Second Meeting on Quaternionic Structures in Mathematics and Physics Roma, 6-10 September 1999

HYPERCOMPLEX GEOMETRY

HENRIK PEDERSEN

1. Introduction

A manifold M is said to be hypercomplex if there exist three integrable complex structures I_1, I_2, I_3 on M satisfying the quaternion identities: $I_1I_2 = -I_2I_1 = I_3$.

Example 1. Let \mathbb{H} denote the quaternion numbers and consider $(\mathbb{H}\setminus 0)^n = (S^3 \times \mathbb{R})^n$. Define a hypercomplex structure by

$$I_{\lambda}(\vec{q}, \vec{x}) = (\vec{q}\lambda, \vec{x})$$

for $(\vec{q}, \vec{x}) \in (S^3)^n \times (\mathbb{R})^n$ and $\lambda \in \{i, j, k\}$. Note that this structure is left invariant. We get compact examples on $(S^3 \times S^1)^n$ via $(\mathbb{Z})^n$ -quotients of $(S^3 \times \mathbb{R})^n$.

Thus, the Hopf surface $S^3 \times S^1$ is a simple example of a compact hypercomplex manifold. In the following we shall generalize this example in three directions. The Hopf surface together with the projection $S^3 \times S^1 \to S^3$ is an example of a special Kähler-Weyl 4-manifold M^4 with symmetry, fibering over an Einstein-Weyl 3-space $M^4 \to B^3$. This point of view leads to a construction of hypercomplex 4-manifolds via Abelian monopoles and geodesic congruences on Einstein-Weyl 3-manifolds [6].

We may also think of the Hopf surface as the Lie group $SU(2) \times S^1$ with a homogeneous hypercomplex structure. Spindel et al. [20] and independently Joyce [12] showed how such homogeneous structures may be constructed on $G \times T^k$ for G a compact Lie group. Using the twistorial description of hypercomplex geometry [16], we may bring complex deformations to bear on these examples and obtain non-homogeneous structures on $G \times T^k$ [17].

The third theme we shall address is the following: to any quaternionic 4n-manifold M we may associate a hypercomplex (4n+4)-space $\mathcal{V}(M)$ [18] generalizing the Swann bundle of a quaternionic Kähler manifold [21]. Joyce [12] showed how to twist this construction with an instanton $P \to M$ to obtain a hypercomplex manifold $\mathcal{V}_P(M)$ fibering over M with fiber the Hopf surface $S^3 \times S^1$. Again such structures may be deformed using twistor theory [16].

2. Kähler-Weyl 4-Manifolds

Consider a hypercomplex 4-manifold M. On M we may define a conformal structure [g]: to each non-zero vector X we declare (X, I_1X, I_2X, I_3X) to be orthonormal. Any hypercomplex manifold has a unique torsion-free connection preserving each of the complex structures, the Obata connection D [14]. This connection clearly preserves the conformal structure, so we have a Weyl manifold (M, [g], D) [6]. A Weyl manifold with vanishing trace-free-symmetric part of the Ricci curvature S_0r^D is called Einstein-Weyl [5]. In the following we shall see how Einstein-Weyl geometry in 3 and 4 dimensions interacts with hypercomplex geometry.

Let V_{\pm} be the spin bundles and let L be the bundle coming from the representation $A \mapsto |\det(A)|^{\frac{1}{4}}$. Then the complexified tangent bundle T_cM is equal to $V_+ \otimes V_- \otimes L$ and the curvature

$$R^{D} = W_{+} + W_{-} + S_{0}r^{D} + F_{+}^{D} + F_{-}^{D} + s^{D}$$

of the Weyl connection D is contained in

$$L^{-2} \otimes (S^4V_+ \oplus S^4V_- \oplus (S^2V_+ \otimes S^2V_-) \oplus S^2V_+ \oplus S^2V_- \oplus \mathbb{R}).$$

For a hypercomplex manifold, the structure is reduced to $\mathbb{R}_{>0} \times \mathrm{SU}(2)_+$, so the curvature is contained in $L^{-2} \otimes (S^4V \oplus S^2V_+)$. Therefore, half of the Weyl curvature vanishes, $W_- = 0$, the trace-free-symmetric part of the Ricci curvature vanishes, $S_0 r^D = 0$, half of the Faraday curvature vanishes, $F_-^D = 0$, and the scalar curvature s^D vanishes. In particular, a hypercomplex manifold is an example of a special selfdual 4-manifold (which is also Einstein-Weyl).

Via the Penrose correspondence, a selfdual conformal 4-manifold M with a conformal Killing vector K corresponds to a 3-dimensional complex twistor space Z with a complex holomorphic vector field K_c [1]. The quotient M/K is an Einstein-Weyl 3-space B with a monopole (w, A) consisting of a section w of L^{-1} and a 1-form A such that $*D^Bw = dA$ [10]. The quotient Z/K_c is the minitwistor space S of B [8].

A conformal 4-manifold (M, [g]) with compatible complex structure I has a natural weight-less anti-selfdual 2-form Ω ($\Omega \in L^{-2} \otimes \Lambda_{-}^{2}$) and a unique Weyl connection D (i.e. a torsion-free connection preserving the conformal structure) such that $d^{D}\Omega = 0$ [6]. We called such a structure (M, [g], I, D) a $K\ddot{a}hler-Weyl$ manifold.

For a selfdual Kähler-Weyl manifold the twistor space Z contains degree one divisors \mathcal{D} , $\overline{\mathcal{D}}$ corresponding to the complex structures $\pm I$. The line bundle $\mathcal{L}_{\tau} = [\mathcal{D} - \overline{\mathcal{D}}]$ over Z is clearly trivial on twistor lines. Via the Ward correspondence such a degree zero bundle gives an instanton [1], which in this case is the Ricci form ρ^D . Therefore, the 4-manifold is hypercomplex iff \mathcal{L}_{τ} is trivial. When \mathcal{L}_{τ} is trivial the meromorphic function defining the divisor $\mathcal{D} - \overline{\mathcal{D}}$ gives a map from Z to \mathbb{CP}^1 .

If a selfdual Kähler-Weyl manifold has a conformal Killing vector K, preserving the complex structure, then $\mathcal{D}, \overline{\mathcal{D}}$ project to divisors $\mathcal{C}, \overline{\mathcal{C}}$ contained in the minitwistor space S. The space B parameterizes degree two rational curves in S and points in S correspond to oriented geodesics in S. The rational curve in S corresponding to

a point x in B intersects C, \overline{C} in a pair of points defining a geodesic in B through x with two orientations. In this way we obtain a shear-free geodesic congruence which may be formulated as a section χ of the bundle $L^{-1} \otimes TB$ satisfying

$$D^B \chi = \tau (id - \chi \otimes \chi) + \kappa * \chi$$

where shear-free means that the conformal structure normal to χ is preserved. The sections τ , κ of L^{-1} are monopoles representing the divergence and twist respectively of the congruence [6].

Conversely, from an Einstein Weyl space $(B^3, [h], D^B)$ with a monopole (w, A) we may construct a selfdual 4-metric

$$g = w^2 h + (dt + A)^2.$$

The twistor space Z is the total space of the monopole line bundle over the minitwistor space S of B. Choose a shear-free geodesic congruence χ . This corresponds to a divisor in S which lifts to a divisor in Z defining a compatible complex structure on the 4-manifold. In fact this conformal 4-space is hypercomplex iff the divergence of χ is proportional to the monopole w used to construct g. This can be seen as follows: the twistor space is the total space of $\mathcal{L}_{\tau} \stackrel{p}{\to} S$ and the pull back $p^*\mathcal{L}_{\tau}$ is trivial over Z, so the Ricci form vanishes. As an example we could take the Einstein-Weyl space given by the round 3-sphere and let χ be a left or right invariant congruence. Since these congruences have vanishing τ any sum w of fundamental solutions to the Laplace equations would give a hypercomplex 4-space. The solution w=1 (in the gauge given by the round sphere) gives the Hopf surface $S^3 \times S^1$.

3. Lie Groups and Hypercomplex Geometry

The hypercomplex structure of the Hopf surface defined in the example in the introduction may be considered as a left invariant structure on the Lie group $S^1 \times SU(2)$. Consider the Lie group SU(3). The Lie algebra $\mathfrak{g} = \mathfrak{su}(3)$ decomposes as $\mathfrak{g} = \mathfrak{b} \oplus \partial_1 \oplus \mathfrak{f}_1$ where

$$\mathfrak{g} = \begin{pmatrix} \partial_1 & \mathfrak{f}_1 \\ \mathfrak{f}_1 & \mathfrak{b} \end{pmatrix} = \begin{pmatrix} \mathfrak{su}(2) & \mathbb{C}^2 \\ \mathbb{C}^2 & \mathfrak{u}(1) \end{pmatrix} = \mathfrak{su}(3).$$

Think of $\mathfrak{b} \oplus \partial_1$ as \mathbb{H} and think of ∂_1 as the imaginary quaternions acting on \mathfrak{f}_1 via the adjoint representation. Applying left translations we obtain in this way a hypercomplex structure on SU(3). Now, let G be a compact semi-simple Lie group. The Lie algebra \mathfrak{g} decomposes as follows

$$\mathfrak{g}=\mathfrak{b}\oplus_{j=1}^n\partial_j\oplus_{j=1}^n\mathfrak{f}_j,$$

where \mathfrak{b} is Abelian, ∂_j is isomorphic to $\mathfrak{su}(2)$ and $[\partial_j, \mathfrak{f}_j] \subset \mathfrak{f}_j$. The rank r of G is equal to $n + \dim \mathfrak{b}$ and if we add 2n - r Abelian factors we can think of $(2n - r)\mathfrak{u}(1) \oplus \mathfrak{b} \oplus_{i=1}^n \partial_j$ as \mathbb{H}^n . Since $[\partial_j, \mathfrak{f}_j] \subset \mathfrak{f}_j$ we can proceed as with SU(3) above to get a left

invariant hypercomplex structure on $T^{2n-r} \times G$ [12]. In this way we get homogeneous hypercomplex structures on for example

$$SU(2\ell+1), T^1 \times SU(2\ell), T^\ell \times SO(2\ell+1), T^\ell \times Sp(\ell), T^{2\ell} \times SO(4\ell),$$

 $T^{2\ell-1} \times SO(4\ell+2), T^2 \times E_6, T^7 \times E_7, T^8 \times E_8, T^4 \times F_4 \text{ and } T^2 \times G_2.$

The issue is now how to get more than these homogeneous examples. For a general hypercomplex manifold (M^{4n}, I_1, I_2, I_3) we note that we have a 2-sphere of complex structures $I_{\mathbf{v}} = v_1 I_1 + v_2 I_2 + v_3 I_3$ for $\mathbf{v} = (v_1, v_2, v_3) \in S^2$. The twistor space of M is the space $W = M \times S^2$ of these compatible complex structures [15, 16]. This space is a complex manifold of dimension 2n + 1: the complex structure \mathcal{I} at $(x, \mathbf{v}) \in M \times S^2$ is standard along the 2-sphere and it is equal to $I_{\mathbf{v}}(x)$ along $T_x M$. The integrability of \mathcal{I} is a consequence of M being hypercomplex. The holomorphic projection $W \stackrel{p}{\to} S^2 = \mathbb{CP}^1$ has fiber $p^{-1}(z)$ which is M together with the complex structure determined by the point $z \in \mathbb{CP}^1$. The non-holomorphic projection $W \stackrel{\pi}{\to} M$ has as fibers, rational curves of normal bundle $\mathcal{O}(1) \otimes \mathbb{C}^{2n}$.

The idea is to deform the hypercomplex structure on M by deforming the map $W \xrightarrow{p} \mathbb{CP}^1$ [17]. Consider the sheaf \mathcal{D} defined by the exact sequence

$$0 \to \mathcal{D} \to \Theta_W \xrightarrow{dp} p^* \Theta_{\mathbb{CP}^1} \to 0.$$

where Θ is the tangent sheaf. The deformations of the map p (and therefore the deformations of the hypercomplex geometry on M) is measured by the cohomology groups of the sheaf \mathcal{D} [9]: $H^0(W, \mathcal{D})$ is the space of hypercomplex symmetries, $H^1(W, \mathcal{D})$ is the parameter space of deformations and $H^2(W, \mathcal{D})$ is the obstruction space.

For $M = T^k \times G$ the twistor space W is a homogeneous complex manifold and one may expect that $H^j(W, \mathcal{D})$ is computable via Bott-Borel-Weil-Hirzebruch theory for representations and cohomology. Consider the natural map Φ from W to G/U where U is a maximal torus in G. The spaces Z = G/U is a complex manifold and is called the Borel flag [2, 7]. The cohomology of the Borel flag has indeed been studied using representation theory and this will help us getting information about the cohomology on W: let X be M with a complex structure $X = p^{-1}(z)$. The restriction of Φ to X has fiber E which is a product of elliptic curves. We may compute $H^j(X, \mathcal{O}_X)$, say, using a Leray spectral sequence

$$E_2^{p,q} = H^p(Z, R^q \Phi_* \mathcal{O}_X), E_{\infty}^{p,q} = H^{p+q}(X, \mathcal{O}_X).$$

We find $R^q \Phi_* \mathcal{O}_X = \mathcal{O}_Z \otimes H^q(E, \mathcal{O}_E)$ and since $H^p(Z, \mathcal{O}_Z)$ vanishes for $p \geq 1$ [3], the spectral sequence is easy to handle and we get

$$H^q(X, \mathcal{O}_X) = E^{0,q}_{\infty} = E^{0,q}_2 = H^q(E, \mathcal{O}_E) \cong \Lambda^q \mathbb{C}^n.$$

In much the same way we can compute the cohomology $H^j(W, \mathcal{O}_W), H^j(W, \Phi^*\Theta_Z)$ etc. via vanishing results of Bott [4]. Then using the sequences

$$0 \to \mathcal{O}_W \to p^* \Theta_{\mathbb{CP}^1} \to \mathcal{O}_{X_1 \cup X_2} \to 0$$
$$0 \to \mathcal{D} \to \Theta_W \xrightarrow{dp} p^* \Theta_{\mathbb{CP}^1} \to 0,$$

we are able to find $H^j(W, \mathcal{D})$.

It turns out that the obstruction space $H^2(W, \mathcal{D})$ is non-trivial. Therefore we study the possible obstructions using Kuranishi theory [13]. However, we can prove that for the *U*-invariant part of $H^1(W, \mathcal{D})$ the obstruction vanishes and we obtain (see [17] for a more precise formulation of the theorem):

Theorem 1. Suppose G is a compact semi-simple Lie group of rank r and containing n factors of $\mathfrak{sp}(1)$. Then the local moduli at a generic deformation of left-invariant hypercomplex structures on $T^{2n-r} \times G$ is a smooth manifold of dimension n(n+r). The identity component of the group of hypercomplex symmetries of a generic deformation is the Abelian group T^{2n} .

In the introduction we defined one hypercomplex structure on $(S^3 \times S^1)^n$. Inspired by the theory of Abelian varieties, we shall now construct a family of hypercomplex structures on $(S^3 \times S^1)^n$ and use the theorem above to secure completeness. Let $(q_1, \ldots, q_n; x_1, \ldots, x_n) = (\mathbf{q}; \mathbf{x})$ be coordinates for $(S^3)^n \times \mathbb{R}^n$. Here the q_j are unit quaternions. Choose a hypercomplex structure on \mathbb{H}^n by right multiplication of unit quaternions. Then we define a hypercomplex structure on $(S^3 \times \mathbb{R})^n$ through the embedding into \mathbb{H}^n .

For $1 \leq j \leq n$, define an action generated by

$$\gamma_j(\mathbf{q}; \mathbf{x}) = (e^{2\pi i \theta_{1j}} q_1, \dots, e^{2\pi i \theta_{nj}} q_n; \mathbf{x} + \mathbf{v}_j).$$

The action of γ_j is represented by the column vectors \mathbf{v}_j and $\Theta_j = (\theta_{1j}, \dots, \theta_{nj})^T$, where θ_{ij} are in \mathbb{R}/\mathbb{Z} .

Assume that the vectors $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ are linearly independent. Let $\Gamma\cong\mathbb{Z}^n$ be the group generated by $\{\gamma_1,\ldots,\gamma_n\}$. We call

$$(\Theta|V) = (\Theta_1, \dots, \Theta_n|\mathbf{v}_1, \dots \mathbf{v}_n)$$

the period matrix of the manifold $(S^3 \times \mathbb{R})^n/\Gamma$. Thus the groups Γ are parameterized by the space $\mathbb{R}/\mathbb{Z})^{n^2} \times \mathrm{GL}(n,\mathbb{R})$. However, different period matrices may generate the same group. In fact, the period matrices $(\Theta|V)$ and $(\hat{\Theta}|\hat{V})$ generate the same group if and only if there is a matrix $M = (m_{ij})$ in $\mathrm{GL}(n,\mathbb{Z})$ such that

$$(\hat{\Theta}|\hat{V}) = (\Theta M|VM).$$

The quotient space $(S^3 \times \mathbb{R})^n/\Gamma$ is a hypercomplex manifold because the actions of Γ commute with the right multiplications of the quaternions on (q_1, \ldots, q_n) . The quotient space is clearly diffeomorphic to $(S^3 \times S^1)^n$. Using the fact that symmetries

lifts to holomorphic maps of the twistor space (which is built out of a complex projective space), it is seen that hypercomplex manifolds $(S^3 \times \mathbb{R})^n/\Gamma$ and $(S^3 \times \mathbb{R})^n/\Gamma'$ are equivalent if and only if there exist period matrices $(\Theta|V)$ and $(\Theta'|V')$ for Γ and Γ' respectively such that V = V', and $\Theta_i = \pm \Theta'_i$. Thus we obtain

Theorem 2. The quotient space $((\mathbb{R}/\mathbb{Z})^{n^2} \times \operatorname{GL}(n,\mathbb{R}))/(\mathbb{Z}_2^n \times \operatorname{GL}(n,\mathbb{Z}))$ is a complete moduli space for hypercomplex structures on the product manifold $(S^3 \times S^1)^n$.

The constructions above are currently being modified to work for the case of nilpotent automorphisms and for combinations of the semi-simple and the nilpotent situation in joint work with Grantcharov and Poon.

4. The Swann Bundle

Now we turn to the third theme where $S^3 \times S^1$ appears as the fiber of a bundle. The definition of a hypercomplex manifold is equivalent to requiring that the holonomy group lies in $\mathrm{GL}(n,\mathbb{H})$. More generally for a quaternionic manifold M the frame bundle has a torsion free connection with holonomy in

$$\operatorname{GL}(n, \mathbb{H}) \operatorname{GL}(1, \mathbb{H}) = (\mathbb{R}_{>0} \times \operatorname{SL}(n, \mathbb{H}) \times \operatorname{Sp}(1)) / \{\pm 1\}.$$

This group acts on \mathbb{H}/\mathbb{Z}_2 by

$$\rho(\lambda, A, q)(\eta) = \lambda^{\frac{n}{n+1}} \eta q^{-1}.$$

The associated bundle is denoted by $\mathcal{U}(M)$ and was studied by Swann for M a quaternionic Kähler manifold [21]. For M quaternionic $\mathcal{U}(M)$ is hypercomplex [18]. The group \mathbb{H}^* acts from the left on $\mathcal{U}(M)$ and the center \mathbb{Z} preserves the hypercomplex structure. The quotient $\mathcal{U}(M)/\mathbb{Z}$ is denoted $\mathcal{V}(M)$ and is a compact hypercomplex manifold which we call the $Swann\ bundle\ [18]$, [19]. Now, let P be an S^1 -instanton on M. Then Joyce [12] introduces the twisted bundle $\mathcal{V}_P(M) = P \times_{S^1} \mathcal{V}(M)$ which again provides us with an example of a compact hypercomplex manifold. The fiber from $\mathcal{V}_P(M)$ to M is $S^3 \times S^1$.

Example 2. Let M be the complex projective plane and let $P \to M$ be the instanton given by the Hopf fibration $S^5 \to \mathbb{CP}^2$. Then in this case the hypercomplex manifold $\mathcal{V}_P(M)$ is equal to $\mathrm{SU}(3)/\mathbb{Z}_2$.

We may now apply complex deformation theory to these twisted Swann bundles. The twistor space W of $\mathcal{V}_P(M)$ fibers over the twistor space Z of M and via the Leray spectral sequence we are able to compute the cohomology $H^j(W, \mathcal{D})$ in terms of the cohomology on Z [16].

Example 3. Let M be the connected sum $2\mathbb{CP}^2$ equipped with a Poon conformal structure c_{λ} , $\lambda \in (0, 1)$. Then the deformation theory gives a 4-parameter space of T^3 -symmetric hypercomplex structures on the 8-manifold $\mathcal{V}(2\mathbb{CP}^2)$. Furthermore, we can integrate and find these hypercomplex manifolds locally as a (Joyce-) hypercomplex

quotient [11] of \mathbb{H}^4 with a T^2 action. The space is realized as a subspace of $\mathbb{C}^6 \times \mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1 \times \mathbb{CP}^1$ given by simple equations [16].

Acknowledgment It is clear from this presentation that I am in great debt to the gentlemen David Calderbank, Yat Sun Poon and Andrew Swann. I would also like to take this opportunity to thank the organizers Stefano Marchiafava, Paolo Piccinni and Massimiliano Pontecorvo for a wonderful conference.

REFERENCES

- [1] M. F. Atiyah, N. J. Hitchin I. M. Singer. Self-duality in four dimensional Riemannian geometry, Proc. Roy. Soc. London, A 362 (1978) 425–439.
- [2] A. Borel Sur la cohomologie des espaces fibrés principaux et des espaces homogénes de groupes de Lie compacts, Ann. Math. 57 (1953) 115–207.
- [3] A. Borel & F. Hirzebruch. Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958) 458–538.
- [4] R. Bott. Homogeneous vector bundles, Ann. Math. 66 (1958) 203-248.
- [5] D. M. J. Calderbank & H. Pedersen. Einstein-Weyl geometry, to appear in Essays on Einstein manifolds, International Press.
- [6] D. M. J. Calderbank & H. Pedersen. Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier, Grenoble, (to appear)
- [7] P. Griffiths. Some geometric and analytic properties of homogeneous complex manifolds, Acta Math. 110 (1963) 115-208.
- [8] N. J. Hitchin. Complex manifolds and Einstein equations, Twistor Geometry and Non-linear Systems (Primorsko 1980), Lecture Notes in Math., vol. 970, Springer, Berlin, 1982, 79–99.
- [9] E. Horikawa. On deformations of holomorphic maps I, J. Math. Soc. Japan, 25 (1973) 372–396.
 II, J. Math. Soc. Japan, 26 (1974) 647–667.
- [10] P. E. Jones and K. P. Tod. Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Grav., 2 (1985) 565-577.
- [11] D. Joyce. The hypercomplex quotient and quaternionic quotient, Math. Ann. 290 (1991) 323–340
- [12] D. Joyce. Compact hypercomplex and quaternionic manifolds, J. Differential Geom. 35 (1992) 743-761.
- [13] M. Kuranishi. On the locally complete families of complex analytic structures, Ann. Math. **75** (1962) 536–577.
- [14] M. Obata. Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math. 26 (1956), 43–79.
- [15] H. Pedersen & Y. S. Poon. Twistorial construction of quaternionic manifolds, Proc. VI International Coll. Differential Geo., Santiago, Spain 1988. Univ. Santiago de Compostela, (1989).
- [16] H. Pedersen & Y. S. Poon. Deformations of hypercomplex structures, J. reine angew. Math. 499 (1998) 81-99.
- [17] H. Pedersen & Y. S. Poon, Inhomogeneous Hypercomplex Structures on Homogeneous Manifolds, J. reine angew. Math. 516 (1999), 159-181.
- [18] H. Pedersen, Y. S. Poon & A. F. Swann. Hypercomplex structures associated to quaternionic manifolds, Diff. Geom. Appl. 9 (1998) 273–292.
- [19] S. M. Salamon. Differential geometry of quaternionic manifolds, Ann. scient. Éc. Norm. Sup. 4^e, 19 (1986) 31–55.
- [20] Ph. Spindel, A. Sevrin, W. Troost & A. Van Proeyen. Extended supersymmetric σ -models on group manifolds, Nucl. Phys. **B308** (1988) 662–698.

[21] A. F. Swann, HyperKähler and quaternionic Kähler geometry. Math. Ann. 289 (1991) 421–450

Institut for Matematik og Datalogi, Odense Universitet, Campusvej 55, Odense M, DK-5230, Denmark

 $E ext{-}mail\ address$: henrik@imada.sdu.dk