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In the past few decades there has been a good deal of papers which are concerned with optimization
problems in different areas of mathematics (along 0-1 words, finite or infinite) and which yield –
sometimes quite unexpectedly – balanced words as optimal. In this note we list some key results
along these lines known to date.

Firstly, we recall that a finite or infinite 0-1 wordw= w1w2 . . . is calledbalancedif for every pair of
finite subwordsu,v such that|u| = |v|, we necessarily have||u|1−|v|1| ≤ 1, where|u|1 = #{ j : u j = 1}
stands for the 1-lengthof u. An infinite balanced word which is not eventually periodic is calledSturmian.

There are several equivalent definitions of Sturmian sequences. Letw= w1w2 . . . be an infinite 0-1
sequence and putpw(n) = #{w j . . .w j+n−1 : j ≥ 1} – thecomplexity functionof w. Thenw is Sturmian
if and only if pw(n) = n+ 1. The 1-ratio γ = limn→∞ |w1 . . .wn|1/n is well defined for any Sturmian
sequencew; furthermore, any Sturmian sequence with the 1-ratioγ can be obtained by the formula

wn = ⌊(n+1)γ +δ⌋−⌊nγ +δ⌋ (1)

for someδ ∈ [0,1). For more details see, e.g., [10].
This survey paper is concerned with some optimization problems from various areas of mathematics

and physics, in which balanced words (and, in some cases, Sturmian sequences) turn out to be optimizing.

1 Multimodular functions and queuing

We will begin with optimization problems in mathematics. Our first example comes from the seminal
paper [5].

Define vectorsf0, f1, . . . , fm in Zm as follows: f0 = (−1,0, . . . ,0,0), f1 = (1,−1,0,0, . . . ,0), f2 =
(0,1,−1,0, . . . ,0), . . . , fm= (0,0, . . . ,0,1). Let nowF = { f0, . . . , fm}. We say that a functionJ :Zm→R

is multimodularif for any u∈ Zm we have

J(u+v)+J(u+w)≥ J(u)+J(u+v+w)

for all v,w∈ F with v 6= w. The function

J(z) = sup{A(z) : A is affine andA(u)≤ J(u) for all u∈ Zm}

is called thelower convex envelopeof J.
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Theorem 1 ([5]) Let J be a multimodular function onZm and let Jdenote its lower convex envelope. If
x is any infinite 0-1 sequence with the 1-ratioγ , then

lim inf
n→∞

1
n

n

∑
k=1

J(xk,xk+1, . . . ,xk+m−1)≥ J(γ̂),

whereγ̂ = (γ , . . . ,γ). Moreover, if x= w given by (1) for someδ , then we have the equality.

The author then applies this result to the following queuingproblem: consider a sequence of cus-
tomers arriving at a fixed rate in such a way that the interarrival times are i.i.d. Poisson random variables
with the same finite mean. A 0-1 input sequencex = (x1,x2, . . . ) determines what happens to thekth
customer, namely, ifxk = 1, the customer is admitted and ifxk = 0, he is sent elsewhere. The mean
service time is assumed to be fixed. The number in the queue after customerk arrives, isNk+xk. Then
the expectation of maxNk is a multimodular function.

Consequently, it follows from the above theorem that if a fraction γ of customers is sent to a server
queue according to a splitting sequencex, then the long-term average is minimized whenxk = ⌊(n+
1)γ⌋−⌊nγ⌋, i.e., along Sturmian sequences.

2 Cyclic permutations of binary expansions

Let w= w1 . . .wm be a finite 0-1 word and put

b(w) =
m

∑
k=1

wk2
m−k.

Now define
B(w) = b(w) ·b(w(2)) ·b(w(m)),

wherew(1) = w,w(2), . . . ,w(m) are the cyclic permutations ofw. Let nowWp,q denote the set of 0-1 words
of lengthq with the 1-lengthp. As is well known (see, e.g., [10]), there are preciselyq balanced words
in Wp,q, all of which are in the sameorbit (= all cyclic permutations of a word), so ifWp,q is defined to
be the set of all orbits of words inWp,q, there is a unique balanced orbit inWp,q.

Theorem 2 ([8]) Suppose1≤ p< q are coprime integers. For w∈Wp,q, the product B(w) is maximized
precisely when w is balanced.

For instance, putp= 2,q= 5. Here there are only two possible orbits, namely, those ofw= 10100
andv= 11000. We haveB(w) = b(10100)×b(01001)×b(10010)×b(00101)×b(01010) = 20×9×
18×5×10= 162000, whereasB(v) = b(11000)×b(10001)×b(00011)×b(00110)×b(01100) = 24×
17×3×6×12= 88128.

3 Maximizing measures

Let T : [0,1)→ [0,1) and denote the space of allT-invariant measures byM (T). We say that a measure
µ is majoratedby ν (notation: µ ≺ ν) if

∫ 1
0 f dµ ≤ ∫ 1

0 f dν for any convex functionf : [0,1) → [0,1).
Put for anyγ ∈ (0,1),

Mγ = {µ ∈ M (T) : bar(µ) = γ},
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where

bar(µ) =
∫ 1

0
x dµ(x),

i.e., thebarycentreof µ .

Theorem 3 ([7]) Let Tx= 2x mod 1. For anyγ ∈ [0,1], the partially ordered set(Mγ ,≺) has a least
element. This least element is the Sturmian measure Sγ of rotation numberγ .

HereSγ is the following. Letϕ : [0,1)→ [0,1) be defined as follows:

ϕγ(x) =
∞

∑
n=0

χ[1−γ ,1)(x+nγ mod 1)

2n+1 ,

i.e., the binary sum of the standard symbolic sequence associated with the rotation byγ with a starting
point x. Then the Sturmian measureSγ is the push forward of the Lebesgue measure on[0,1) underϕγ .

If γ is rational, thenSγ sits on a finite set. For instance, the support ofS2/5 is the orbit of the
binary sum of 00101 00101 00101. . . underT, i.e., the set

{
5
31,

10
31,

20
31,

9
31,

18
31

}
, each point having the

S2/5-measure of 1/5.

If γ is irrational, thenSγ is supported by a Cantor set. For instance, ifγ = 3−
√

5
2 , then supp(Sγ ) is the

closure of the set of all shifts of the Fibonacci wordf = 0010100100101. . . (It is indeed a Cantor set
becausef has such a low complexity!)

There are other papers in this area which produce Sturmian sequences in similar optimization prob-
lems. For instance, one may replace the class of convex functions with increasing functions and consider
theβ -transformationgiven byτβ x= βx mod 1 (withβ > 1) and theβ -shift – the subshift on the alpha-
bet{0,1, . . . ,⌈β⌉−1} which corresponds to the natural partition[0,1) = [0,β−1)∪ [β−1,2β−1)∪ ·· · ∪
[(⌈β⌉−1)β−1,1) for τβ .

It has been shown in [2] that theβ -shift has a largest shift-invariant measure if and only ifβ is an
algebraic integer of a special form. (In particular, if 1< β < 2, then it has to bemultinacci, i.e., the
dominant root ofxm= xm−1+ · · ·+x+1 for somem≥ 2.) In this case the largest shift-invariant measure
on theβ -subshift is the unique one supported by the periodic shift-orbit generated by its lexicographically
largest element. The supporting measure is always Sturmian.

Another direction in this line of research is concerned withimposing no extra conditions of the class
of functions but instead considering a specific (usually, one-parameter) family of those. For example,
let, as above,T be the doubling map, and letgθ (x) = cos2π(x− θ) or fθ (x) = 1−4distT(x,θ), where
distT is the distance on the circleR/Z. In both cases maximizing measures are Sturmian – see [3, 1] and
references therein.

Thus, in questions concerning maximizing measures, the Sturmian measures seem to be a very robust
class.

4 Tetris heaps

Consider a version of popular Tetris game with two pieces, 0 and 1 – see Fig. 1. We will be interested in
stacking these pieces in such a way that the height of the heapis minimal.

More precisely, for a finite 0-1 wordw we defineh(w) to be the height of the heap specified byw
and put

ρmin = lim inf
n→∞

min
w∈{0,1}n

h(w)
n

.
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Figure 1: Tetris heaps

An optimal scheduleis an infinite 0-1 wordu such that

lim
n→∞

h(u[n])
n

= ρmin,

whereu[n] is the prefix of lengthn of u.

Theorem 4 ([11]) Let us consider a heap model with two pieces. There exists an optimal schedule which
is balanced – either periodic or Sturmian.

The authors of [11] characterize the cases where the optimalis periodic and the ones where it is
Sturmian. The proof is constructive, providing an explicitoptimal schedule. For a more general approach
(using a special class of iterated function systems) see [4].

5 Joint spectral radius

Given a finite set ofd×d real matricesA = {A0, . . . ,Ar−1}, we define thejoint spectral radiusρ(A ) to
be the quantity

ρ(A ) := limsup
n→∞

max
{
‖Ai1 · · ·Ain‖1/n : i j ∈ {0, . . . , r −1}

}
,

a definition introduced by G.-C. Rota and G. Strang in 1960.
A {0, . . . , r −1}-sequence(i1, i2, . . . ) is calledmaximizingif

lim
n→∞

‖Ai1 · · ·Ain‖1/n = ρ(A ).

This is somewhat similar to the Tetris model considered above, which is reflected in the general model
accounting for both set-ups considered in [4].



244 Optimizing Properties of Balanced Words

Example 5 PutA = {A0,A1}, where

A0 =

(
1 1
0 1

)
, A1 =

(
1 0
1 1

)
.

Then it turns out that010101. . . is maximizing and furthermore, any maximizing sequence forA

has the same growth rate of the corresponding sequence of matrix products. Consequently,ρ(A ) =
(ρ(A0A1))

1/2 = (1+
√

5)/2.

Now consider the one-parameter family of pairsAα := {A0,αA1} with α ∈ [0,1]. Is it true that for
any fixedα any maximizing sequence is “essentially periodic” like in the caseα = 1?

More precisely, a set of matricesA is said to have thefiniteness propertyif there exists an eventually
periodic maximizing sequence forA . It was shown in the PhD thesis [14] that ifα ∈ [4/5,1], then we
have the same conclusion as forα = 1. What about the caseα < 4/5?

We say that an infinite 0-1 wordw is recurrentif any of its subwords occurs inw infinitely often. For
eachγ ∈ [0,1], let Xγ denote the set of all recurrent balanced infinite words whose1-ratio is equal toγ .
For any rationalγ the setXγ is finite and it is a continuum (called aSturmian system) for any irrationalγ .

We say thatγ is anoptimal 1-ratio for Aα if there exists a maximizing sequence forAα with the
1-ratioγ .

Theorem 6 ([9]) There exists a continuous, non-decreasing surjectionr : [0,1] → [0, 1
2] such that for

eachα , γ = r(α) is the unique optimal1-ratio of Aα .
Furthermore, for eachα ∈ [0,1], every element of Xγ is a maximizing sequence.

Thus, if one takes any irrationalγ ∈ (0,1/2), then there exists (in fact, unique – see [12])α ∈ [0,1]
such that any maximizing sequence forAα has the 1-ratioγ , i.e., cannot be periodic. This disproves the
Finiteness Conjecturewhich asserts that any maximizing sequence for an arbitraryset of matrices should
be periodic. (The first counterexample to the FC appeared in [4], however it was not explicit.)

Moreover, there is an explicit formula for such anα in terms of the elements of the continued fraction
expansion ofγ . Namely, let

γ = [a1,a2, . . . ]

denote the continued fraction expansion ofγ with pn/qn being thenth convergent. Recall that the se-
quence ofstandard wordsspecified byγ is given bys−1 = 1,s0 = 0,sn+1 = san+1

n sn−1, n≥ 0. It is obvious
thatsn is a prefix ofsn+1 and that the length ofsn tends to the infinity. It is also well known that the 1-ratio
of sn is pn/qn (see [10]).

Puts∞ = limn→∞ sn (its 1-ratio is thusγ) and define the sequence of 2×2 matrices as follows:B−1 =
A1,B0 = A0, and

Bn+1 = Ban+1
n Bn−1, n≥ 0.

Putρn = ρ(Bn) (the spectral radius ofBn) andτn = tr(Bn).

Theorem 7 ([9, 12]) If r−1(γ) = {α}, we have

α = lim
n→∞

(
ρqn+1

n

ρqn
n+1

)(−1)n

=
∞

∏
n=0

(
ρdn+1

n ρn−1

ρn+1

)(−1)nqn

.
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In particular, ifγ∗ = 3−
√

5
2 (i.e.,dn ≡ 1 for all n), then (see [9])

α∗ := lim
n→∞

(
τFn+1

n

τFn
n+1

)(−1)n

=
∞

∏
n=1

(
1− τn−1

τnτn+1

)(−1)nFn+1

,

whereF0 := 0,F1 := 1 andFn+1 := Fn +Fn−1 is the Fibonacci sequence and, as it turns out,τ0 := 1,
τ1,τ2 := 2 andτn+1 := τnτn−1− τn−2. The infinite product converges superexponentially fast, and

α∗ ≃ 0.749326546330367557943961948091344672091327. . .

Similarly, one can easily computer−1(γ) for any irrationalγ with a very high precision. For more detail
see [12].

6 One-dimensional Wigner lattices

Consider the one-dimensional latticeZ+ whose each node is either occupied by an electron or is empty
(“occupied by a hole”). The electrons’ interaction is givenby a potentialV which is assumed to be
convex and vanish at the infinity, which is a rather weak assumption (such is, for instance, a Coulomb
potential). More precisely, the energy of the system is given by

E =
1
2 ∑

xi ,xj

V(|xi −x j |).

Let γ ∈Q denote the (fixed) ratio of electrons on the lattice.
Then, as noticed by Hubbard [6], the lowest-energy configuration with respect to this potential is

attained at balanced words (see Table II from the cited paper). It should be mentioned that the author
does not use this terminology and provides a proof of his claim only for certain special cases ofγ .

The same result has been rediscovered by several authors forvarious physical models – see, e.g.,
[13].

Summing up, there are numerous – seemingly unrelated – areasof mathematics and physics in which
optimization problems yield balanced words. Gaining a better understanding of this phenomenon looks
like a perspective line of research.

References

[1] V. Anagnostopoulou, K. Diaz-Ordaz, O. Jenkinson and C. Richard,Sturmian maximizing measures for the
piecewise-linear cosine family, preprint, see http://www.maths.qmul.ac.uk/˜omj/.

[2] V. Anagnostopoulou and O. Jenkinson,Which beta-shifts have a largest invariant measure?J. London Math.
Soc.79 (2009), 445–464. doi:10.1112/jlms/jdn070
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