Second Meeting on Quaternionic Structures in Mathematics and Physics Roma, 6-10 September 1999

$Sp(1)^n$ -INVARIANT QUATERNIONIC KÄHLER METRIC

TAKASHI NITTA AND TADASHI TANIGUCHI

We study $Sp(1)^n$ -invariant hyperKähler or quaternionic Kähler manifolds of real dimension 4n. In the case of n = 1, Hitchin classified these kinds of metrics associated with special functions. They are written as

$$g = dt^2 + \sum_{i=1}^{3} f_i(t)\sigma_i^2$$
 on $\mathbb{R} \times Sp(1)$,

where σ_1 , σ_2 , σ_3 are canonical 1-forms associated with $i, j, k \in \mathfrak{sp}(1)$. We obtain a generalization of the Hitchin's result ([2]).

Theorem 0.1. Let \mathbb{H} be the Hamilton's quaternion number field $\mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$. Then \mathbb{H}^n has a natural quaternionic structure I, J, K induced by the action of i, j, k. Since $\mathbb{H}\setminus\{0\}$ is diffeomorphic to $\mathbb{R}\times Sp(1)$ canonically, $(\mathbb{H}\setminus\{0\})^n$ is diffeomorphic to $\mathbb{R}^n\times (Sp(1))^n$. We denote the coordinate of \mathbb{R}^n by (t_1, t_2, \ldots, t_n) . Let a Riemannian metric g be written as

$$g = \sum_{i=1}^{n} (dt_i^2 + \sum_{j=1}^{3} f_{ij}(t_1, t_2, \dots, t_n) \sigma_{ij}^2),$$

where σ_{i1} , σ_{i2} , σ_{i3} are canonical 1-forms associated with $i, j, k \in \mathfrak{sp}(1)$. Then we obtain the following:

- (i) If g is hyperKählerian with respect to the quaternionic structure I, J, K, then each $f_{ij}(t_1, t_2, \ldots, t_n)$ depend only on t_i . Hence the Riemannian metric is an n-times product of hyperKähler metric obtained by Hitchin.
- (ii) If g is quaternionic Kählerian with respect to the quaternionic structure $\mathbb{R} + \mathbb{R}I + \mathbb{R}J + \mathbb{R}K$, then g is hyperKählerian.

By Hitchin, the coefficient functions f_{ij} satisfy

$$\begin{cases} \frac{d}{dt_i} f_{i1} = 2f_{i2} f_{i3}, \\ \frac{d}{dt_i} f_{i2} = 2f_{i3} f_{i1}, \\ \frac{d}{dt_i} f_{i3} = 2f_{i1} f_{i2}. \end{cases}$$

These equations imply the first integral

$$\begin{cases} f_{i1} - f_{i2} = a_i, \\ f_{i1} - f_{i3} = b_i, \end{cases}$$

where a_i , b_i are constant. Associated to $(a_i \neq 0, b_i \neq 0)$, $(a_i = 0, b_i \neq 0)$ and $(a_i = 0, b_i = 0)$, the metric is the type of Belinski-Gibbons-Page-Pope metric, Eguchi-Hanson metric and conformally flat metric.

One of our backgrounds is a natural metric on a moduli space of self-dual connections on \mathbb{H} . It coincides to a framed moduli space of self-dual connections on S^4 . The quaternionic Kähler manifold \mathbb{H} has an isometry $Sp(1) \cdot Sp(1)$, that acts on the framed moduli space \mathcal{M}_k on a Hermitian vector bundle V of rank 2 with the second Chern class k.

$$\mathcal{M}_k = \{\nabla : self - dual \ connection \ on \ V, c_2(V) = k\}/gauge \ group.$$

The tangent space of \mathcal{M}_k is represented as the first cohomology of the following elliptic complex:

$$0 \longrightarrow End(V) \stackrel{\nabla}{\longrightarrow} End(V) \otimes T^* \mathbb{R}^4 \stackrel{pr_- \circ d^{\nabla}}{\longrightarrow} End(V) \otimes \wedge_- \longrightarrow 0$$

where $\bigwedge^2 T^*\mathbb{R}^4$ is decomposed into the self-dual part \bigwedge_+ and the anti-self-dual part \bigwedge_- , $pr_-: \bigwedge^2 T^*\mathbb{R}^4 \longrightarrow \bigwedge_-$ is the natural projection. The tangent space of the moduli space is represented as a subset of End(V)-valued 1-forms. The L_2 -metric of End(V)-valued 1-forms induces a Riemannian metric on the moduli space \mathcal{M}_k

$$\langle \alpha, \beta \rangle = \int_{\mathbb{R}^4} tr(\alpha \wedge \beta).$$

Furthermore the quaternionic structure I, J, K induces a hyperKählerian structure with respect to the Riemannian metric. It is known that the dimension of \mathcal{M}_k is 8k. These are represented as elements of

$$M_{k,k+1}(\mathbb{H}) = \{ (A, B) | A \in M_{k,1}(\mathbb{H}), \quad B \in M_{k,k}(\mathbb{H}) \}$$

by the A.D.H.M. construction. We denote

$$M_{k,k+1}^0(\mathbb{H}) = \{(A,B)|(A,B) \in M_{k,k+1}(\mathbb{H}), \quad tr(B) = 0\}.$$

It corresponds to a hyperKähler submanifold in \mathcal{M}_k , whose dimension is equal to 8k-4. We denote it by \mathcal{M}_k^0 . The conformal group $(Sp(1) \times Sp(1))/\mathbb{Z}_2 \times \mathbb{R}^+ \times \mathbb{H}$ on \mathbb{H} and the gauge group $Sp(1)/\mathbb{Z}_2$ at the infinity act on \mathcal{M}_k^0

- i. $(q,p) \in (Sp(1) \times Sp(1))/\mathbb{Z}_2, \quad x \mapsto qxp^{-1} \quad (A,B) \mapsto (Ap,qBp),$
- ii. $\lambda \in \mathbb{R}^+, \quad x \mapsto \frac{1}{\lambda} x \quad (A, B) \mapsto (\lambda A, \lambda B),$
- iii. $a \in \mathbb{H}$, $x \mapsto x a$ $(A, B) \mapsto (A, B + aid)$,
- iv. $r \in Sp(1)/\mathbb{Z}_2$, $(A, B) \mapsto (rA, B)$.

We denote vector fields generated from the action i, ii by $V_1(\lambda)$, $V_2(a)$. Then the norms of $V_1(\lambda)$, $V_2(a)$ are constant on each orbit.

Proposition .

$$||V_1(\lambda)||^2 = \lambda^2 C_1$$

$$||V_2(a)||^2 = \sum_{i,j=0}^3 C_{2ij} a_i a_j,$$

where C_1 , C_2 are constant, $a = a_0 + ia_1 + ja_2 + ka_3$.

The $Sp(1) \times \mathbb{R}^+$ acts on \mathcal{M}_k^0 . The reduced space $\mathbb{P}(\mathcal{M}_k^0)$ is known to be quaternionic Kählerian ([1]). These are not smooth manifolds, they have singularities. Now in the case k=2, \mathcal{M}_2^0 and $\mathbb{P}(\mathcal{M}_2^0)$ are examples that are hyperKähler or quaternionic Kähler space of dimension 4n with $Sp(1)^n$ -symmetry. In fact \mathcal{M}_2^0 is a hyperKähler space of dimension 3×4 with $(Sp(1) \times Sp(1))/\mathbb{Z}_2 \times Sp(1)/\mathbb{Z}_2$ -symmetry and $\mathbb{P}(\mathcal{M}_2^0)$ is a quaternionic Kähler space of dimension 2×4 with $Sp(1)/\mathbb{Z}_2 \times Sp(1)/\mathbb{Z}_2$ -symmetry.

REFERENCES

- [1] C. P. Boyer and B. M. Mann, The hyperKähler geometry of the ADHM construction and quaternionic geometric invariant theory, Proceedings of symposia in pure Math., 54(1993)Part 2, 45-83.
- [2] N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geometry, 42(1995)no.1, 30-111.