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1. It has been known for a fairy long time that when the Wess-Zumino term is present
in the N = 4 supersymmetric one-dimensional sigma model, the internal space has
a torsionful linear connection with holonomy in Sp(n) [3]. Such geometry also arises
when one considers T-duality of toric hyper-Kéhler manifolds [5]. In this conference,
G. Papadopoulos explains the role of HKT-geometry in M-theory, or more specifically
in ITA Superstring theory [10].

In this lecture, we discuss HKT-geometry entirely from a mathematical point of
view, and present several methods to produce series of examples that may interest
mathematicians.

2. The background object of HKT-geometry is a hyper-Hermitian manifold. Three
complex structures I, I and I3 on a smooth manifold M form a hypercomplex struc-
ture if

(01) 112 = 122 = I32 = —1, and 11[2 = 13 = —1211.

A triple of such complex structures is equivalent to the existence of a 2-sphere worth
of integrable complex structures: Z = {a[; + a2l + azlz : a? + a3 + a3 = 1}.
When ¢ is a Riemannian metric on the manifold M such that it is Hermitian with
respect to every complex structure in the hypercomplex structure, (M,Z, g) is called
a hyper-Hermitian manifold.

On a hyper-Hermitian manifold, there are two natural torsion-free connections,
namely the Levi-Civita connection and the Obata connection. However, in general

the Levi-Civita connection does not preserve the hypercomplex structure and the
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Obata connection does not preserve the metric. We are interested in the following
type of connections.

Definition 1. A linear connection V on a hyper-Hermitian manifold (M, Z, g) is hyper-
Hermitian if Vg =0, and VI, = VI, = VI3 =0.

Although a general hyper-Hermitian connection has torsion, physical requirement
limits our discussion to a special type of hyper-Hermitian connections. We follow
physicists’ conventions of definitions. Recall that when TV is the torsion tensor for a
connection V, we can construct the (3,0)-tensor ¢(X,Y, Z) = g(X, TV (Y, Z)).

Definition 2. A linear connection V on a hyper-Hermitian manifold (M, Z, g) is hyper-
Kéhler with torsion (HKT) if it is hyper-Hermitian and its torsion (3,0)-tensor is
totally skew-symmetric. It is a strong HK'T-connection if its torsion 3-form is closed.

Ezample 1. Let g be the quaternion coordinate for the one-dimensional quaternion
module H. Through left multiplications by the unit quaterions 7, j and k&, one obtains
a hypercomplex structure Z on H. The Euclidean metric ¢ = dqdq is hyper-Kahler.
The Levi-Civita connection is a HK'T-connection.

A less obvious and more relevant example for us is to consider the following metric

on H\{0}.
. _ dqdg
(02 4]
Considering the diffeomorphis H\{0} = R x S®, we choose a spherical coordinate
(r,0,¢,1). Let gs be the metric on the round unit-sphere. Then

. dr?
(03) g = 7‘—2 + gs.
Now, (H\{0},Z, g) is a HKT-structure. The torsion form c is the volume form of the
sphere S3. Tt is also a closed 3-form.

If one chooses to study the Hermitian geometry for one of the complex structures
J in the hypercomplex structure, one should note that Gauduchon found a collection
of canonical Hermitian connections on any Hermitian manifold. The collection forms
an affine subspace of the space of linear connections [4]. This collection of Hermitian
connections include Chern connection and Lichnerowicz’s first canonical connection.
Within this family, there exists exactly one connection whose torsion (3, 0)-tensor is
a 3-form. To describe it, we recall the following definitions and convention. For any
n-form w, dw = (-1)"JdJw where (Jw)(Xy,...,X,) = (—1)"w(JXy,...,JX,).
Then & = %(d + id°) and 0 = 1(d — id°). By [4], the Hermitian connection with
totally skew-symmetric torsion (3, 0)-tensor c is uniquely determined by the following
identity.

1
(04) C(X, Ya Z) = _Ech(XaYva Z):
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where FI(X,Y) = g(JX,Y) is the Kéhler form for the complex structure J.

Now the HKT-connection serves as such a unique connection for each complex
structure in the hypercomplex structure. Therefore, if we use F, and d, to represent
the Kahler form and complex exterior differential for the complex structure I,, a =
1,2, 3, we have the following observation.

Proposition 1. A hyper-Hermitian manifold (M,Z, g) admits a HKT-connection if
and only if di F| = doFy = dsF5. If it exists, it is unique.

In view of the uniqueness, we say that (M,Z, g) is a HKT-structure if it admits a
HKT-connection.

Example 2. A non-trivial class of HKT-structures can be found on semi-simple Lie
groups and homogeneous spaces [13] [9]. For instance, the Killing-Cartan form —B
on the Lie group SU(2n + 1) defines a bi-invariant metric ¢ = —B. This group
has a left-invariant hypercomplex structure Z so that with the bi-invariant metric
g, it forms a HKT-structure. The HKT-connection is the left-invariant connection
defined by having all left-invariant vector fields to be parallel. The torsion of this
connection is the Lie bracket, and the torsion tensor ¢(X,Y,Z) = —B(X,[Y, Z]) is
totally skew-symmetric. Similar constructions can be applied to U(1) x SU(2n) and
other homogeneous spaces.

3. To further our analysis of HK'T-geometry, we note a holomorphic characterization
of HKT-structures.

Proposition 2. Let (M,Z,g) be a hyper-Hermitian manifold and F, be the Kéhler
form for (1,,g). Then (M,Z,g) is a HKT-structure if and only if 9, (Fz + iF3) = 0;
or equivalently 0;(Fy — iF3) = 0.

Applying this proposition to any complex structure in the given hypercomplex
structure, one obtains a section of twisted 2-form on the twistor space of the hy-
percomplex structures. However, this 2-form is only J>-holomorphic in the sense of
Eells-Salamon [2]. Since the almost complex structure .J, is never integrable [2], we
shall concentrate on the holomorphic characterization given above and ignore the
twistor characterization.

Due to the absence of type (3,0)-form with respect to any complex structure on
any real four-dimensional manifold, it is now apparent that any four-dimensional
hyper-Hermitian manifold is a HKT-structure.

The holomorphic characterization also yields new examples of HK'T-structures.

Ezample 3. Let {X1, ..., Xo,, Y1, ..., Yo, Z} be a basis for R***!. Define commutators
by [X;,Y;] = 4Z, and all others are zero. These commutators define on R**! the
structure of the Heisenberg Lie algebra h. Let R® be the 3-dimensional Abelian
algebra. The direct sum n = h @ R? is a 2-step nilpotent algebra whose center is
four-dimensional. Fix a basis {E, Ey, F3} for R3. Consider the endomorphisms I,
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I, and I3 of n defined by left multiplications of the quaternions 7, 7 and k£ on the
module of quaternions H, and the identifications

T Xoq 1+ 21 Xoq 1 + ToYoq 1 +13Y2e — To + T11 + X2J + T3k;
(05) $0Z+$1E1 + 29 F5 +$3E3 — X +l‘1i+$2j+l‘3k‘.

Through left translations, these endomorphisms define almost complex structures on
the product of the Heisenberg group and the Abelian group N = H x R3. It is clear
from the definition that these almost complex structures satisfy the algebra (0.1).
Moreover, for a = 1,2,3 and X,Y € n,

(0.6) [IL,X,I,Y] = [X,Y]

so I, are Abelian complex structures on n in the sense of [1]. In particular, they are
integrable. It implies that {I, : a = 1,2, 3} is a left-invariant hypercomplex structure
on the Lie group N. It is known [12] that the complex structures I, on n satisfy
d(A};On*) C A};ln* where n* is the space of left-invariant 1-forms on /N and AZIGJ n* is
the (i, j)-component of n*®C with respect to I,. But then we have d(A%lOn*) C A?;ln*
and any left-invariant (2,0)-form is 0;-closed. Now consider the invariant metric on
N for which the basis {X;, Y, Z, E,} is orthonormal. Since it is compatible with the
complex structures I, in view of the holomorphic characterization of HK'T-geometry,
we obtain a left-invariant HK'T-structure on N.

Ezxample 4. Based on the above computation, we could also see that there is a left-
invariant HK'T-structure on the product of the 4n + 1-dimensional Heisenberg group
and the compact simple Lie group SU(2), an interesting mixture of the last example
and Example 2.

Recall that the underlying manifold of the Heisenberg group Hy,,1 is the manifold
R'*!. Consider it as the product space R*® x R?" x R, the group law for the
Heisenberg group is

2n
07) (& §2)«@,7,2) =@+, §+7,2+7 +2 ) (x) — yix}).
ij=1
The 1-forms o; = dz;, B; = dy;,v = dz + 2 (y;dx; — x;dy;) are left-invariant. Let
{X,,Y;, Z} be the dual left-invariant vector fields.

On SU(2), choose left-invariant vector fields A;, Ay and Aj such that [A;, Ay] =

2As, etc., then the dual left-invariant 1-forms oy, o9 and o3 satisfy the identities

(08) d0'1 = 20'2/\0'3,d0'2:20'3/\0'1,d0'3 :20'1/\0'2.

Now, using {A4;, Ay, A3} instead of {E1, Es, E3}, we define endomorphisms I, I
and I3 on h @ su(2) as in (0.5). Through left translation, we define three almost
complex structures on the product group H x SU(2) satisfying the identities (0.1).
To prove that these almost complex structures are integrable, one first notes that
when ¢ is the center of the Heisenberg algebra, then the vector space h & su(2)
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has a direct sum decomposition ts, ® ¢ @ su(2) where ty, is the linear span of all
the X, and Y;. On t4,, the almost complex structures satisfy the identity (0.6).
Therefore, the Nijenhuis tensor vanishes on t4,. On ¢ @ su(2), the almost complex
structures are the standard ones for H\{0}. Therefore, the Nijenhuis tensor vanishes
on this summand. Since ¢ @ su(2) commutes with ty,, and both t4, and ¢ @ su(2) are
invariant of the endomorphisms I, I and I3, the Nijenhuis tensor vanishes completely.
Therefore, the left-invariant almost complex structures I, and I3 define a left-
invariant hypercomplex structure on the product group H x SU(2). However the
hypercomplex structure is no longer Abelian.

We define a left-invariant metric g on the product group by requiring the left-
invariant vector fields {Xi, ..., Xon, Y1, ..., Yon, Z, 1, E9, E3} to be an orthonormal
frame. Equivalently,

_ ~ 2 2 2 2 2 2 2
9= Z(aza—1 + oy + Bram1 + B2a) 7+ 01 + 03 + 03
a=1
This metric, along with the left-invariant hypercomplex structure, is a HK'T-structure
on the product group H x SU(2). Indeed, when F;, F, and Fjy are the three Kéhler
forms for the complex structures I, Iy and I3, dF, = 2i(dy Ao, — v A oy A o.), where
(abc) is any even permutation of (123). Since dy = —4 3" _ (2q—1 /A Poa—1+ 24 A B2a),

(09) IldFl :IQdFQ :]3dF3 = —2i(’)’/\d’7+0’1/\0'2/\0'3).

Therefore, we have a HKT-structure. Since the torsion 3-form ¢ = i(y A dy + o1 A
WA 0'3)

(0.10) dc = idy A\ dry.

This is not a closed 3-form, the corresponding HKT-structure is weak.

4. The holomorphic characterization shows that the form Fy + ¢F3 has a locally
defined (1,0)-form S as its potential. Although the (0,1)-form I3 is not a priori
0:-closed, we consider the case when it is. From this observation, we extract the
following definition.

Definition 3. Let (M,Z, g) be a HKT-structure with Kahler forms Fi, F» and F3. A
possibly locally defined function p is a potential function for the HKT-structure if

1 1 1
(011) F1 = E(ddl + d2d3),u, Fz = E(dd2 + dgdl),u, F3 = §(dd3 + dldg)/,l,.
Referring to the holomorphic characterization of HK'T-geometry, we reformulate
the definition of HKT-potential in the following way.

Proposition 3. Let (M,Z, g) be a HKT-structure with Kahler form Fy, F5 and F3. A
possibly locally defined function p is a potential function for the HKT-structure if

(012) F2 + ’[,F3 = 281]251/1,.
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Ezample 5. On the complex vector space (C"@® C™)\{0} = H"\{0}, let (24, wq), 1 <
a < n, be its coordinates. Define a hypercomplex structure Z by right multiplication
of the pure quaternions i, 7 and k. Let g be the flat metric. It is a hyper-Kahler
metric with hyper-Kéhler potential = $(|z|? + |w|?). Consider a new metric

1

Then the hyper-Hermitian structure (Z, g) is a HKT-structure. Moreover, the func-
tion In(u) is its potential.

Now, for any real number 7, with 0 < r < 1, and 64, ...,#, modulo 27, we consider
the integer group < v > generated by the following action on (C™ & C™)\{0}.

(0.13) V(2as Wa) = (1€ 2o, re%w,,).

Since 7 is a hyper-holomorphic isometry, the HKT-structure on (C" & C")\{0} de-
scends to a HK'T-structure on the quotient space with respect to the group < v >. As
this quotient space is diffeomorphic to S! x S#*~! [11], and the quotient hypercomplex
structure is not homogeneous, we obtain a family of inhomogeneous HKT-structures
on the manifold St x S41,

It should be noted that this method of generating HK'T-geometry through a trans-
formation from HKT-potentials to HKT-potentials can easily generate large classes of
inhomogeneous HKT-structures on homogeneous manifolds especially when we start
from well known hyper-Kahler metrics with hyper-Kéhler potentials.

Remark To produce more examples, one may develop a reduction theory along the
line of hyper-Kéhler reduction [7]. One can also prove that Joyce’s twist construction
of hypercomplex manifolds [8] carries HKT-manifolds to HKT-manifolds. We do not
present details of these theories here. Details of our work can be found in [6].
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