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In the past few decades there has been a good deal of papetsavhiconcerned with optimization
problems in different areas of mathematics (along 0-1 wdiid&e or infinite) and which yield —
sometimes quite unexpectedly — balanced words as optimahig note we list some key results
along these lines known to date.

Firstly, we recall that a finite or infinite 0-1 wordl = w,Ww5. .. is calledbalancedif for every pair of
finite subwordsu, v such thafu| = |v|, we necessarily havigu|1 — |v|1| < 1, where|u|y =#{] : u; = 1}
stands for the lengthof u. Aninfinite balanced word which is not eventually periodicalledSturmian

There are several equivalent definitions of Sturmian sempgenLetw = wiw,. .. be an infinite 0-1
sequence and puy(n) = #HWw;...Wjn_1: j > 1} — thecomplexity functiorof w. Thenw is Sturmian
if and only if py(n) = n+1. The 1fatio y = liMmpe|W1...Wy|1/n is well defined for any Sturmian
sequencav, furthermore, any Sturmian sequence with the 1-rgtban be obtained by the formula

Wn = [(N+1)y+6] — [ny+ 0] 1)

for somed € [0,1). For more details see, e.d., [10].
This survey paper is concerned with some optimization @mislfrom various areas of mathematics
and physics, in which balanced words (and, in some casasniatusequences) turn out to be optimizing.

1 Multimodular functions and queuing
We will begin with optimization problems in mathematics. rQinst example comes from the seminal
paper [5].

Define vectorsfo, f1,..., fn in Z™M as follows: fo = (—1,0,...,0,0), f; = (1,—1,0,0,...,0),f, =

(0,1,-1,0,...,0),...,fm=1(0,0,...,0,1). Letnow.# = {fo,..., fn}. We say that a functiod: Z™ — R
is multimodularif for any u € Z™ we have

J(u+Vv)+J(u+w) > J(u) +I(u+v+w)
for all vyw € .# with v # w. The function
J(2) = sup{A(2) : Ais affine andA(u) < J(u) for all ue Z™}
is called thdower convex envelopaf J.
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Theorem 1 ([5]) LetJ be a multimodular function dA™ and let Jdenote its lower convex envelope. If
X is any infinite 0-1 sequence with the 1-ragicthen

... 14h
liminf = Z J (X, Xkt 1y - - Xkem-1) > J(V),
K=1

n—eo N

wherey = (y,...,Yy). Moreover, if x= w given by[(ll) for som8, then we have the equality.

The author then applies this result to the following queyingblem: consider a sequence of cus-
tomers arriving at a fixed rate in such a way that the intaralrtimes are i.i.d. Poisson random variables
with the same finite mean. A 0-1 input sequemnce (X1,X,...) determines what happens to tki#
customer, namely, ik = 1, the customer is admitted andxf = 0, he is sent elsewhere. The mean
service time is assumed to be fixed. The number in the queslecfstomek arrives, isNk + Xx. Then
the expectation of maX is a multimodular function.

Consequently, it follows from the above theorem that if &ticn y of customers is sent to a server
queue according to a splitting sequencehen the long-term average is minimized when= | (n+
1l)y| — |ny|, i.e., along Sturmian sequences.

2 Cyclic permutations of binary expansions

Letw=w;...wy be afinite 0-1 word and put

m
bw) = % w2™ k.
=

Now define
B(w) = b(w) - b(w?) - b(w™),

wherew™ =w,w? ... w(™ are the cyclic permutations f. Let now#},q denote the set of 0-1 words
of lengthq with the 1-lengthp. As is well known (see, e.gl, [10]), there are precisglyalanced words
in #},q, all of which are in the samerbit (= all cyclic permutations of a word), soW q is defined to
be the set of all orbits of words i}, 4, there is a unique balanced orbitVip 4.

Theorem 2 ([8]) Supposd < p < q are coprime integers. Forw W, q, the product Bw) is maximized
precisely when w is balanced.

For instance, pup = 2,q=5. Here there are only two possible orbits, namely, those {10100
andv = 11000. We havé(w) = b(10100 x b(01001) x b(10010 x b(00101) x b(01010 = 20x 9 x
18x 5x 10= 162000, whereaB(v) = b(11000 x b(10001) x b(0001]) x b(00110 x b(01100 = 24 x
17x 3x6x12=88128.

3 Maximizing measures

LetT :[0,1) — [0,1) and denote the space of @Hinvariant measures hy7 (T). We say that a measure
U is majoratedby v (notation: y < v) if folf du < j’olf dv for any convex functiorf : [0,1) — [0, 1).
Put for anyy € (0,1),

AMy={p e #(T): barfu) =y},
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where L
bar(u)z/o x dp(x),
i.e., thebarycentreof u.

Theorem 3 ([7]) Let Tx=2xmod 1 For anyy < [0,1], the partially ordered set.#,, <) has a least
element. This least element is the Sturmian measuoé Btation numbety.

HereS, is the following. Let¢ : [0,1) — [0,1) be defined as follows:

® Xn—y1 (X+nymod 1
¢V(X): Z =i on+1 )

n=0

i.e., the binary sum of the standard symbolic sequence iassdavith the rotation by with a starting
pointx. Then the Sturmian measuBg is the push forward of the Lebesgue measur¢Ooh) underg,.

If yis rational, thenS, sits on a finite set. For instance, the supportSgk is the orbit of the
binary sum of 00101 00101 00101 underT, i.e., the sef{ 2,29 20 2 181 each point having the
S 5-measure of 15.

If yis irrational, therS, is supported by a Cantor set. For instance,= 3‘7‘@’ then suppS,) is the
closure of the set of all shifts of the Fibonacci wdrd= 0010100100101. (It is indeed a Cantor set
becausef has such a low complexity!)

There are other papers in this area which produce Sturmgaresees in similar optimization prob-
lems. For instance, one may replace the class of convexiémsatvith increasing functions and consider
the B-transformationgiven by 7gx = Bx mod 1 (with3 > 1) and theB3-shift — the subshift on the alpha-
bet{0,1,...,[B] — 1} which corresponds to the natural partitighl) = [0, 1)U [~ 1,28 )uU---U
[([B]—1)B~,2) for T5.

It has been shown in [2] that th&-shift has a largest shift-invariant measure if and onlg ik an
algebraic integer of a special form. (In particular, k13 < 2, then it has to benultinacci i.e., the
dominant root ok™ = x™1 ... 4 x4 1 for somem > 2.) In this case the largest shift-invariant measure
on thef-subshift is the unique one supported by the periodic shilitt generated by its lexicographically
largest element. The supporting measure is always Sturmian

Another direction in this line of research is concerned witbosing no extra conditions of the class
of functions but instead considering a specific (usuallye-parameter) family of those. For example,
let, as aboveT be the doubling map, and lgp(x) = cos 21(x— 0) or fg(x) = 1 —4distr(x, 8), where
disty is the distance on the circle/Z. In both cases maximizing measures are Sturmian -+ g [Bd1] a
references therein.

Thus, in questions concerning maximizing measures, thaf#n measures seem to be a very robust
class.

4 Tetrisheaps

Consider a version of popular Tetris game with two pieces\dla— see Fid.J1. We will be interested in
stacking these pieces in such a way that the height of theikeamimal.
More precisely, for a finite 0-1 wordr we defineh(w) to be the height of the heap specified Wy
and put
h(w)

in=Iliminf min ——=.
Pmin = 1D we{0, 1} N
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Figure 1: Tetris heaps

An optimal schedulés an infinite 0-1 wordu such that

- h(un)
r!mo T = Pmin,

whereuln| is the prefix of lengtm of u.

Theorem 4 ([11]) Let us consider a heap model with two pieces. There existptama schedule which
is balanced — either periodic or Sturmian.

The authors of[[11] characterize the cases where the opisn@riodic and the ones where it is
Sturmian. The proof is constructive, providing an exploptimal schedule. For a more general approach
(using a special class of iterated function systems)[see [4]

5 Joint spectral radius

Given a finite set ofl x d real matrices = {Ay, ..., A1}, we define thgoint spectral radiugp (<) to
be the quantity

p() ::Iimsupmax{HAil-'-AinHl/”: ijc {0,...,r—1}},

n—oo

a definition introduced by G.-C. Rota and G. Strang in 1960.
A {0,...,r — 1}-sequencgiq, io,...) is calledmaximizingf

lim A, A [V = ().

This is somewhat similar to the Tetris model considered apwathich is reflected in the general model
accounting for both set-ups considered.in [4].
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Example5 Put«/ = {Ag,A1}, where

11 10
w=(o 2) 2= 1)

Then it turns out that010101.. is maximizing and furthermore, any maximizing sequencecfor
has the same growth rate of the corresponding sequence oixmpadducts. Consequentlyy (<) =

(P(AoA1))Y2 = (1+V/5)/2.

Now consider the one-parameter family of pairg := {Ag, dA1} with a € [0,1]. Is it true that for
any fixeda any maximizing sequence is “essentially periodic” likehie tasex = 1?

More precisely, a set of matriceg is said to have théniteness propertif there exists an eventually
periodic maximizing sequence faor. It was shown in the PhD thesis [14] thatdife [4/5,1], then we
have the same conclusion as o= 1. What about the case < 4/5?

We say that an infinite 0-1 wond is recurrentif any of its subwords occurs w infinitely often. For
eachy € [0,1], let X, denote the set of all recurrent balanced infinite words whesaio is equal toy.
For any rational the setX, is finite and it is a continuum (calledSturmian systepfor any irrationaly.

We say thaty is anoptimal 1-ratiofor 7, if there exists a maximizing sequence faf, with the
1-ratioy.

Theorem 6 ([9]) There exists a continuous, non-decreasing surjectiofD,1] — [0, 2] such that for
eacha, y=t(a) is the unique optimal-ratio of o7, .
Furthermore, for eaclw < [0, 1], every element of X¥s a maximizing sequence.

Thus, if one takes any irrationgle (0,1/2), then there exists (in fact, unique — seel [12]§ [0, 1]
such that any maximizing sequence fgj has the 1-ratiq, i.e., cannot be periodic. This disproves the
Finiteness Conjecturerhich asserts that any maximizing sequence for an arbisetrgf matrices should
be periodic. (The first counterexample to the FC appeared] jimnpwever it was not explicit.)

Moreover, there is an explicit formula for such arn terms of the elements of the continued fraction
expansion ofy. Namely, let

y=[a1,az,...]

denote the continued fraction expansionyofith p,/d, being thenth convergent. Recall that the se-
quence obtandard wordspecified byyis given bys_1 = 1,50 = 0,S,+1 = si""*s,_1, N> 0. It is obvious
thats, is a prefix ofs, 1 and that the length af, tends to the infinity. Itis also well known that the 1-ratio

of $,is pn/an (seel[10]).
Puts, = limp_« S, (its 1-ratio is thug/) and define the sequence ok 2 matrices as followsB_; =

Aq,Bg = Ag, and
Bn+l — Bﬁn+l anl, n 2 0

Putp, = p(By) (the spectral radius d@,) andt, = tr(By).

Theorem 7 ([9,12]) If t=(y) = {a}, we have

Oni1y (1 0 n+1 (=1)"n
. Pn Pn-1
() A%
nt1 n+1
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In particular, ify, = 3‘7\@ (i.e.,d, = 1 for alln), then (se€ [9])

Tr|1:n+1 (=1)" o0 Tno1 (—1)"Fhi1
a, = lim = 1-—
T onse | g ﬂ( TnTn+1> ’

whereFy := 0,F; := 1 andF.,1 := F, + F,_1 is the Fibonacci sequence and, as it turns ogit= 1,
T1,T2 ;=2 andTy.1 := TnTh_1 — Tn_2. The infinite product converges superexponentially fasd, a

o, ~ 0.749326546330367557943961948091344672091327

Similarly, one can easily compute?(y) for any irrationaly with a very high precision. For more detail
see([12].

6 One-dimensional Wigner lattices

Consider the one-dimensional lattige whose each node is either occupied by an electron or is empty
(“occupied by a hole”). The electrons’ interaction is givien a potentialV which is assumed to be
convex and vanish at the infinity, which is a rather weak aggiam (such is, for instance, a Coulomb
potential). More precisely, the energy of the system ismglve

1
E = EX;V(]xi —X;jl)-
(|

Let y € Q denote the (fixed) ratio of electrons on the lattice.

Then, as noticed by Hubbard! [6], the lowest-energy configamawith respect to this potential is
attained at balanced words (see Table Il from the cited papeshould be mentioned that the author
does not use this terminology and provides a proof of hisictanly for certain special cases af

The same result has been rediscovered by several authorarfous physical models — see, e.g.,
[13].

Summing up, there are numerous — seemingly unrelated —afresthematics and physics in which
optimization problems yield balanced words. Gaining advathderstanding of this phenomenon looks
like a perspective line of research.
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