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This note is a revised version of the talk given by the author at the meeting Quater-
nionic structures in Mathematics and Physics at Rome in September, 1999. The
results presented here are part of [4], a joint work with R. Miatello.

1. INTRODUCTION

A Riemannian manifold is quaternion Kdhler if its holonomy group is contained in
Sp(n)Sp(1). It is known that quaternion Kahler manifolds are Einstein, so the scalar
curvature s splits these manifolds according to whether s > 0, s = 0 or s < 0. Ricci
flat quaternion Kahler manifolds include hyperkahler manifolds, that is, those with
full holonomy group contained in Sp(n). Such a manifold can be characterized by
the existence of a pair of integrable anticommuting complex structures, compatible
with respect to the Riemannian metric, and parallel with respect to the Levi-Civita
connection.

It is the main purpose of this lecture to indicate a rather general method to con-
struct quaternion-Kahler compact flat manifolds. This construction will give many
families of quaternion Kahler manifolds of dimensions n > 8, which admit no Kahler
structure (see Section 3). This will follow from the explicit calculation of the Betti
numbers of the manifolds involved.

The simplest model of hyperkdhler manifolds (and in particular, of quaternion
Kahler manifolds) is provided by R** with the standard flat metric and a pair J, K of
orthogonal anticommuting complex structures. This hyperkahler structure descends
to the 4n-torus Ty := A\R*"*, for any lattice A in R**. The main idea in the con-
struction consists of finding finite groups F' acting freely on the torus, endowed with
the standard hyperkahler structure, in such a way that F\T%" becomes quaternion
Kahler but its cohomology changes in such a way that the resulting manifold will not
admit any Kahler structure.
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2. CONSTRUCTION OF QUATERNION KAHLER FLAT MANIFOLDS.

One way of constructing free actions of finite groups on tori is via Bieberbach
groups. A Bieberbach group I is a crystallographic group (i.e. a discrete cocompact
subgroup of I(R")) which is torsion-free. The quotient Mr := I'\R" is a compact flat
Riemannian manifold with fundamental group I". If v € R”, let L, denote translation
by v. By Bieberbach’s first theorem, if I" is a crystallographic group then A = {v :
L, € T'} is a lattice in R". The translation lattice Ly = {L, : v € A} is a normal
and maximal abelian subgroup of I' and the quotient F' := L,\I" is a finite group
acting freely on A\R"; it represents the linear holonomy group of the flat Riemannian
manifold M and is called the holonomy group of I'. We will usually write A in place
of L A-

Any element v € I(R") decomposes uniquely v = BL;, with B € O(n) and b € R"
and the lattice A is B-stable for each BL;, € I'. The restriction to I' of the canonical
projection from I(R™) to O(n), mapping BL, to B, has kernel A and the image is
a finite subgroup of O(n), called the point group of I'.  We shall often identify the
holonomy group F' with the point group of I'. The action of F' on A defines an integral
representation of F', usually called the holonomy representation.

If Mr = I'\R* is a compact flat manifold such that the holonomy action of
F = A\T centralizes (resp. normalizes) the algebra generated by J, K, then My
inherits a hyperkéihler (resp. quaternion Kéhler) structure. To produce Bieberbach
groups having the previous property we introduced in [1] a ”doubling” procedure
for Bieberbach groups which allows to produce many flat hyperkéhler (even Clifford
Kéhler) manifolds. In particular, we showed that any finite group is the holonomy
group of a hyperkahler flat manifold. The main goal will be to give a variant of this
construction which produces quaternion Kéahler manifolds which are generically not
Kahler.

Let I be a Bieberbach group with holonomy group F' and translation lattice A C
R*. Let ¢ : F — R" be a l-cocycle modulo A, that is, ¢ satisfies ¢(B1By) =
B;'¢(B1) + ¢(By), modulo A, for each By, B, € F. Then ¢ defines a cohomology
class in H'(F;R"/A) ~ H?(F;A) and one may associate to ¢ a crystallographic
group with holonomy group F' and translation lattice A. Furthermore, this group is
torsion-free if and only if the class of ¢ is a special class (see [2]).

Definition 2.1. Let I' be a Bieberbach group with holonomy group F' and translation
lattice A C R*. Let ¢ : FF — R" be any 1-cocycle modulo A. We let d4I' be the
subgroup of I(R*") generated by elements of the form [£ ] Lyp) s and Ly, for
vy=BL,eTl and (\,p) € AP A.

Proposition 2.2. (compare with [1], Theorem 3.1) Let I', ¢ and d,I' be as in Defi-
nition 2.1 Then

(i) dgT is a Bieberbach group with holonomy group F, translation lattice A® A and
dsT\R*" is a Kdhler compact flat manifold.
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(i) If T\R"™ has a locally invariant Kahler structure, then dy,I'\R*" is hyperkdhler.
In particular, if ¢' : F — R*" is any 1-cocycle modulo A & A, then dyd,D\R*™ is
hyperkdhler. Any finite group is the holonomy group of a hyperkdhler compact flat
manifold.

We shall work mostly with the choice ¢ = 0 and we shall then write dy,I". Other
natural choice is to let ¢ be the 1-cocycle associated to I, as in [1]; we denote dyI" by
dI' in this case.

It is clear that the procedure in (ii) of Proposition 2.2 can be iterated. If we assume
that ¢ = 0, for simplicity, and we set dJ'T' = dydj*~'T', we get that d'T is a Bieberbach
subgroup of I(R?"") with holonomy group F', diagonal holonomy representation and
translation lattice A2”. Furthermore the holonomy representation commutes with m
anticommuting complex structures on R*"" hence d7'T'\R*"" has a Clifford structure
of order m (compare [1], 3.1).

We wish to enlarge dsI' into a Bieberbach group dg4I" in such a way that some
element in the holonomy group of d,,I" anticommutes with the complex structure
Jon in R?™. Once this is done, then by repeating the procedure twice, we shall get a
Bieberbach group such that any element in the holonomy group will either commute
or anticommute with each one of a pair of anticommuting complex structures, hence
the quotient manifold will be a quaternion Kahler flat manifold which in general, will
not be Kahler.

In order for this second construction to work we will restrict to Bieberbach groups
with holonomy group Z%. We will make use of the following result from [3], Proposi-
tion 2.1 (see also [5], Proposition 1.1).

Proposition 2.3. Assume that T' = (y1,..., %, A) is a subgroup of Aff(R™), with
v = BiLy,, bi € R*, B; € Gl(n,R) such that (By, ..., B,) is isomorphic to Z% and A
s a lattice in R stable by the B;’s. Then I is torsion-free with translation lattice A
if and only if the following two conditions hold:

(i) For each pairi,j, 1 <i,j <k, (B;—Id)b; — (B;— Id)b; € A.

(ii) For each I = (i1,...,0s) with1 <1y <ip < --- <3 <k, let Bj Ly, ...Bi, Ly,

B[Lb(]) € F, with B[ = Bi1 ce Bz's and b(I) = Bis Ce Bizbil +st e B13b12+ N

Bisbis_1 + bis- Then

+

(B; +Id)b(I) € A \ (B; + Id) A.

Finally, if T satisfies conditions (i) and (i), then T is isomorphic to a Bieberbach
group with holonomy group F ~ 7%.

In what follows we state the definitions and main results used to construct quater-
nion Kahler compact flat manifolds.
Definition 2.4. Let I' be a Bieberbach group with holonomy group F ~ Z%, with
translation lattice A and such that b € 1A for any v = BL, € I'. Let ¢ : F — R" be
a 1-cocycle modulo A. Set E, = [ _;] € I(R%™). Set dg (', v) = (dyT, By Lw,0)),
where v € R".
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As we shall see, under rather general conditions, d, 4(I', v) contains d,I" as a normal
subgroup of index 2, hence if v € R" can be chosen so that d,4(I',v) is torsion
free, Mg, ,r) Will be a compact flat manifold with holonomy group F' X Zj having
as a double cover the Kéhler manifold My, (see 2.1). Furthermore F' commutes
with J, but FE, only anticommutes with J. If we use this construction twice we
will get a Bieberbach group dZ(T',v,u) := dg,¢ (dge(I',v),u) C I(R*") such that the
holonomy group normalizes two anticommuting complex structures, Ji, J,, on R*",
hence dg([’, v,u)\R*" will be a quaternion Kahler manifold. Thus, our main goal will
be to give conditions on v € R” that ensure that d,4(I',v) is torsion free. We also
note that if n is even, My, () Will always be orientable. We will show that this
can be done for a family F of Bieberbach groups with holonomy group Z# (for a
description of F, which is technical, see [4]).

Theorem 2.5. Let I', ¢ be as in 2.4. Then
(i) If v € R™ is such that 2v € A and satisfies

(B —Id)v € A for each vy = BL, €T,

then dy 41" is a crystallographic group with translation lattice A@ A and holonomy

group ZET. Furthermore, dy o1 is torsion-free if and only if v ¢ A and for each
v = BLy € I' we have:

(B + Id)(¢(B) +v) € A\ (B + Id)A, or (B —Id)b ¢ (B — Id)A.

(ii) If every element in the holonomy group F commutes or anticommutes with a
translation invariant complex structure and v satisfies the conditions in (i), then
dg,s(T, v)\R?™ is quaternion Kdhler.

(iii) If v satisfies the conditions in (i) we have that Bi(dy (T, v)\R*™*) = B;1(I\R")
and Ba(dgs(T, v)\R?™) = 285(dy(T, v)\R?™). Hence, if /1(P\R") is odd, or if
Bo(T\R") = 0 and if F satisfies the condition in (i), then dys(T,v)\R*™ is
quaternion Kdahler and not Kahler.

(iv) Assume ¢ =0 and I’ € F. Then the vector v =31, e; satisfies the conditions
in (i), hence dyo(I',v) is a Bieberbach group. Furthermore, d,o(T',v) € F.

Corollary 2.6. In the notation of Theorem 2.5, assume v € R is such that dy 4(T',v)
is a Bieberbach group. Let ¢' be a cocycle on F modulo A ® A. If u € R*™ can be
chosen so that d37¢,¢,(F,v,u) = dg,p (dg,(I',v),u) is torsion-free, then the quotient
of R*™ by dg’d)’d),(l“,v,u) s a quaterniton Kdhler manifold. In particular, if T is a
Bieberbach group in F and we take ¢ =0, v = Y . € and u = Z?Z%H e;, then
dgo(T,v) € F and d2 o o(T, v, u)\R™ is a quaternion Kdhler manifold.

As it will be seen in the examples of the next section the vector v satisfying the
conditions in the theorem is by no means unique, in general.
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3. QUATERNION KAHLER FLAT MANIFOLDS OF LOW DIMENSIONS

We will now illustrate the construction and results in the previous section by looking
at particular Bieberbach groups in low dimensions. For more, and different examples
we refer to [4]. In the examples below we will use ¢ = 0 and we will write d (I, v, u)
in place of dgo(dgo(I, v), u). Furthermore it will be convenient, for any C in O(n), to
denote by C' € O(2n) the matrix C' = [¢ ,]. Also, C" € O(4n) will have a similar
meaning and A, will denote the canonical lattice in R"™.

Examples We let I' be the Klein bottle Bieberbach group, for n = 2. By applying
dgo twice to I', we shall obtain several 8-dimensional compact flat manifolds with
holonomy group Z3 which are quaternion Kahler and not Kéhler. This will follow
from the explicit computation of the real cohomology.

We take I' = (BLy, Ay), where B =[! _;], b= %. Then T\R? is a Klein bottle.

Ifv= %(mlel + mages), my,my € Z, then

dq,O(F’ U) = <B,Lb’a EQL(’U,O)a A4>7

' 1 1 es
with B'=| 1, , Ey=1| 1, and b' = —.
-1 -1 2

We wish to find all my, ms € Z such that the conditions in (i) of Theorem 2.5 are
satisfied, so that d,o(I", v) is torsion-free.

The first condition in (i) of 2.5 clearly holds for any choice of v since (B — Id)v =
—mgey € Ay. Furthermore, v € %A \ A if and only if at least one of the m;’s is odd.
We also need that (B + Id)v = mqe; ¢ (B + Id)Ay = Z2e;, hence m; must be odd.
Thus, the possible solutions, modulo Ay are v; = % and vy = % By computing
the first integral homology groups in both cases, one can show that these solutions

lead to flat manifolds non homeomorphic to each other.

We now form dZ (I, v;, u) with i = 1,2 and u = %Z;Ll mje;, with m; € Z to be
determined. Again we need that at least one of the m s be odd. We now consider
the second condition in (i)of 2.5 for each choice of v.

We have that

€1

dz, (r, E,U) = (B"Le, EyLes, Ey Lugy, As)

ert+e
dz,o (F, %,U> — <B//L%7, EQL@, E4 Ly, Ag)

where



122 ISABEL G.DOTTI

The first condition in (i) of 2.5 is clearly satisfied in both cases, for any choice of
u € %A, since the matrices B’, F5 are diagonal. For the second condition we also
need:

(B' + Id)u = mye; + mzez ¢ (B' + Id)Ay = Z2e; ® Z2e3),

(E2 =+ Id)u = mie1 + Myés ¢ (E2 =+ Id)A4 = Z2€1 & ZQ@Q),

(BIE2 + Id)u = mie + Mmyey ¢ (B,EQ + Id)A4 = Z261 D Z264).

These conditions are satisfied if and only if, either m; is odd, or if each one of
mo, m3 and my are odd. This yields the following solutions modulo A4: either u =
ug = 219, where e = Y jeo€i and @ runs through all subsets of {es, e3,es},
or u = u = 2Fgrea We get 9 distinct solutions, the same set for both choices
v = v1,v = vy. It will be convenient to order the subsets () as follows:

0,{2}, {3}, {4}, {2,3}{2,4}{3,4},{2,3,4}

and then to set u; = ug, for j =1,...,8 according to this ordering, letting ug = u'.

In this way we obtain 18 Bieberbach groups I'y; := d2 (I, v;, u;) with 1 <4 <
2,1 < j <9, so that the quotients I'; ;\R® are quaternion Kéhler manifolds. We note
that none of these manifolds is Kéhler, since for all 7, j, 51 (I ;\R®) = 8(I'\R?) =1
and Bo(T;;\R®) = 26,(I'\R?) = 0, by (iii) in 2.5. We also note that some of the
groups may possibly be isomorphic to each other, however we see in [4] that many of
them are pairwise non isomorphic, by computing I'; ;/[I'; ;, I'; ;] in each case.

We shall first determine all Betti numbers, by giving generators of Ah]RSF, for
1< h<8.

It is clear that the space of F-invariants in R® is spanned by e; and furthermore
A’RET = 0. If h = 3, it is easy to see that a basis for the F-invariants is given by
esNesNer,ea NesgNeg,es3 NegNeg,ea Nes Neg,ea Ner Neg,eq \egN\er,eq \es N eg,
hence 3 = 35 = 7.

By Poincaré duality we have that x(I'; ;\R®) = 2 — 28, + 285 — 2835 + 3, = 0, hence
(since B = 1,8, = 0,83 = 7) we get By = 203 = 14. We may check this value by
finding a basis for the F-invariants in A*R®. This is given by vectors of the form
e; Aej A eg A e, with {7, 7, k, [} running through the sets

{1,3,5,7}, 12,4,6,8}, {1,2,5,6}, {3,4,7,8}, {2,3,5,8}, {1,2,3,4}, {5,6,7,8},

{1,3,6,8}, {1,2,7,8}, {2,4,5,7}, {1,4,6,7}, {2,3,6,7}, {2,4,5,7}, {1,4,5,8}

Summing up, we get that the Poincaré polynomial of each one of the flat manifolds
D \RE isp(t) =1+t + 763+ 14t* + 7¢° + 17 + 3.

We thus have 2-fold coverings Mdgr — Mr,;, where Mdgr is hyperkahler, by Propo-
sition 3.2, and Mr,; does not admit any Kahler structure, since 3 (Mr, ;) = 1, for all
i, j.

To conclude this example, one can show (see [4]) that many of the manifolds Mr,,

are non homeomorphic to each other, by computing the first integral homology groups,
Hy(Mry,;, Z2) ~ Ty /[Lsj, L.
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