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SPECIAL SPINORS AND CONTACT GEOMETRY

ANDREI MOROIANU

1. INTRODUCTION

The aim of this note is to outline some new results obtained in contact geometry
by means of spinorial methods and in particular to exhibit some interesting relations
between (complex) contact structures and (Kéhlerian) Killing spinors.

While the notion of a contact structure is well-known to most differential geometers,
that of a Killing spinor (though intensively studied by physicists under the name
of supersymmetry) remained, for a quite long time, neglected by mathematicians.
Killing spinors came to be studied only after 1980, when Th. Friedrich [3] proved
that they arise as the eigenspinors corresponding to the least possible eigenvalue of
the Dirac operator on compact spin manifolds with positive scalar curvature. More
precisely, we have the

Theorem 1.1. (Friedrich, 1980) Any eigenvalue A of the Dirac operator on a compact
spin manifold M"™ with positive scalar curvature S satisfies the inequality
n
1.1 N> — _infS.
(1.1) ~4(n-1) M
Moreover, if the equality holds, then every eigenspinor v corresponding to A is a real
Killing spinor, i.e. satisfies the equation

(1.2) Vit = aX -, VX € TM(a = -%).

After several steps were made towards their classification by H. Baum, Th. Friedri-
ch, R. Grunewald and I. Kath (these are presented in a unified manner in [2]), Killing
spinors (or, properly speaking, manifolds carrying them) were finally classified by
C. Bir [1], who made a very elegant use of the so-called cone construction. This is
where contact structures come into the play, since Bar shows that, with some low-
dimensional exceptions, all simply connected manifolds carrying Killing spinors are
contact manifolds (or round spheres, in even dimensions). More precisely, if M?™+!
(m > 3) carries Killing spinors, then M is either Einstein-Sasakian or 3-Sasakian (for

the definitions see [1] for example).
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Using the explicit relations between Sasakian structures and Killing spinors given
by Th. Friedrich and I. Kath [2], we gave a description in [11] of the splitting of
the algebra of infinitesimal isometries of Einstein-Sasakian and 3-Sasakian manifolds,
and furthermore proved the following rigidity result:

Theorem 1.2. The only simply connected 3-Sasakian manifold (M7, g, &;) possessing
an infinitesimal isometry of unit length, other than the Sasakian vector fields, is the
unit sphere S7.

Let us now turn our attention to the complex case, and recall the following

Definition 1.1. (cf. [7]) Let M*™ be a complex manifold of complex dimension m =
2k+1. A complex contact structure is a family C = {(U;, w;)} satistying the following
conditions:

(i) {U;} is an open covering of M.
(#) w; is a holomorphic 1-form on U;.
(iii) w; A (Ow;)* € T(A™P M) is non vanishing at every point of U;.
(v) w; = fijw; in U; N Uj;, where f;; is a holomorphic function on U; N Uj.

Our main result will be the classification of all Kahler-Einstein manifolds of positive
scalar curvature admitting a complex contact structure. This goes roughly as follows:
first of all, if M*¥*2 is a Kihler manifold admitting a complex contact structure, then
we construct for £ odd a canonical spinor on M and for k£ even a canonical section
of the spinor bundle associated to a suitable Spin® structure of M (this idea - for k
odd - stems from K.-D. Kirchberg and U. Semmelmann, see [6]). We then prove that
the constructed spinor is a Kdhlerian Killing spinor (we have to define this notion
in the Spin¢ case) if the given Kéhler metric on the manifold M is also Einstein.
The next step is to construct a canonical S* bundle N over M, which is endowed
with a Riemannian metric and a spin structure, such that the above constructed
Kahlerian Killing spinor on M induces a Killing spinor on N. Finally, using Bar’s
classification of such manifolds and some further algebraic properties of the Killing
spinor, we conclude that N has to be 3-Sasakian and furthermore, by the naturality
of the construction of N, we are also able to characterise M geometrically.

2. A SHORT REVIEW ON SPIN AND SPIN® GEOMETRY

We will first recall some basic facts about spin and Spin€¢ structures. Consider an
oriented Riemannian manifold (M™, g). Let Psom)M denote the bundle of oriented
orthonormal frames on M.

Definition 2.1. The manifold M is called spin if the there exists a 2—fold covering
Pspin, M of Pso) M with projection 6 : Pspin, M — Pso(n) M satistfying the following
conditions :

i) Pspin, M is a principal bundle over M with structure group Spin,,;
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ii) If we denote by ¢ the canonical projection of Spin,, over SO(n), then for every
u € Pgpin,, M and a € Spin,, we have

O(ua) = 0(u)p(a).

The bundle Pgp,,, M is called a spin structure. Representation theory shows that
the complex Clifford algebra Cl(n) has (up to equivalence) exactly one irreducible
complex representation Y, for n even and two irreducible complex representations ¥
for n odd. In the last case, these two representations are equivalent when restricted
to Spin,,, and this restriction is denoted by X,. For n even, there is a splitting of
YM with respect to the action of the volume element in ¥, := ¥ @ X and one
usually calls elements of ¥ (resp. ¥.) positive (resp. negative) half-spinors. For
arbitrary n, 3, is called the complex spin representation, and its associated vector
bundle XM is called the complex spinor bundle. Sections of XM are called spinors.
If M is even-dimensional we denote by ¥* M the subbundles of XM corresponding to
Y. If, with respect to the decomposition XM = X* M & ¥~ M, a spinor 1) is written
as ¥ = py + 1_, then its conjugate 1 is defined to be 1, —1)_.

Definition 2.2. A Spin® structure on an oriented Riemannian manifold (M™,g) is
given by a U(1) principal bundle PynyM and a Spin; principal bundle Pgy,e M
together with a projection 6 : Pspine M — PsomyM X PyyM satisfying

0(ua) = 0(a)¢(a),
for every @ € Pspin¢ M and a € Spiny, where £ is the canonical 2—fold covering of

Spin;, over SO(n) x U(1). The complex line bundle associated to Py(1yM is called the
auxiliary bundle of the given Spin€ structure.

Recall that Spin; = Spin, Xz, U(1), and that & is given by &([u,a]) =
(¢(u),a?), where ¢ : Spin, — SO(n) is the canonical 2-fold covering. The complex
representations of Spin;, are obviously the same as those of Spin,,; thus to every Spin®
manifold is associated a spinor bundle just as is the case for spin manifolds.

If M is spin, the Levi-Civita connection on Psp,)M induces a connection on
the spin structure Pgp,, M, and thus a covariant derivative on ¥ denoted by V.
Similarly, if M has a Spin® structure, then every connection form A on Py(;)M defines
(together with the Levi-Civita connection of M) a covariant derivative on XM denoted
by VA.

Spin structures are special case of Spin® structures, because of the following

Lemma 2.1. A Spin® structure with trivial auxiliary bundle is canonically identified
with a spin structure. Moreover, if the connection A of the auxiliary bundle L is flat,
then under this identification V4 corresponds to V on the spinor bundles.

Proof. Notice that the triviality of the auxiliary bundle implies that we can exhibit
a global section of U(1) that we shall call . Denote by Psp,, M the inverse image
by 6 of PsomyM x o. It is straightforward to check that this defines a spin structure
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on M and that the connection on Pgpi,c M restricts to the Levi-Civita connection on
Pspin, M if o can be chosen to be parallel, i.e. if A defines a flat connection.
Q.E.D.
Let M be a Spin® manifold with auxiliary connection A. On XM there is a canonical
hermitian product (.,.), with respect to which the Clifford multiplication by vectors
(which arises via the Clifford representation) is skew—Hermitian:

(21) (Xd]a(p):_(’(/]aX@): VXETMa ¢;<P€EM

We now define the Dirac operator as the composition v o V4, where v denotes the
Clifford contraction. The Dirac operator can be expressed using a local orthonormal
frame {ey,--- ,e,} as

D = iei Vg
i=1

Suppose now that (M?™ g, J) is a Kéhler manifold. We define the twisted Dirac
operator D as

2m 2m
D=3 Je) Vi == e Vi
1=1 1=1
It satisfies
(2.2) D*=D? and DD+ DD =0.

We also define the complex Dirac operators Dy := 3(D F iD), and (2.2) becomes
(2.3) D?*=D?=0 and D*=D,D_+D_D,.

Consider a local orthonormal frame {X,, Y,} such that Y, = J(X,). Then Z, =
2(Xo —iY,) and Zs = (X, +1Y,) are local frames of 7°(M) and T%' (M), and D
can be expressed as

(2.4) D.=2Y Z,-Vy , D_=2) Z;-Vj.
a=1

a=1
A k-form w acts on XM by
w- U= Z W€y, 5 € ) €ig e €y
11 <<

With respect to this action, the Kéhler form Q (defined by Q(X,Y) = ¢(X, JY))
satisfies

2m

=1
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For later use let us note that

m

“ l = ? m
2.6 Ly Zg=—0— ’ ZaZo=-0——,
(29) 2. RN 273

where Z, and Z; are local frames of TH°(M) and T%'(M) as before.
The action of 2 on XM yields an orthogonal decomposition

SM =P .M,
r=0
where Y, M is the eigenbundle associated to the eigenvalue iy, =i (m —27) of Q. If
we define ¥ M =YX, 1M = {0}, then

(2.7) DiI(S,M) C T(S,01M).

3. RELATIONS BETWEEN COMPLEX CONTACT STRUCTURES AND SPINORS

Let C = {(U;,w;)} be a complex contact structure. Then there exists an associated
holomorphic line subbundle Ly € A“*(M) with transition functions {f;;'} and local
sections w;. It is easy to see that

D:={ZeT M |w(Z)=0, Vw € L¢}

is a codimension 1 maximally non-integrable holomorphic sub-bundle of T%°M, and
conversely, every such bundle defines a complex contact structure. Condition (iii) in
Definition 1.1 entails that LE™ is isomorphic to K, where K = A™°(M) denotes the
canonical bundle of M.

Suppose for a while that k is even, say k = 2[. The collection (U;,w; A (0w;)!)
defines a holomorphic line bundle L; C A*+10), and from the definition of C we
easily obtain

(3.1) L= L5
We now fix some (U, w) € C and define a local section ¢ of A%+ M @ L. by
(3'2) 77DC|U = ‘§T|_27_— ®&r,

where 7 := wA(Ow)' and &, is the element corresponding to 7 through the isomorphism
(3.1). The fact that 1 does not depend on the element (U,w) € C shows that it
actually defines a global section /¢ of A%+ M @ LLH.

We now recall ([8], Appendix D) that A%*M is just the spinor bundle associated
to the canonical Spin® structure on M, whose auxiliary line bundle is K~!, so that
AY*M ® ch+1 is actually the spinor bundle associated to the Spin® structure on M
with auxiliary bundle L = K ' ® Lz(lﬂ) =L @) & Lg(lﬂ) = Lc. The section ¢¢ is
thus a spinor lying in A%?+'M ® L5 =2 ¥y 1 M, which shows that

(3.3) Q- e = —ive.
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The case k = 2l + 1 is similar: the section ¢ is defined by the same formulae as
before, and it lies in A%%+L0M @ LE = A%2410f @ K2, Thus in this case ¢ is an
usual spinor on M (see[4]).

We suppose from now on that M is Kahler-Einstein with positive scalar curvature.
The manifold M is compact, by Myers’ Theorem. By rescaling the metric on M if
necessary, we can suppose that the scalar curvature of M is equal to 2m(2m+2), and
thus the Ricci form p and the Kéahler form €2 are related by the equality p = (2m+2)<Q.

Proposition 3.1. For k even the spinor field 1) satisfies

(3.4) Ve =0, VZ € THM
and
1 1
(3.5) D*Y¢ = D_Dtp¢ = (ZR e — 5P Ye),
and for £ odd, say k =20+ 1
I+1 1 .
(3.6) D*e = D_Dype = m%R Ye —ip - Ye),

where R is the scalar curvature of M. In particular (3.4) shows that D_t¢ = 0.
The proof of the first two assertions can be found in [6]. The proof of (3.6) is

analogous to that of (3.5) (one only has to replace some 3 coefficients by QI;LTll coeffi-
cients. Using (3.3), (3.6) and the fact that p = g5 RQ = (81 +4)Q for k = 21 and
P = g5 R = (814 8)Q for k = 2] 4 1, we obtain

Corollary 3.1. The spinor field 9 is an eigenspinor of D? with eigenvalue 161(1 + 1)
for k£ = 2] and with eigenvalue 16(I 4+ 1)? for k = 20 + 1.

It is now easy to see that for k = 2] + 1 v¢ is a Kéahlerian Killing spinor. Indeed,
it is enough to use the above corollary and the fact that the scalar curvature of M
is (due to our normalisation) S = 2m(2m + 2) = (8] 4 6)(8] + 8), together with the
following result from [5]

Theorem 3.1. (Kirchberg, 1986) Any eigenvalue X of the Dirac operator on a compact
Kahler spin manifold (M?™,g,J) (m odd) with positive scalar curvature S satisfies
the inequality

(3.7) A > inf S.
M

4m
Moreover, if the equality holds, then every eigenspinor 1 corresponding to A is a

Kahlerian Killing spinor, i.e. satisfies the equation

, A
(3.8) Vit =aX y+al(X) -y, VXETM (a=—5"-).

We thus have the
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Corollary 3.2. For k odd, the spinor ¢ is a Kéahlerian Killing spinor.

The case k = 2l is somewhat harder, since no analogue of Kirchberg’s Theorem is
known for Spin¢ manifolds and we have to resort to an ”ad-hoc” argument. Let us
first introduce some notations:

(39) w_ = 1[)@ € F(EQH_lM) , 1/J+ = éﬂlﬂch € P(EQ[+2M)

Integrating over M we immediately obtain from Corollary 3.1

l+ 1
(3.10) - |72 = —— ¥+ L.

Proposition 3.2. The following relations hold

(3.11) V- =0,VZ e TY'M,
(3.12) Voo +Z-2p. =0, V7 € T M,
(3.13) Vs, =0, VZ € T M,
(3.14) Vot +2Z-4p_ =0, VZ € TYM.

Proof. The first relation is part of Proposition 3.1. In order to prove (3.12),
let us consider the local frames of T"%(M) and T%'(M) introduced in Section 2:
Zy = 5(Xo —iY,) and Zz = (X, + 1Y,), where Y, = J(X,), and {X,,Y,} is a
local orthonormal frame of TM. From (3.11) we find V¢ = Vx ¢ =iVy ¢,

so using (2.6) and (3.9) gives

0 < szaw + Zs s [
= ZWXJ/’JQ_Q?R@ZW%Z Vz, Y- Z Vi Zo Za - Py)
a:l a=1 a=1

= IV P Re(y, Dy ) — (0, (i — e
- ;w\2—<4z+4>\w+\2+%(4Z+4>|w+|2.

The last expression is by construction a positive function on M, say |F|?. Inte-
grating over M and using the generalised Lichnerowicz formula ([8], Appendix D),
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Corollary 3.1 and (3.10), we obtain

1 1
Fl3. = §(V*V1/L,¢7)L2 — (Al +4) |7 + 5(41 + 4)[h4 |72

. :
= §(D27/f— - %Rl/}— + %ZZ—i—lp o, )re — (20 + 2)[Y4 |7

_ 2 (81+2)(81+4) i—i(81+4) B

= |1/J_|Lz<8l(l+1)— 3 1 241 —2[) =0,

thus proving that F' = 0 and consequently (3.12). To check the last two equations
one has to make use of the operator D. From D_1_ = 0 we find

1

1 =—— D*y_=D
and so
(3.16) Dip, = —iD,.

Let us choose a local orthonormal frame e;; using (2.1), (2.5), (3.9) and (3.16) we
compute

0 < DIVeu + 5o —id(eg)) b

= |V > —Re((D + D)y, )
_% Z((ej +id(e;)) - (e —id(e)) -9 9-)

= [V [* = 2Re(Dyps, ) + (m —iQ) -y, 9 )
= Vi [ = 8ly_|* + 4l[y_* == |G/?
Just as before, we compute the integral over M of the positive function |G|?, namely
G2 = [Vt — 4lp-|7
(V*Vihi, ¥4 )2 — Al
1 11
= (D*y — ik 2 1” Ui,y )2 — 4|12

_ 2 (8l+2)(81+4) i —3i(8l+4) B
= |1/J+|L2(16l(l+1)— 1 T —4(l+1))_0,

thus proving G = 0. Consequently Vx4 + (X —iJ(X))-¢_ =0 for all X € TM,
which is equivalent to (3.13) and (3.14).

Q.E.D.
The above proposition motivates the following
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Definition 3.1. A section v of the spinor bundle of a given Spin® structure on a Kéhler
manifold (M3+2 g, J) satisfying

1 ) -
(3.17) VA = §X-1/;+%JX-1/J, VX € TM
is called a Kahlerian Killing spinor.

Defining ¢ := 9, — 1_ we immediately obtain the

Corollary 3.3. Let C be a complex contact structure on a Kahler—Einstein manifold
(M®+2 g, J). Then the Spin® structure on M with auxiliary bundle L¢ carries a
Kahlerian Killing spinor ¢ € I'(Xg 1 M @ Yoo M).

4. THE CLASSIFICATION OF POSITIVE KAHLER-EINSTEIN CONTACT MANIFOLDS
Let us first recall the following results from the theory of projectable spinors:

Theorem 4.1. ([10]) Let M be a compact Kéhler manifold of positive scalar curvature
and complex dimension 4/ + 3. If XM carries a Kédhlerian Killing spinor, then the
principal U(1) bundle M associated to any maximal root of the canonical bundle of
M admits a canonical spin structure carrying Killing spinors.

Theorem 4.2. ([12]) Let M be a compact Kihler manifold of positive scalar curvature
and complex dimension 4/ 4+ 1 such that there exists a Spin® structure on M with
auxiliary bundle L and spinor bundle SM satisfying L®Z+D = AUH+LOAT  If S M
carries a Kéhlerian Killing spinor ¢ € I'(Xg 11 M @ X912 M), then the principal U(1)
bundle M associated to any maximal root of the canonical bundle of M admits a
canonical spin structure carrying Killing spinors.

We are now able to give the classification of positive Kahler-Einstein contact man-
ifolds:

Theorem 4.3. The only Kahler-Einstein manifolds of positive scalar curvature ad-
mitting a complex contact structure are the twistor spaces of quaternionic Kahler
manifolds of positive scalar curvature.

The notion of the twistor space over a quaternionic Kahler manifold was introduced
by S. Salamon in [13], where he proves that these twistor spaces all admit Kahler-
Einstein metrics and complex contact structures. Our Theorem 4.3 is thus a converse
of Salamon’s result, and it should be noted that it was also recently proved by C.
LeBrun [9] using rather different methods.

Proof of Theorem 4.3. Let M**2 be a positive Kihler-Einstein contact manifold
and let M be the principal U(1) bundle associated to any maximal root of the canon-
ical bundle of M. From Corollaries 3.2 and 3.3 and Theorems 4.1 and 4.2 we deduce
that M carries a projectable Killing spinor v. This spinor then induces a parallel
spinor ¥ on the cone CM over M, which is a Kéhler manifold (cf. [1], [10], [12]).
Moreover, using the projectability of 1/ we can compute the action of the Kéhler form
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of CM on ¥ (see [10]) and obtain that ¥ € ¥;,;CM. From C. Bir’s classifica-
tion [1] we know that the restricted holonomy group of CM is one of the following:
SU(2k+2), Sp(k + 1) or 0. The fixed points of the spin representation of SU(2k + 2)
lie in ¥y and Yoj 9, so since U is a parallel spinor in ¥, ;C M, the restricted holonomy
group of CM cannot be equal to SU(2k +2). This implies that the universal covering
of CM is hyperkihler, and thus that the universal covering of M is 3-Sasakian (see
[1]). Actually, using the Gysin exact sequence we can easily deduce that M is simply
connected (see [2], p.85). On the other hand, the unit vertical vector field V on M
defines a Sasakian structure (see[2]) and it is well known that any Sasakian structure
on a 3-Sasakian manifold P*~! of non-constant sectional curvature belongs to the
2—-sphere of Sasakian structures. Indeed, the cone C'P over P has restricted holonomy
Sp(k), and since the centralizer of Sp(k) in U(2k) is just Sp(1), every Kahler structure
on C'P must belong to the 2-sphere of Kahler structures of C'P, which is equivalent
to our statement.

Now, M is regular in the direction of V, so an old result of Tanno implies that it
is actually a regular 3—Sasakian manifold (cf. [14]). It is then well known that the
quotient of M by the corresponding SO(3) action is a quaternionic Kiihler manifold of
positive scalar curvature, say /N, and that the twistor space over N is biholomorphic
to the quotient of M by each of the S actions given by the Sasakian vector fields, so
in particular to M, which is the quotient of M by the S' action generated by V.

Q.E.D.
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