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1. Introduction

On 4n-dimensional quaternion-Kéahler manifolds, self-dual (SD) connections can
be defined, which is the same as self-dual connections in 4-dimensional Riemannian
geometry in the case n = 1.

However the situation in higher dimensionl case is quite different. For example,
there exists “rank 2”7 vector bundles with an ASD connection on 4-dimensional sphere
S* =~ HP', which is one of conclusions from ADHM-construction. On the contrary,
algebraic geometers believe that there do not exist any indecomposable “rank 2”
holomorphic vector bundles on 5-dimensional complex projective sapce CP3 which is
the Salamon twistor space of HP?2. Hence it is conjectured that we have no “rank
2” ASD bundle on HP?. In general, the lack of low-rank holomorphic vector bundles
on higher dimensional Kéhler manifolds prevented us from finding concrete examples
of ASD bundles on higher dimensional quaternion-Kéhler manifolds via the twistor
theory.

It is natural that we try to generalize ADHM-construction, when intending to con-
struct some ASD bundles on higher-dimensional quaternionic projective spaces, be-
cause so called ADHM-data is comprised of finite dimensional vector spaces and linear
maps between them with some conditions [4, p.97]. Indeed, this approach is adopted
by Mamone Capria and Salamon [10]. (These “k-instantons” in higher dimensional
case can be classified via vanishing theorems ([11] and [9].)) As examples independent
of ASD bundles on 4-dimensional manifolds, Mamone Capria and Salamon found that
the well known Horrocks bundle (rank “3”!) on CP® can be obtained as the pull-back
bundle of an anti-self-dual bundle on HP? [10]. They also showed that there exists a
rank 3 ASD homogeneous vector bundle on G5/SO(4). These were the only known
concrete examples of anti-self-dual bundles on higher-dimensional quaternion-Kahler
manifolds until 1990.

In my talk, these ASD bundles are reinterpreted from representation theory of

compact Lie groups (and complexified Lie groups of them). The method of monad
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(or ADHM-construction) is generalized to the Wolf spaces from the viewpoint of rep-
resentation theory. The purpose of my talk is to give classification of irreducible ho-
mogeneous bundles with ASD canonical connections and construct non-homogeneous
ASD connections on the Wolf spaces. We will obtain many examples of ASD bundles
systematically, which include all the examples provided by Mamone Capria and Sala-
mon. Secondly, the moduli spaces of such connections are described via the theory of
monad and the Bott-Borel-Weil theorem. Finally, we focus attention on the boundary
of the moduli spaces. Such a boundary point represents an ASD-connection “with
a singular set”. The relation between such a singular set and a vector bundle on
which a singular ASD connection is defined will be understood through the Poincaré
duality.

2. PRELIMINARIES

e The Wolf spaces and the Salamon twistor spaces

Theorem 2.1. [19] For every complex simple Lie group, there exists only one compact
quaternion symmetric space. (These compact quaternion symmetric sapces are called
the Wolf spaces.)

Ezample. type Ap1 = Gra(C*?),  type Cpyr = HP™,
In particular, we have only two 4-dimensional compact quaternion symmetric space

type Ay = Gry(C?) = CP?, type(C, = HP! = S*

Theorem 2.2. [7] A compact 4-dimensional manifold of which the twistor space admits
a Kihler metric is conformally equivalent to CP? or S* with a standard metric.

Let Z be the Salamon twistor space. (In the 4-dimensional case, Z is the Penrose
twistor space.)

Theorem 2.3. [18] The total space of the twistor space Z has a natural complex
structure and so, Z is a complex manifold whose dimension is 2n + 1. The fibre of Z
is a complex submanifold and is holomorphically isomorphic to CP.

Ezample.
CP2n+1 F2n+1
SU(n + 2)
1 1 F2n—|—1 —
l@P l“’ S{U1) x U(n) x U(D)
HP™ Gro(C"12)

e ASD-connection
We shall treat metric connections on a complex vector bundle E equipped with a
Hermitian metric h over a quaternion-Kahler manifold M.
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Definition. [6, 10, 16] A connection V is called anti-self-dual(ASD)

&L RY(IX, 1Y) = RY(JX,JY) = RY(KX,KY) = RV(X,Y),

forall z € M and all X,Y € T, M,
where RV is the curvature of V, which is regarded as End E valued 2-form on M.

A vector bundle with an ASD connection is called ASD bundle or instanton
(bundle).

Theorem 2.4. [6, 10, 16] Any ASD connection is a Yang-Mills connection.

Remark. Moreover, if M is compact, then ASD connection minimizes the Yang-Mills
functional [6, 10].

Example. 4-dimensional case
e ADHM-construction (Atiyah-Drinfeld-Hitchin-Manin)
All instanton bundles on S* are classified by the twistor method (for example, see

11, 5]).

e All instanton bundles on CP? are also classified in a similar way by Buchdahl [3].

Remark. Before 1990, in the higher-dimensional case, concrete examples of vector
bundles with ASD connections had not known except examples presented by Mamone
Capria and Salamon [10].

The twistor method in the examples is explained in the next theorem, originated
with Atiyah, Hitchin and Singer.

Theorem 2.5. [2, 10, 16] The pull-back connection of an ASD connection induces a
holomorphic structure on the pull-back bundle on the twistor space Z, and so the
pull-back bundle is a holomorphic vector bundle on Z.

3. HOMOGENEOUS ASD BUNDLES

By ADHM-construction [1, 5] and Buchdahl [3], the standard ASD bundles with
¢ = 1 on S* and CP? are homogeneous bundles with canonical connections. In this
section, we determine irreducible homogeneous vector bundles with ASD canonical
connections in terms of weights.

Definition.
g® : complex simple Lie algebra B : the Killing form of g©
0 : maximal root I : the set of integral weights

Definition. f: 1 — Z

C

fA)=BW\0")  (Ael)
where, 6" is the co-root of §. (6¥ = 20/B(0,6).)
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Notation
E()\) :=the irreducible representation space of g©
has (—A\) as an extremal weight
E,(\) :=the irreducible representation space of p

has (—\) as an extremal weight

where, p C g©: parabolic subalgebra.
G° : simply connected Lie group whose Lie algebra is g©

g : a compact real form of g©

G : the corresponding compact simply connected Lie group to g
G/K, : compact quaternion symmetric space
G/Ky : the twistor space

Remark. Since the twistor space G/K is a compact simply connected homogeneous
Kéhler manifold, we can also express the twistor space using a complex simply con-
nected Lie group GC. Then the twistor space is denoted by G®/P, where P is the
corresponding parabolic subgroup of G©.

Definition. Op(\) = G xp E,()\) : irreducible homogeneous holomorphic vector
bundle on the twistor space GC/P.

We have the classification theorem for ASD irreducible homogeneous vector bun-
dles.

Theorem 3.1. [12] Let E be an irreducible homogeneous bundle over G/K, of which
the canonical connection is ASD. Then, there exists an integral weight A with f(A) =0
such that O, () is the pull-back bundle of E on the twistor space G/Kz. Conversely,
if an integral weight ) satisfies f(A\) = 0, an irreducible homogeneous holomorphic
bundle O,(\) on G/K is the pull-back

of an ASD homogeneous bundle on G/ Kj.

4. MONAD AND REPRESENTATION THEORY

In this section, we show that a dominant integral weight induces a monad of vector
bundles on the twistor space of which the cohomology bundle is the pull-back of an
ASD bundle.

Definition. (cf.[17]) A “monad” is a complex of vector bundles
A% B-Y 0,
with homomorphisms a and b between them, such that a is injective and b is surjective.

The quotient bundle
E =Kerb/Ima
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is called the cohomology of the monad.

Let W be the Weyl group of g© and w® be the longest element of W.

O The unified construction of monad

1. We take an irreducible representation space E()) of G¢, where ) is a dominant
integral weight.
2. Restrict the homomorphism G® — End E()\) to P, then we have a complex of
representation spaces:
Ey(w®)) —— BE(\) —— E,(\)
where, i:injection, m:surjection, 7 o7 = 0 and
1, m: P-equivariant homomorphism.
We call this complex a monad of representation.
3. A complex of representation spaces yields a monad of vector bundles.

Op(w')) —2= GC/P x E(\) —2= 0,()),
where,
a([g, e]) = ([g], gi(e)) and ﬁ([g], u) = [g, W(g_lu)],
g € G% e € E,(w’N)andu € E()).
Ezample. o If we take the dominant integral weight o of C,, 1 (HP™), then we have

O, (wW'mr) —2 E(wm) —2o Op(w),

where, E(w;) = G°/P x E(w;). In the case n = 1, this is nothing but a monad
for 1-instanton bundle which is presented by ADHM-construction [1]: (In higher
dimensional case, see [10] and [9].)

O(-1) —2 E(m) —2— 0(1).

e If we take two dominant integral weights w; and w,, of A, (Gry(C"™2)), then we
have

O, (w'w1) & Op(w'w,) —— E(wi) & E(wy) N Oy (1) & Op (o).

In the case n = 1, this is nothing but a monad for 1-instanton bundle which is
presented by Buchdahl [3]. (In higher dimensional case, see [15].)

0(0,-1) ® O(=1,0) —2 E(m) ® E(w,) —— O(1,0)® 0(0,1),

Definition. A monad of vector bundles on G¢/P obtained in the above way is called
the standard monad induced by A.

Theorem 4.1. For an integral dominant weight A, the following two conditions are
equivalent:

1. f(\) = 1.
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2. The cohomology bundle of the standard monad induced by A is the pull-back of
an ASD bundle on G/K}.

In the next section, we apply this method on the Wolf spaces of type B, D, E, F
and G.

5. MODULI SPACES

(From now on, we pick up the dominant integral weights (or the corresponding
irreducible representation spaces) of G*:

A, :E(w) @ E(w,), Bn: E(w,), Cn:E(w),
D, :E(w,-1) ® E(w,), FE(w)® E(w,-1), FE(w)® E(w,),
E¢ :FE(w1) ® E(ws), Fy: E(wy), Gy: E(w).

These dominant integral weights (say, A) which we choose satisfy f(\) = 1. As
in the previous section, we obtain the standard monad of vector bundles. We de-
scribe moduli spaces of ASD bundles, which are obtained by deforming vector bundle
homomorphisms « and 3 of the standard monad.

(1 Description of moduli
For simplicity, we restrict ourselves to the case that the weight which we pick up
is @y of type C,,.

O, (wW'm) —2 E(wm) —2o O,(w1),

1. Applying the Bott-Borel-Weil theorem:
we have the identification as the G-representation spaces such that

H°(Hom (O (w’w,), E(w,))) & End E(w,),
H°(Hom(E (), Op(w1), )) =2 End E(w,).

Hence « and 3 are identified with A € End F(w;) and B € End E(w), respec-
tively.

2. foa=0 < BA € C® E(w;y) C End E(w;)

. azinjection, B:surjection(non-degeneracy condition) < det BA # 0

4. the cohomology bundles are the pull-back of some ASD bundles (reality condi-
tion) & B = A*

w

As a result, we obtain the following.

Theorem 5.1. [12] The moduli spaces are identified with the following spaces, respec-
tively.
e Table 5.1(The moduli spaces of “l-instanton bundles”)
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| base spaces |

rep. spaces

moduli space
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An E(wy) ® E(w,) |an open cone over P(E(w3))

B, E(w,) an open ball in E ()X

Cn E(w) an open ball in E(w,)%

D, E(wy_1) ® E(w,) | an open cone over P(FE(w))
E(w) ® E(wy,_1) | an open cone over P(E(w,_1))
E(w,) ® E(w,) |an open cone over P(F(w,))

Es E(w,) @ E(ws) an open cone over P(F(w))

F, E(wy) an open ball in E(w,)¥

G, E(m) an open ball in E(w;)¥

where, for example, E(w;)® denotes the real representation space of G in E(w;).

Remark. In the case of Ay (Gry(C?) = CP?), the moduli space is an open cone over
P(E(w2)) = P(C?) = CP?. In the case of Cy (HP' = S*), the moduli space is an
open ball in E(wy)® 22 R®. These are well known moduli spaces of 1-instantons.

Remark. In the case of type Gy (G2/SO(4)), “the center” of the moduli space repre-
sents the canonical ASD connection which is found by Mamone Capria and Salamon
[10].

On the complex Grassmannian manifold Gro(C"*?) (the Wolf space of type A1),
we obtain another type of ASD bundles in a slightly different way. However these
ASD bundles are also 1-instantons in the case n = 1 (CP?).

o

Theorem 5.2. [13] The moduli space is identified with an open cone over P(E (1))
CP”+1.

Finally, we introduce generalized Horrocks bundles on odd-dimensional complex
projective spaces.

Theorem 5.3. [12] On CP***!1 (n > 2), we have a monad of the following type:
O(=1) — Op(—m1 + @n1) — O(1),

and the cohomology bundle of this monad is the pull-back of an anti-self-dual bundle
on HP™. In particular, in the case of n = 2, this cohomology bundle is the well known
Horrocks bundle on CP® [8, 10].
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6. SINGULAR SETS

In our geometric description in §5, obvious compactifications are suggested, (though
we do not explicitly refer to the topology of the moduli spaces.)

For simplicity, we explain our theorem in the case of 1-instanton bundle £ on the
Wolf space of type Bz (Gr4(R")™). In our description of moduli by monad, the bound-
ary point of the moduli space represents bundle homomorphisms a : Oy (wyws) —
E(ws) and b : E(w;) — Oy(ws3) which are not injective and surjective, respectively.
We fix G-invariant Hermitian metrics on the homogeneous bundles O,(wows;) and
Oy(w3). Using Hermitian metrics and bundle homomorphisms a and b, we obtain a

bundle homomorphism

B:=a"®b: E(w;) = Op(wows) ® Op(ws).

Because of the reality condition (B = A*) in §5, a bundle homomorphism B pushed
down to Gr,(R")~. The subset S in Gry(R")™ is defined:
S = {x € Gry(R")~|B, : E(w?,)w — Op(wows)z ® Op(ws)y is not surjective}.

The subset S is called singular set.

Theorem 6.1. e The restricted bundle KerB to Gry(R")~\ S is still an ASD bundle.
e The singular set S is a quaternion submanifold Gry(C*) C Gry(R")™.

e The Poincaré dual of S is the second Chern class cy(F).

e In some sense, on the singular set S, E|s is identified with the standard 1-instanton

bundle on Gry(C*) which corresponds to the vertex of the moduli space (see Table
5.1).

e Table 6.1 (Singular set)

| base spaces | singular set | Poincaré dual |
(1)Gro(C**2) || 1point, HP!, -- -, con(E), con_a(E), -+,
HPL] cn(E)(n:even), c,41(E)(n:0dd)
(2)Gry(C*F2) || Gry(CFY) co(F)
Gry(R")~ Gro(C) c2(FE)
HP" Ipoint, HP!, - - HP" ! | o, (F), con_o(E), -+, co( E)
G>/S0() | CP? &(E)

where [m] is the greatest integer not greater than m.

REFERENCES

1. M.F.Atiyah, “Geometry of Yang-Mills Fields” Lezioni Fermiane, Scuola Normale Superiore, Pisa
(1979)



@

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

GENERALIZED ADHM-CONSTRUCTION ON WOLF SPACES 293

. M.F.Atiyah,N.J.Hitchin and I.M.Singer, Self-duality in four-dimensional Riemannian geometry,

Proc.R.Soc.A. 362 (1978), 425-461

N.P.Buchdahl, Instantons on CP?, J.Diff.Geom. 24 (1986), 19-52

S. K. Donaldson and P. B. Kronheimer, “The Geometry of Four-Manifolds” Clarendon Press,
Oxford (1990)

V.G .Drinfeld and Yu.I.Manin, Instantons and sheaves on CP?, Funk.Analiz. 13 (1979), 59-74
K.Galicki and Y.S.Poon, Duality and Yang-Mills fields on quaternionic Kahler manifold,
J.Math.phys. 32 (1991), 1263-1268

N.J.Hitchin, K&hlerian twistor spaces, Proc.London.Math.Soc.(3) 43 (1981), 133-150
G.Horrocks, Examples of rank three vector bundles on P%, J.London Math.Soc. 18 (1978), 15-27
Y.Kametani and Y.Nagatomo, Construction of cz-self-dual Bundles on a Quaternionic Projective
space, Osaka.J.Math. 32 (1995), 1023-1033

M.Mamone Capria and S.M.Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1
(1988), 517-530

Y .Nagatomo, Vanishing theorem for cohomology groups of cs-self-dual bundles on quaternionic
Kéahler Manifolds, Differential Geom. Appl. 5 (1995), 79-95

Y.Nagatomo, Representation theory and ADHM-construction on quaternion symmetric spaces,
a preprint

Y.Nagatomo, Another type of of instanton bundles on Gry(C**+2), Tokyo J. Math. bf 21 (1998),
267-297

Y.Nagatomo and T.Nitta, Vanishing theorem for quaternionic complexes, Bull.London
Math.Soc. 29 (1997), 359-366

Y.Nagatomo and T.Nitta, k-instantons on G5(C"t2?) and stable vector bundles, to appear in
Math.Z

T.Nitta, Vector bundles over quaternionic K&hler manifolds, Tohoku.Math.J. 40 (1988), 425-440
C.Okonek, M.Schneider and H.Spindler “Vector bundles on complex projective spaces”, Progress
in Math.3, Birkh&user, Boston (1980)

S.M.Salamon, Quaternionic Kahler Manifolds, Invent.Math. 67 (1982), 143-171

J.A.Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces,
J.Math.Mech. 14 (1965), 1033-1047

UNIVERSITY OF TSUKUBA



