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The purpose of this paper is to offer a framework for categorizing and describing the
different types of processes that undergraduates use to construct proofs. Based on
176 observations of undergraduates constructing proofs collected over several
studies, I describe three qualitatively different ways that undergraduates use to
construct proofs. In the concluding section, I describe the learning that is likely to
occur by writing proofs in each of these three ways.

INTRODUCTION

Mathematicians and mathematics educators both agree on the importance of proof
and on the necessity for students to develop the skills needed to construct proofs
(Blanton, Stylianou, and David, 2003). However, there is also widespread agreement
that students have serious difficulties with constructing proofs. Consequently, there
has been a great deal of educational research investigating students’ proving abilities.
Much of the research on proof has examined both the valid and invalid proofs that
students produce. The ratio of valid to invalid proofs has been used to provide a
measure of students’ proof-writing ability (e.g., Senk, 1985) and the invalid student
proofs have been used both to classify common student errors and to glean insight
into students’ conceptions of proof (e.g., Selden and Selden, 1987; Gholamazad,
Liljedahl, and Zazkis, 2003). More recently, some researchers have paid less
attention to the proofs that students produce and have focused instead on the
processes that students use to create those proofs. For instance, Hart (1994) describes
the processes that undergraduates use when they are constructing elementary proofs
in abstract algebra and illustrates how these processes are influenced by their
conceptual understanding. Weber (2001) delineates the processes that undergraduates
and mathematicians use to construct proofs about group homomorphisms and
demonstrates that undergraduates’ proof strategies are often inadequate. Raman
(2003) illustrates several approaches that one can take to prove a theorem from
calculus and argues that one should base the proof that they are writing on key ideas
that they find to be convincing and intuitively meaningful. The purpose of this paper
is to further this work by offering a framework that one can use to categorize and
describe the processes that undergraduates can use to successfully construct proofs.

RESEARCH CONTEXTS

The framework described in this paper was developed using data from several
empirical studies in which I observed eight undergraduates in abstract algebra and six
undergraduates in real analysis constructing proofs in their respective domains. (See
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Weber (2001, 2002, 2003, 2004) for reports on these studies). There were two
abstract algebra studies that were conducted to investigate possible deficiencies in
undergraduates’ proving processes. The real analysis study was a longitudinal one
designed to follow the development of undergraduates’ concept understanding and
proving abilities. In all three studies, undergraduates were asked to “think aloud” as
they proved a collection of statements. After their proof attempts, they were asked to
describe why they tried to prove the statement in the way that they did. In total, 14
undergraduates were observed constructing a total of 176 proofs (56 from abstract
algebra, 120 from real analysis).

TYPES OF PROOF PRODUCTIONS
Procedural proof productions

In a procedural proof production, one attempts to construct a proof by applying a
procedure, i.e., a prescribed set of specific steps, that he or she believes will yield a
valid proof. It may be the case that the procedure is meaningful to the prover; that is,
the prover understands why the successful implementation of the procedure will yield
an argument that logically establishes the veracity of the claim to be proven.
However, in the studies that I conducted, it was more often the case that
undergraduates applied procedures that were not meaningful to them. As a result,
they would produce valid proofs, but could not explain what their proofs meant (cf.,
Weber, 2003). There were many cases where the undergraduates’ successful proof
attempts consisted simply of mimicking the actions of the teacher or applying a set of
steps that they had been told will yield a valid proof.

There were two types of procedures executed by the undergraduates in my studies.
The procedure may be an algorithm, or a list of steps that were highly mechanical
and tied to a specific type of problem (cf., Weber, 2003). An example of an algorithm
that can prove identities about summations using induction is given below:

To prove statements of the form, X' ™"f(i) = g(n), write:
Proof: [Show f{1) = g(1) by direct computation], which establishes the basis case.

Assume X7 "f{i) = g(n) as your inductive hypothesis.

Then X™""fi) = ") + f{n+1)

Which by the inductive hypothesis is equal to g(n) + f{n+1).

[Verify that g(n) + f(n+1) = g(n+1) using algebraic manipulations].
Hence, X" 'f(i) = g(n+1).

Therefore, X' "f{i) = g(n) has been proven by mathematical induction.

Many of the students in the real analysis study used an algorithm similar to the one
above to prove these types of statements. Note that applying this algorithm requires
minimal engagement on the part of the prover; there are few points in the proof
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where the prover needs to make decisions or reason mathematically. Also note that
the only skills and understanding required to write this type of proof are the abilities
to evaluate functions for particular variables and to perform algebraic manipulations;
an individual without understanding the logic behind inductive proofs or even
knowing the meaning of summation might still be able to apply this algorithm.

As a second illustration of a student proving by applying an algorithm, consider
Erica’s comments as she proved that the sequence {(n-1)/n} converged to 1.

Erica: I remember doing one like this on our homework. Can I use my notes?
I: Do you think you need to use your notes?

Erica: [laughs] Yeah.

I: OK.

Erica: Yeah, OK I see. You start this proof writing “Let ¢ greater than zero be given. Let
N equal”. Now he uses scratchwork over here to find the N. He says, let’s see... OK, to
show this converges to 1, we... yeah, OK, we start with the absolute value of n minus 1
over n minus 1 and we’ll re-write this as (1 — 1/n — 1) which is equal to the absolute value
of 1/n... let’s see, then he... oh yes, we drop the absolute value sign and say this is 1/n
which is less than 1 over big N which is less than €...

Erica continued her proof by closely relating what she was doing to the proof that the
professor had completed in class. She produced what was a fully valid proof. From
the proof itself, one could not a lack of understanding on Erica’s part. However,
subsequent questions by the interviewer revealed that Erica neither understood why
her argument was logically valid nor had an accurate understanding of the meaning
of the limit of a sequence.

The procedure may also be a process, or a shorter list of global qualitative steps that
are not highly specified manipulations but rather involved accomplishing a general
goal (cf., Weber, 2003). To illustrate a student applying a process, consider the
following undergraduate’s proof that n! > 2™ for all natural numbers n.

David: Well the basis case just gives .... 1 is equal to 1. To solve the inductive step, I
would have to see how (n+1)! related to n! and how 2™ related to 2". I think that I would
approach it in some way of handling the factorial. If I can expand (n+1)! in some way, I
can see how it relates to n. If I can see how they are related, I can use my inductive
hypothesis.

David went on to construct a valid proof. David’s proof by induction involved
executing several qualitative steps. For instance, David attempted to write (n+1)! in
terms of n! without a clear method specifying how this might be done. He was able to
construct a valid proof, even though he had not yet proved statements involving
factorials. While David showed considerable skill at writing these types of proofs, a
comment made after David constructed the proof revealed that he did not understand
why inductive proofs are mathematically valid.
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David: And I prove something and I look at it, and I thought, well, you know, it’s been
proved, but I still don’t know that I even agree with it [laughs]. I’'m not convinced by my
own proof!

Syntactic proof productions

In a syntactic proof production, one attempts to write a proof by manipulating
correctly stated definitions and other relevant facts in a logically permissible way. In
the mathematical community, a syntactic proof production can be colloquially
defined as a proof in which all one does is “unpack definitions” and “push symbols”.
In the mathematics education literature, this type of proof has also been referred to as
a purely formal deduction (Vinner, 1991). Two examples, taken from Weber (2001),
are given below. In both examples, the undergraduates were asked to prove the
following theorem.

Let G and H be groups. G has order pq, where p and q are prime. f is surjective
homomorphism from G to H. Prove that G is isomorphic to H or H is abelian.

Jim: Hm... so what do we have here. We have G has order pq... f is a surjective
homomorphism from G to H. So... [long pause]... Well, G has order pq so G has an
element of order p... by Cauchy’s theorem... and likewise G has an element of order q...
so since f is a homomorphism, let x be an element of order p, then f(x) would be an
element of order p... um, no, an element of order p or order 1...

So what did we do on the last problem? We looked at the kernel. So, yeah, these
problems tend to build on each other, so what is the kernel going to be here. Um the
kernel is going to have size 1, p, or q... oh yeah, or pq. How does that help us? [pause]
Um, okay then H is going to have size pq, q, p, or 1. And if H has size p or q, it is cyclic
and abelian. And if it has size 1, it is abelian. And if it has size pq? Then it must be
isomorphic to G. Why? Um, oh yeah, by f.

Steve: Well, injective... if G and H have the same cardinality, then we are done. Because
fis injective. And f'is surjective. G is isomorphic to H with the isomorphism being f. OK,
so let’s suppose their cardinalities are not equal. So we suppose f is not injective. Show H
is abelian... OK f is not injective so we can find distinct x and y so that f(x) is equal to
f(y). OK, to show abelian, let us choose an h in H. Then f(x)h is equal to f(y)h...

Steve continued to draw logical deductions, such as the fact that f(x)h = f(x)f(f"(h)) =
f(xf"'(h)) and also that xy"' would be a member of the kernel of f, but unlike Jim, was
unable to construct a proof. Both Jim and Steve’s proof attempts appeared to consist
entirely of drawing a sequence of logical deductions. Their deductions either
involved stating the definition of a mathematical concept or using facts that they
knew about the concepts to construct proofs. At no point did either undergraduate
consider the semantic meaning of the statements that he was dealing with; they did
not, for instance, use visual representations of the groups in question (perhaps
because they did not have such representations in their repertoires) and did not see
why this statement would be true by considering particular groups of order pq.
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Semantic proof production

Mathematical propositions often describe relationships between mathematical
objects. In a semantic proof production, one first attempts to understand why a
statement is true by examining representations (e.g., diagrams) of relevant
mathematical objects and then uses this intuitive argument as a basis for constructing
a formal proof. In the mathematics education literature, semantic proof productions
have also been referred to as proofs following intuitive thought (Vinner, 1991), and
are similar to what Raman (2003) calls proofs based on key ideas.

The example below illustrates a semantic proof production in which an
undergraduate demonstrates that the sequence {1, 0, 1,0, 1, 0, ...} does not converge.

Stacey: [After reading the question] Let me first see what this sequence looks like.
[Graphs the sequence on a Cartesian plane]. So this doesn’t seem to be converging.
[Draws a horizontal band between y=0 and y=1]. Yeah, if we make this band thin
enough, it’s not going to get both of the points... OK, so we’ll let epsilon be one-third,
which would make the width two-thirds. Then no matter what the limit is, either the 0’s
will not be in the band or the 1’s won’t. So no matter what the N is, I can always find an
odd or even number bigger than that and the odd sequence term would be 1 and the even
one would be 0.

Stacey then wrote a proof using appropriate mathematical notation that reflected what
she had just said. In her proof, Stacey did not begin by stating definitions or drawing
inferences. Instead, Stacey first tried to understand the claim being made by
sketching a graph. In examining this graph, she realized that any epsilon band having
a width of less than one would not contain the points. She then wrote (or translated)
her intuitive argument into the language of formal mathematics to produce a proof.

DISCUSSION
Learning outcomes of different types of proof productions

Lithner (2003) observes that the way that one solves a problem will affect the nature
of what one learns from their problem-solving episode. In this section, I describe how
procedural, syntactic, and semantic proof attempts may provide the prover with
different levels of conviction and understanding. There are (at least) three important
purposes that undergraduates should have when they are constructing proofs in their
mathematics courses. Their proof of a statement should convince themselves that the
statement is true, promote understanding by explaining why the statement is true, and
convince their mathematical community, including their teacher, that the statement is
true. In the remainder of the section, I discuss the extent that each type of proof
production achieves these three goals.

To most undergraduates, convincing their teacher (and thereby earning satisfactory
grades) is typically the most important reason for constructing a proof. Procedural,
syntactic, and semantic proof productions can all yield valid proofs; hence all are
capable of achieving this goal. Nonetheless, it is worth noting that if undergraduates
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rely exclusively on procedural or syntactic proof productions, the scope of statements
that they can prove may be rather limited (see Weber (2001, 2002) for empirical
support of this assertion).

By “convincing oneself that a statement is true”, I mean to see why the statement is a
logical consequence of previously accepted assertions. Syntactic and semantic proof
productions both would convince the prover (in a formal mathematical sense) that the
statement is true, but procedural proof productions might not. If the procedure that is
being applied is not meaningful to the individual applying it, that individual may
produce arguments that he or she does not find convincing. This was illustrated in
this paper with David, who could prove a statement by induction, but “still not even
be sure that he agrees with it”.

Many mathematics educators believe that promoting understanding is the most
important reason for introducing proof in the university classroom (e.g., Hanna,
1990; Hersh, 1993). However, both procedural and syntactic proofs may fail to
explain to the prover why the statement is true. Many of the undergraduates that I
interviewed applied an algorithm similar to that presented early in this paper to verify
identities about summations using induction. To apply this algorithm, one does not
even need to know the meaning of summation, and certainly does not need to see the
identity as establishing an equality between a summation and an equation. Likewise,
syntactic proofs may be understood only as symbols obeying logical rules, and not
exhibiting relationships between mathematical objects and mathematical structures
(cf., Weber, in press). Semantic proofs are based on intuitive representations and will
therefore be meaningful to the prover who produces them (Raman, 2003).

This is not to say that undergraduates should not engage in procedural or syntactic
proof productions. Having reliable procedures to prove common classes of statements
and being able to logically manipulate symbols in a flexible manner are important
skills for competent theorem proving, and mathematicians regularly write proofs in
this way (Weber, 2001). Further, with reflection, both syntactic and procedural proof
productions can serve as the basis for sophisticated learning (c.f., Pinto and Tall,
1999; Weber, 2003). However, there is a danger that if undergraduates only write
these types of proofs and do not reflect on their proofs or proving processes, then the
act of proving may not be effective at promoting understanding.

Types of proof productions by the undergraduates in these studies

Analyzing the proof attempts by the participants in my studies suggests that these
undergraduates rarely attempted to construct semantic proofs. Of the 56 proofs
attempted by the eight undergraduates in the abstract algebra studies, 46 attempted
syntactic proof productions (24 were successful). The other 10 made no progress on
the problems and hence could not be categorized. Of the 120 proofs attempted by the
six undergraduates in the real analysis course, 48 attempted to produce procedural
proofs, 28 syntactic proofs, and only 17 semantic proofs. For the other 27 statements,
the undergraduates either engaged in behavior that could not lead to a valid proof
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(e.g., checked that a general statement held in several instances and presented this as
a proof) or made no progress on the problem. Further, in the longitudinal study in real
analysis, I also investigated the participants’ learning strategies and found that it was
relatively rare for these students to reflect on their mathematical work.

Coupled with the preceding analysis, these results suggest that the act of proving may
not have been an effective means for these undergraduates to gain understanding. Of
course, one cannot determine whether these results are generalizable. That is, one
cannot yet claim that most undergraduates rarely produce semantic proofs. It may
have been the case that the undergraduates’ behavior was due to the idiosyncrasies of
their instructor or, perhaps, their behavior was influenced by the nature of the proofs
that they were asked to construct. However, if other undergraduates behave in the
same way as the undergraduates in this study, then this is a pedagogical problem that
should be addressed. Investigations on whether this would be the case would be
useful activities for future research.
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