decomposition algorithm described in the previous section is recovered. Choose
the two splittings of A according to the two subdomains of the domain decomposition
and let E; have the value one on the diagonal in the interior of the corresponding
subdomain €;, including the first point of the overlap, some arbitrary distribution
in the overlap satisfying (12) and zero in the interior of the other subdomain. Then
the intermediate solutions vf""l computed by the multi-splitting algorithm for the
heat equation are identical to the solutions computed by the domain decomposition
algorithm described in the previous section. Thus, in this case, multi-splitting gives a
Az independent rate of convergence.
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Note that one could save half of the computation time by computing only even
iterates on ; and odd iterates on 25 or vice versa, since these two solution sequences
are independent of one another. In the terminology of Domain Decomposition this
would correspond to the multiplicative Schwarz algorithm with red-black ordering
whereas the multi-splitting algorithm corresponds to the additive Schwarz algorithm.

The important point here is that our algorithm converges linearly, independent of
the mesh size, on unbounded time intervals. Thus for certain PDEs the analysis of
Jeltsch and Pohl can be refined to give Az independent rates of convergence if sufficient
overlap is used.

5 Numerical Experiments

We perform numerical experiments to measure the actual convergence rate of the
algorithm. We consider first the linear example problem

2
%% - %4_56—@—2)2—@—%)2 0<z<1,0<t<3
uw(0,t) = 0 0<t<3 (14)
'U,(17t) = e_t 0<t< 3

To solve the semi-discrete heat equation (6), (7), we use the backward Euler method
in time. The experiment is done splitting the domain @ = [0,1] x [0, 3) into the
two subdomains ©; = [0,a] X [0,3) and Q2 = [$3,1] x [0, 3) for three pairs of values
(e, B) € {(0.4,0.6), (0.45,0.55), (0.48,0.52) }. As initial guess for the iteration we use
the constant value 1. Figure 1 shows the convergence of the algorithm at the grid
point b for Az = 0.01 and At = 0.01. The solid line is the predicted bound on the
convergence rate according to Theorem 3.1 and the dashed line is the measured one.
The measured error displayed is the difference between the numerical solution on the
whole domain and the solution obtained from the domain decomposition algorithm.
We also checked the robustness of the method by refining the time step and obtained
similar results.
Now consider the nonlinear example problem

du _ u — 3
9t = 6$2+5(u u?) 0<z<1l, 0<t<3 (15)
with the same initial and boundary conditions as in the linear case. We discretize in
space as before and use the backward Euler method in time for the Laplacian, keeping
the nonlinear part explicit. Figure 2 shows the convergence of the algorithm at the
grid point b for Az = 0.01 and At = 0.01 using the same overlaps as in the linear
case.

6 Conclusion

Although the analysis presented is restricted to the one-dimensional heat equation,
the underlying ideas are more general. As suggested by the nonlinear example, the
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Figure 1 Theoretical and measured decay rate of the error for two subdomains
and three different sizes of the overlap for the linear example problem
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analysis can be generalized to nonlinear problems, convection-diffusion equations,
variable coeflicients, and higher dimensions; this is the subject of ongoing research.
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A Domain Decomposition Method
for Helmholtz Scattering Problems

Souad Ghanemi

1 Introduction

We present a study of iterative nonoverlapping domain decomposition methods
(DDMs) for the harmonic scattering wave equation in the 3D case. We introduce
some new nonlocal transmission conditions at subdomain interfaces in order to obtain
an exponential rate of convergence. This work is a natural continuation of the
work by Despres [Des91]. We present numerical results for a mixed finite element
approximation. The parallel performance of the method on a tightly coupled machine
and a loosely connected network is also shown.

2 Domain decomposition methods

A model problem

We study the scattering scalar Helmholtz equation in three dimensions. Let © C IR?
be a bounded domain, I' its boundary, and 7 the outgoing normal to I'. The problem
to solve is:

(a) —V(qu) —wleu=f on 0

W
10u . [e (1)
() Lo +zw\/;u_0 on I
() u=0 on OF

The boundary condition (b) plays an essential role and can be interpreted as a first-
order absorbing boundary condition, where p and € are two positive parameters
piecewise C'. We know that for every f in L2(Q), (1) has a unique weak solution
in H1(Q).

Ninth International Conference on Domain Decomposition Methods
Editor Petter E. Bjorstad, Magne S. Espedal and David E. Keyes ©1998 DDM.org
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Domain decomposition methods

We apply the DDM concept to the Helmholtz scattering problem. The originality in
our work is the introduction of some new nonlocal transmission conditions at the
interfaces between subdomains in order to obtain an exponential rate of convergence.

Let us give a brief presentation of the method. The general idea is to split the
domain  into several subdomains ()rer. The solution is the limit of the following
iterative process. We denote as uj the restriction of the approximate solution to the
domain Qy, at step n, uj being the solution of the following problem:

( Fin(% ultt € HY(Q)
V(EVUZ—H) — w2eku2+1 = fx in Qg
1 6UZ+1 €k 1
— +iw, =t =0 on I 2
Y e om, Vo " k (2)
uZ'H =0 on OFy
1 Quptt 1 1 Ouf
— kL iTput = - — — L T u” =gr; on D (%),
| 1 Onk kU, 1; On; kjl; = Jkj ik ()
where Ty; and Tjx are continuous linear operators, for which Tx; = T = T and

Ty : HY?(Zig) — HY2 (D)

is a symmetric isomorphism between H'/2(Xy;) and H~/2(Z;). We call equation

() on T; a transmission condition. The following theorem ensures that u} ™" is well

defined at each step n.

Theorem 2.1 Let f, € L*(%) and gij € H_l/z(Ekj), pr € L®°(Q) and €, €
L>®(Q4) and piecewise C'. Then problem (2) has an unique weak solution uj €
H' ().

Proof see [Gha96]. H
In the following theorem, we prove that the iterative process (2) is convergent.

0
ouy,

1
Theorem 2.2 Under the hypothesis — € H™Y2(00), Yk € I, (uk,er) €

11 Hr Ony
L ()%, piecewise C* and (M—,—) € L™(Q)?, the solution of equations (2), up
k €k

converges in H(Qy) to uy, the solution on Q.

Proof see [Gha96]. W

Geometrical convergence

For the sake of clarity, we show the convergence in a homogeneous medium. The
iterative process (2) is written as

2™ = A, 3)
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where 2" is the sequence defined on the interface (I'y, Xy;) by
n 2
n __ n n mrk €L (Fk)
= (xfk’mzw)’{ %, € L?(Zkj).
More precisely, V = @y, [@j;ékLz(Ekj) @ Lz(Fk)] )

A: 174 — VvV
o = (o, 0f,) — o= Aon,

such that:

—1 9€r
mgkj = (S ) lan +7’S6k;
Ty, = ﬂ + iwey,
where ey is the unique solution of the problem.
Aey, +w?ep, =0 in Q (1)
Oey,
(: ) 187;, + iSey, —.Tzk] on ij (2) (4)
6—2’; +iwer = a1, on Ty (3).
z™*1 is constructed in the following way:
Oe;
n+l _ noo— _(S* -1%"7 iSe.;
xjfl jkj 57 an;
"L‘l—‘k Ty — 0.

Some properties of the A operator are:

o |lA <1,

o if some eigenvalues of A are close to 1, then convergence is slow [GJC95].

For achieving geometrical convergence, it is necessary to use a relaxation method.
The fourth (*) equation in (2) is replaced by:

n+1 6’&
L 9uj -HTJuk =r(-— l—-HTkJ ™+ (1—r)(16uk

— + iTyuy) on Xy,
P On Hj O Hi 0N i) I

where r is the relaxation parameter and belongs to ]0,1[. As a result, we have

= rAz™ + (1 —r)z™ (5)

0
Theorem 2.3 Assume % € H™Y2(8Q), Vk € I. If the interfaces Ti; do not
k

intersect, we get an exponential rate of convergence for the relaxed iterative process:

e >0 suchthat |[(1—r)ld+rAllvvy <V1I-€r(l-r)<1.  (6)
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Proof We assume the following identity:
>0, VzeV, |[I-Azllv > ¢€lz|v. (7
So, let z € V such that ||z||y = 1. From

I(Z = A)e|[} = | Azl[} + |2l — 2Re < Az,z > > (el|]lv)*.

we deduce that
2Re < Az,z > < 2— €,

and
|(rA+ (1 —r)Dz|? < (1—7r)?||z||® + r?||Az||* + 2r(1 — r)Re < Az, z >,

[rA+ (1 —r)Dz|} < Q-7 +r*+2r(1—-r)(1—€*/2)=1—r(1 —r)e

Finally, we have:

Vz eV, [|(rA+ (1 —7)) iz ||||V<\/1—r1—r
veeV, [[(rA+ (1 —r)Dzllv <V1-rl-r)ez]y.

|
Assumption (7) is proved if the bijectivity of the Id — A operator is obtained. Then:

VeeV, z=(I-ATI-Az, |zl <[ -ATNT-Azll, (8)

and
1
1= A)~H]
First, we show that I — A is injective.
If z € V, is such that z = Az, the field e solution of

= €.

w?ep + Aep, =0 in  Q
ey,
— +iwep = xy, on I
Onk
e .
(S*)~ ﬁ +iSer =zp; on Xy
satisfies
% 8 (A *\—1 8ej :
(S*)~ a—nkﬂSe;c =z = (Az),,; = —(5") 6—nj+1561 on Xy,
ooy 0e; o1 0er .
(8%)7 nfj +iSej = aj = (Ar)y = ~(S7) 7 g +iSex on
and

%+zwek_mk—(¢4m)k=0 on Tk,
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then e = (ey) is such that e, € H' () and

w26+A6= 0 in Q—Uij UEkj
s + iwe, =0 on T
O P )
€ €
er = ey, —k=—