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A NOTE ON THE REDUCTION OF SASAKIAN MANIFOLDS

GUEO GRANTCHAROV AND LIVIU ORNEA

ABSTRACT. This is a report on work in process. We show that the contact reduction
can be specialized to Sasakian manifolds. We link this Sasakian reduction to K&hler
reduction by considering the Kahler cone over a Sasakian manifold. Fianlly, we
present an example of Sasakian manifold obtained by SU(2) reduction of a standard
Sasakian sphere.

1. INTRODUCTION

Reduction technique was naturally extended from symplectic to contact structures
by H. Geiges in [6]. Even earlier, Ch. Boyer, K. Galicki and B. Mann defined in [3]
a moment map for 3-Sasakian manifolds, thus extending the reduction procedure for
nested metric contact structures. Quite surprisingly, a reduction scheme for Sasakian
manifolds (contact manifolds endowed with a compatible Riemannian metric satisfy-
ing a curvature condition), was still missing.

In this note - presenting work in progress - we fill the gap by defining a Sasakian
moment map and constructing the associated reduced space. We then relate Sasakian
reduction to Kahler reduction via the Kahler cone over a Sasakian manifold.

In a forthcoming paper we shall discuss the compatibility between the Einstein
property and the reduction scheme.
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2. DEFINITIONS OF SASAKIAN MANIFOLDS

We recall here the notion of a Sasakian manifold, refering to [2] and [4] for details
and examples.

Definition 2.1. A Sasakian manifold is a (2n+1)-dimensional Riemannian manifold
(N, g) endowed with a unitary Killing vector field & such that the curvature tensor of
g satisfies the equation:

(1) R(X,§)Y =n(Y)X - g(X,Y)E
where n is the metric dual 1-form of £: n(X) = g(§, X).

Let ¢ = V&, where V is the Levi-Civita connection of g. The following formulae
are then easily deduced:

(2) 0& =0, g(eY,0Z)=g(Y,Z)—n(Y)n(Z).

It can be seen that 7 is a contact form on N, whose Reeb field is & (it is also called the
characteristic vector field). Moreover, the restriction of ¢ to the contact distribution
n = 0 is a complex structure.

The simplest example is the standard sphere S?"+! C C**!, with the metric induced
by the flat one of C"*!. The characteristic Killing vector field is &, = —i P, i being
the imaginary unit. Other Sasakian structures on the sphere can be obtained by D-
homothetic transformations (cf. [7]). Also, the unit sphere bundle of any space form
is Sasakian. A large class of examples is obtained wvia the converse construction of
the Boothby-Wang fibration. Moreover, the join of two Sasakian Einstein manifolds
is Sasakian Einstein.

The following equivalent definition puts Sasakian geometry in the framework of
holonomy groups. Let C(N) = N x R, be the cone over (N,g). Endow it with
the warped-product cone metric C(g) = r?g + dr?. Let Ry = rOr and define on
C(N) the complex structure J acting like this (with obvious identifications): JY =
oY —n(Y)Ry, JRy = £. We have:

Theorem 2.1. [4] (N, g,&) is Sasakian if and only if the cone over N (C(N),C(g), J)
s Kahlerian.
3. THE RESULTS

Theorem 3.1. Let (N, g,&) be a compact 2n+ 1 dimensional Sasakian manifold and
G a compact d-dimensional Lie group acting on N by contact isometries. Suppose
0 € g* is a reqular value of the associated moment map p. Then the reduced space

M = N//G := u~(0)/G is a Sasakian manifold of dimension 2(n — d) + 1.
Proof. (A sketch.) By [6], the contact moment map p: N — g* is defined by
< p(z), X >=n(X)
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for any X € g and X the corresponding field on N. We know that the reduced space
is a contact manifold, loc. cit. Hence we only need to check that (1) the Riemannian
metric is projected on M and (2) the field £ projects to a unitary Killing field on M
such that the curvature tensor of the projected metric satisfies formula (1).

To this end, we first describe the metric geometry of the Riemannian submanifold
p~(0). One proves that the restriction of the Reeb field to x~*(0) is Killing with
respect to the induced metric. Moreover, using the Gauss equation we obtain

g(R* "X, €)Y, Z) — g(RN (X, )Y, Z) =

= Z | Xl 72 {ha(X, Y)hi(€, Z) = ha(X, Z)ha(€,Y)}

==Y Xl {9(Xi, 2)9(VRXs, oY) — 9(X;,Y)g(VE X, 02) }

=1

where {X,,...,X,} is a basis of g and let {X3,..., X4} is the corresponding vector
fields on N. (Note that v; = ||X;||"'¢X;, are chosen to be orthonormal in p; this is
always possible pointwise by appropriate choice of the initial X).

Let now 7 : 4~'(0) — M and endow M with the projection g™ of the metric g
such that 7 becomes a Riemannian submersion. This is possible because G acts by
isometries. In this setting, the vector fields X; span the vertical distribution of the
submersion, whilst ¢ is horizontal and projectable (because Lx,& = 0). Denote with
¢ its projection on M. ( is obviously unitary. To prove that ( is Killing on M, we
just observe that L.g(Y, Z) = Leg(Y", Z"), where Y" denotes the horizontal lift of of
Y. Finally, to compute the values RM (X, ()Y of the curvature tensor of g™, we use
O’Neill formula (cf. [1], (9.28f)) and find

RM(X, Q)Y =g(£,Y") X" — g(X",y")E = g™ (¢, V)X — g™ (X, V)¢
which proves that (M, g™, () is a Sasakian manifold. O

Remark 3.1. ;1 '(0) is a natural example of a contact CR-submanifold (in the ter-
minology of K. Yano and M. Kon [9], a semi-invariant submanifold in the terminology
of A. Bejancu). In general, this means that the tangent space of the submanifold de-
composes in three mutually orthogonal distributions: RE, a distribution D on which
¢ restricts to an endomorphism and a distribution D+ which is mapped by ¢ in the
normal space of the submanifold. It is known that on a contact CR-submanifold
the distribution D+ is always integrable. Here the integrability of this distribution
expresses the fact that it is generated by fundamental vector fields corresponding to
a basis of the Lie algebra of the group defining the moment map. In general, the in-
variant distribution is not integrable. In our case, one can show that its integrability
is equivalent with strong restrictions on the geometry of the quotient.
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In the following we relate Sasakian reduction to Kahler reduction by using the
cone construction. Roughly speaking, we prove that reduction and taking the cone
are commuting operations.

Let w = dr? A n + r?dn be the Kahler form of the cone C(N) over a Sasakian
manifold (N, g, ). If p; are the translations acting on C(N) by (z,r) — (z,tr), then
the vector field Ry = rOr is the one generated by {p;}. Moreover, the following two
relations are useful:

(4) Lrw=w, pw=tw.

If a compact Lie group G acts on C(N) by holomorphic isometries, commuting with
pt, we obtain a corresponding action of G on N. In fact, we can consider G = G x {Id}
acting as (g, (z,r)) X (gz,7).

Suppose that a moment map ¢ : C(N) — g exists.

As above notations, let {X,..., X} be a basis of g and let {Xy,..., X4} be the
corresponding vector fields on C'(N). We see that X; are independent on 7, hence
can be considered as vector fields on N. Furthermore, the commutation of G with p;
implies

(5) (pi(p)) = t2(p).

Now embed N in the cone as N x {1} and let p1 := ®|yyx 13- We can prove that this
is precisely the moment map of the action of G on N.

Let P = ®7'(0)/G be the reduced Kahler manifold. The key remark is that because
of (5), ®71(0) is the cone N’ x R, over N' = {z € N ; (z,1) € ®7(0)}. Moreover,
since the actions of G and p; commute, one has an induced action of G on N’. Then

27(0)/G = (N' xR, )/G=N'/G x R,

The manifold N'//G x R, is Kahler, as reduction of a Kéahler manifold, but we
still have to check that this Kahler structure is a cone one. For the more general,
symplectic case, this was done in [5]. Let go be the reduced Kéhler metric and ¢’ be
the Sasakian reduced metric on N'//G. It is easily seen that the lift of gy to ®1(0)
coincides with the lift of the cone metric 72¢’ 4+ dr? on horizontal fields. This implies
that the cone metric coincides with gy.

Summing up we have proved:

Theorem 3.2. Let (N, g,&) be a Sasakian manifold and let (C(N), C(g), J) be the
Kadhler cone over it. Let a compact Lie group G act by holomorphic isometries on
C(N) and commuting with the action of the 1-parameter group generated by the field
Ry. If a moment map with reqular value O exists for this action, then a moment map
with regular value 0 exists also for the induced action of G on N. Moreover, the

reduced space C(N)//G is the Kdahler cone over the reduced Sasakian manifold N//G.

The advantage of defining the Sasakian reduction via Kahler reduction, as done in
[3] for 3-Sasakian manifolds, is the avoiding of curvature computations.
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4. EXAMPLES: SU(2) ACTIONS ON SASAKIAN SPHERES

Example 4.1. In a future note we are planning to consider with details S* actions on
Sasakian manifolds but now we concentrate to the actions of SU(2) with homogeneous
reduced spaces. Consider the standard Sasakian structure on S**~! C C?" given by
the "round metric” and vector field ¢ generated by the left action of S* = e*. Then
the right action of the unit quaternions on S~ Cc H" by:

(Q: (QOa sy QHfl)) — ((IOCI, sy QR*1Q)'

satisfies the conditions of Theorem 3.1. The associated moment map is the same as
the 3-Sasakian moment map of the S* action given in [3]:

1(q) = XqaiGs

The reason is that in both cases the coordinates (p1, u2, p3) of u are given by a scalar
product of the vector fields generated by the left actions of ¢, j and £ with (. So using
the result from [3] we have:

pt(0) =2 SU(n+1)/SU(n—1)

. The reduced space is diffeomorphic to the homogeneous space SU(n + 1)/SU(2) x
SU(n — 1) which is a S* bundle over SU(n + 1)/S(U(2) x U(n — 1)), a Hermitian
symmetric space . Note also that the latter space is a quaternionic Kahler manifold
and is the base for the 3-Sasakian fibration with S? fiber, obtained as a reduced
space after the 3-Sasakian reduction mentioned above. On can also check that the
reduced metric is the homogeneous Einstein metric arising from the Wang and Ziller’s
construction, [8].
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