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HYPERCOMPLEX GEOMETRY
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1. INTRODUCTION

A manifold M is said to be hypercomplex if there exist three integrable complex
structures I, I, Is on M satisfying the quaternion identities: I1[, = —I,1; = I;.

Example 1. Let H denote the quaternion numbers and consider (H\0)" = (S*xR)".
Define a hypercomplex structure by

-l/\(q_'a f) = (q_‘/\a f)

for (7,Z) € (S®)" x (R)™ and X € {i,j, k}. Note that this structure is left invariant.
We get compact examples on (S? x S')" via (Z)"-quotients of (S* x R)".

Thus, the Hopf surface S® x S! is a simple example of a compact hypercomplex
manifold. In the following we shall generalize this example in three directions. The
Hopf surface together with the projection S® x S' — S3 is an example of a special
Kihler-Weyl 4-manifold M* with symmetry, fibering over an Einstein-Weyl 3-space
M* — B3. This point of view leads to a construction of hypercomplex 4-manifolds
via Abelian monopoles and geodesic congruences on Einstein-Weyl 3-manifolds [6].

We may also think of the Hopf surface as the Lie group SU(2) x S! with a ho-
mogeneous hypercomplex structure. Spindel et al. [20] and independently Joyce
[12] showed how such homogeneous structures may be constructed on G x T* for
G a compact Lie group. Using the twistorial description of hypercomplex geome-
try [16], we may bring complex deformations to bear on these examples and obtain
non-homogeneous structures on G x T* [17].

The third theme we shall address is the following: to any quaternionic 4n-manifold
M we may associate a hypercomplex (4n+4)-space V(M) [18] generalizing the Swann
bundle of a quaternionic Kahler manifold [21]. Joyce [12] showed how to twist this
construction with an instanton P — M to obtain a hypercomplex manifold Vp(M)
fibering over M with fiber the Hopf surface S x S'. Again such structures may be

deformed using twistor theory [16].
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2. KAHLER-WEYL 4-MANIFOLDS

Consider a hypercomplex 4-manifold M. On M we may define a conformal struc-
ture [g]: to each non-zero vector X we declare (X, 1 X, [,bX, I3X) to be orthonormal.
Any hypercomplex manifold has a unique torsion-free connection preserving each of
the complex structures, the Obata connection D [14]. This connection clearly pre-
serves the conformal structure, so we have a Weyl manifold (M, [g], D) [6]. A Weyl
manifold with vanishing trace-free-symmetric part of the Ricci curvature Sor? is
called Einstein-Weyl [5]. In the following we shall see how Einstein-Weyl geometry
in 3 and 4 dimensions interacts with hypercomplex geometry.

Let V. be the spin bundles and let L be the bundle coming from the representation
A | det(A)\i. Then the complexified tangent bundle T, M is equal to V; @ V_ ® L
and the curvature

RP =W, +W_+ Sor” + FY + F” + s"
of the Weyl connection D is contained in
L2 (S, ® S*'V_® (S*V, ® S*V_) @ S?V, ® S*’V_ @ R).

For a hypercomplex manifold, the structure is reduced to Rsq x SU(2),, so the
curvature is contained in L2 ® (S*V @ S?V, ). Therefore, half of the Weyl curvature
vanishes, W_ = 0, the trace-free-symmetric part of the Ricci curvature vanishes,
Sor? = 0, half of the Faraday curvature vanishes, F'¥ = 0, and the scalar curvature
sP vanishes. In particular, a hypercomplex manifold is an example of a special selfdual
4-manifold (which is also Einstein-Weyl).

Via the Penrose correspondence, a selfdual conformal 4-manifold M with a confor-
mal Killing vector K corresponds to a 3-dimensional complex twistor space Z with
a complex holomorphic vector field K. [1]. The quotient M/K is an Einstein-Weyl
3-space B with a monopole (w, A) consisting of a section w of L™ and a 1-form A
such that *DPw = dA [10]. The quotient Z/K, is the minitwistor space S of B [8].

A conformal 4-manifold (M, [¢g]) with compatible complex structure I has a natural
weight-less anti-selfdual 2-form Q (2 € L2 ® A%) and a unique Weyl connection D
(i.e. a torsion-free connection preserving the conformal structure) such that d”Q =0
[6]. We called such a structure (M, [g], I, D) a Kdahler-Weyl manifold.

For a selfdual Kahler-Weyl manifold the twistor space Z contains degree one divi-
sors D, D corresponding to the complex structures +-I. The line bundle £, = [D—D)]
over Z is clearly trivial on twistor lines. Via the Ward correspondence such a degree
zero bundle gives an instanton [1], which in this case is the Ricci form pP. Therefore,
the 4-manifold is hypercomplex iff £, is trivial. When L is trivial the meromorphic
function defining the divisor D — D gives a map from Z to CP'.

If a selfdual K&hler-Weyl manifold has a conformal Killing vector K, preserving
the complex structure, then D, D project to divisors C,C contained in the minitwistor
space S. The space B parameterizes degree two rational curves in S and points in
S correspond to oriented geodesics in B. The rational curve in S corresponding to
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a point z in B intersects C,C in a pair of points defining a geodesic in B through z
with two orientations. In this way we obtain a shear-free geodesic congruence which
may be formulated as a a section  of the bundle L ! ® T'B satisfying

DBy =7(id — x®x) + K *X

where shear-free means that the conformal structure normal to x is preserved. The
sections 7, x of L~! are monopoles representing the divergence and twist respectively
of the congruence [6].

Conversely, from an Einstein Weyl space (B3, [h], DP) with a monopole (w, A) we
may construct a selfdual 4-metric

g =w’h+ (dt + A)>.

The twistor space Z is the total space of the monopole line bundle over the minitwistor
space S of B. Choose a shear-free geodesic congruence x. This corresponds to a
divisor in S which lifts to a divisor in Z defining a compatible complex structure on
the 4-manifold. In fact this conformal 4-space is hypercomplex iff the divergence of x
is proportional to the monopole w used to construct g. This can be seen as follows:
the twistor space is the total space of £, & S and the pull back p*L, is trivial
over Z, so the Ricci form vanishes. As an example we could take the Einstein-Weyl
space given by the round 3-sphere and let y be a left or right invariant congruence.
Since these congruences have vanishing 7 any sum w of fundamental solutions to the
Laplace equations would give a hypercomplex 4-space. The solution w = 1 (in the
gauge given by the round sphere) gives the Hopf surface S® x S*.

3. LiIE GROUPS AND HYPERCOMPLEX GEOMETRY

The hypercomplex structure of the Hopf surface defined in the example in the
introduction may be considered as a left invariant structure on the Lie group S! x
SU(2). Consider the Lie group SU(3). The Lie algebra g = su(3) decomposes as
g=b@® 0, @ f, where

_ (0 h)_ (su(2) C _
g = (h o) = c uy) =@
Think of b & 0, as H and think of 0, as the imaginary quaternions acting on f;
via the adjoint representation. Applying left translations we obtain in this way a

hypercomplex structure on SU(3). Now, let G be a compact semi-simple Lie group.
The Lie algebra g decomposes as follows

g=b8&],0;®}_, ¥,

where b is Abelian, 0; is isomorphic to su(2) and [0;,f;] C f;. The rank r of G is
equal to n+ dim b and if we add 2n —r Abelian factors we can think of (2n—r)u(1) ®
b @7, 0; as H". Since [0}, f;] C f; we can proceed as with SU(3) above to get a left
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invariant hypercomplex structure on 72*~" x G [12]. In this way we get homogeneous
hypercomplex structures on for example

SU(2¢+ 1), T* x SU(26), T* x SO(2¢ + 1), T* x Sp(£), T* x SO(4¢),
T2 x SO(4L +2),T? x Eg, T" x E;,T® x Eg, T* x Fy and T? x Gs.

The issue is now how to get more than these homogeneous examples. For a general
hypercomplex manifold (M*", I, I, I3) we note that we have a 2-sphere of complex
structures I, = vl + voly + w3l for v = (vy,v9,v3) € S?. The twistor space
of M is the space W = M x S? of these compatible complex structures [15, 16].
This space is a complex manifold of dimension 2n + 1: the complex structure Z at
(r,v) € M x S? is standard along the 2-sphere and it is equal to I, (z) along T, M.
The integrability of Z is a consequence of M being hypercomplex. The holomorphic
projection W £ S§2 = CP! has fiber p~!(z) which is M together with the complex
structure determined by the point z € CP'. The non-holomorphic projection W = M
has as fibers, rational curves of normal bundle O(1) ® C*".

The idea is to deform the hypercomplex structure on M by deforming the map
W & CP' [17]. Consider the sheaf D defined by the exact sequence

0—)D—>®Wﬂ)p*®@pl—)0.

where © is the tangent sheaf. The deformations of the map p (and therefore the defor-
mations of the hypercomplex geometry on M) is measured by the cohomology groups
of the sheaf D [9]: H°(W, D) is the space of hypercomplex symmetries, H' (W, D) is
the parameter space of deformations and H?(W, D) is the obstruction space.

For M = T* x G the twistor space W is a homogeneous complex manifold and one
may expect that H/(W, D) is computable via Bott-Borel-Weil-Hirzebruch theory for
representations and cohomology. Consider the natural map ® from W to G/U where
U is a maximal torus in G. The spaces Z = G/U is a complex manifold and is called
the Borel flag [2, 7]. The cohomology of the Borel flag has indeed been studied using
representation theory and this will help us getting information about the cohomology
on W: let X be M with a complex structure X = p~'(z). The restriction of ® to X
has fiber E which is a product of elliptic curves. We may compute H’(X, Ox), say,
using a Leray spectral sequence

Ep® = H?(Z, R'®,0x), B! = HP(X, Ox).

We find R1®,0x = Oz ® HY(E, Og) and since HP(Z, Oy) vanishes for p > 1 [3], the
spectral sequence is easy to handle and we get

HY(X,0x) = E% = Ey* = HY(F, Og) = AC".
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In much the same way we can compute the cohomology H(W, Oy ), H) (W, ®*0)
etc. via vanishing results of Bott [4]. Then using the sequences

0= Ow = p'Opt = Ox,ux, — 0
0—-D — Oy ﬂ)p*GCPI — 0,

we are able to find H’(W, D).

It turns out that the obstruction space H?(W, D) is non-trivial. Therefore we study
the possible obstructions using Kuranishi theory [13]. However, we can prove that
for the U-invariant part of H'(W, D) the obstruction vanishes and we obtain (see [17]
for a more precise formulation of the theorem):

Theorem 1. Suppose G is a compact semi-simple Lie group of rank r and containing
n factors of sp(1). Then the local moduli at a generic deformation of left-invariant
hypercomplex structures on T*"~" X G is a smooth manifold of dimension n(n+r). The
tdentity component of the group of hypercomplex symmetries of a generic deformation
is the Abelian group T*".

In the introduction we defined one hypercomplex structure on (S® x S)™. Inspired
by the theory of Abelian varieties, we shall now construct a family of hypercomplex
structures on (S x S')" and use the theorem above to secure completeness. Let
(@15---,qn; @1, -, T,) = (q;x) be coordinates for (S*)" x R*. Here the ¢; are unit
quaternions. Choose a hypercomplex structure on H" by right multiplication of unit
quaternions. Then we define a hypercomplex structure on (S* x R)"” through the
embedding into H".

For 1 < j < n, define an action generated by
627ri0

’Y](q, X) = (627ri01jq1a R "]qn, X + V])

The action of v; is represented by the column vectors v; and ©; = (04, ..., 0,;)7,
where 6;; are in R/Z.

Assume that the vectors {vy,...,v,} are linearly independent. Let I' = Z" be the
group generated by {7v1,...,7.}. We call

(O|V) =(01,...,0,]vi,...v,)

the period matriz of the manifold (S* x R)®/T". Thus the groups I' are parameterized
by the space ]R/Z)"2 x GL(n,R). However, different period matrices may generate
the same group. In fact, the period matrices (©|V) and (©|V) generate the same

group if and only if there is a matrix M = (m;;) in GL(n, Z) such that
(O[V) = (eM |V M).

The quotient space (S* x R)"/I" is a hypercomplex manifold because the actions
of I' commute with the right multiplications of the quaternions on (g1, ..., ¢,). The
quotient space is clearly diffeomorphic to (S* x S')*. Using the fact that symmetries
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lifts to holomorphic maps of the twistor space (which is built out of a complex pro-
jective space), it is seen that hypercomplex manifolds (S* x R)" /T and (S* x R)" /T”
are equivalent if and only if there exist period matrices (©|V) and (©'|V”) for T and
[ respectively such that V' = V', and ©; = £0]. Thus we obtain

Theorem 2. The quotient space (R/Z)" x GL(n, R))/(Z2 x GL(n, Z)) is a complete
moduli space for hypercomplex structures on the product manifold (S* x S)™.

The constructions above are currently being modified to work for the case of nilpo-
tent automorphisms and for combinations of the semi-simple and the nilpotent situ-
ation in joint work with Grantcharov and Poon.

4. THE SWANN BUNDLE

Now we turn to the third theme where S3 x St appears as the fiber of a bundle. The
definition of a hypercomplex manifold is equivalent to requiring that the holonomy
group lies in GL(n,H). More generally for a quaternionic manifold M the frame
bundle has a torsion free connection with holonomy in

GL(n,H) GL(1,H) = (Rs¢ x SL(n,H) x Sp(1))/{%1}.
This group acts on H/Zy by

p(\ A, q)(n) = A\a¥Tng L.

The associated bundle is denoted by U(M) and was studied by Swann for M a
quaternionic Kéhler manifold [21]. For M quaternionic U(M) is hypercomplex [18].
The group H* acts from the left on ¢/ (M) and the center Z preserves the hypercomplex
structure. The quotient U(M)/Z is denoted V(M) and is a compact hypercomplex
manifold which we call the Swann bundle [18], [19]. Now, let P be an S'-instanton
on M. Then Joyce [12] introduces the twisted bundle Vp(M) = P x g V(M) which
again provides us with an example of a compact hypercomplex manifold. The fiber
from Vp(M) to M is S3 x S*.

Example 2. Let M be the complex projective plane and let P — M be the instanton
given by the Hopf fibration S® — CP2. Then in this case the hypercomplex manifold
Vp(M) is equal to SU(3)/Zs.

We may now apply complex deformation theory to these twisted Swann bundles.
The twistor space W of Vp(M) fibers over the twistor space Z of M and via the Leray
spectral sequence we are able to compute the cohomology H?(W, D) in terms of the
cohomology on Z [16].

Example 3. Let M be the connected sum 2CP? equipped with a Poon conformal
structure ¢y, A € (0,1). Then the deformation theory gives a 4-parameter space of T°3-
symmetric hypercomplex structures on the 8-manifold V(2CP?). Furthermore, we can
integrate and find these hypercomplex manifolds locally as a (Joyce-) hypercomplex
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quotient [11] of H* with a T? action. The space is realized as a subspace of C® x
CP! x CP* x CP* x CP* given by simple equations [16].
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