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We discuss the theory of certain partially ordered sets thatcapture the structure of commutation
classes of words in monoids. As a first application, it follows readily that counting words in com-
mutation classes is #P-complete. We then apply the partially ordered sets to Coxeter groups. Some
results are a proof that enumerating the reduced words of elements of Coxeter groups is #P-complete,
a recursive formula for computing the number of commutationclasses of reduced words, as well as
stronger bounds on the maximum number of commutation classes than were previously known. This
also allows us to improve the known bounds on the number of primitive sorting networks.

1 Introduction

If S is a set of symbols, we recall that the free monoidS∗ generated byS is the set of all words inSof
finite length. An arbitrary monoid generated byScan be obtained fromS∗ by declaring certain words to
be equal, which determines an equivalence relation onS∗. For example, the relationu= v indicates that
wheneveru occurs in some word as a contiguous subsequence, the subsequence may be replaced byv to
obtain an equivalent word. Ifa,b∈S, a relation of the formab= ba is called acommutation relation, and
a andb are then said tocommute. Two words that are equivalent using only commutation relations are
said to be in the samecommutation class. We will assume throughout that some set of monoid relations
is fixed in advance.

There is a method of representing commutation classes usingpartially ordered sets that captures their
essential structure. We recall that a setP together with a relation≤ is a partially ordered set if≤ is re-
flexive, transitive, and antisymmetric (meaning that ifx≤ y andy≤ x, thenx= y); we will sometimes
use< to denote the corresponding antireflexive relation:x < y if and only if x≤ y andx 6= y. A finite
partially ordered setP together with a functions : P → S will be called aword posetif the following
conditions are satisfied for allx,y∈ P:

(a) If s(x) ands(y) are equal or do not commute, then eitherx≤ y or y≤ x, and

(b) If x< y and there is noz∈ P such thatx< z< y, then we have eithers(x) = s(y), or otherwises(x)
ands(y) do not commute.

Two word posets(P,s) and(P′,s′) are said to be isomorphic, or in the same isomorphism class, if
there is a bijective functionf : P→ P′ such thats′( f (x)) = s(x) for all x∈ P, and furthermore we require
thatx≤ y if and only if f (x) ≤ f (y) for all x,y∈ P. Then the first theorem on word posets is

Theorem 1.1 The isomorphism classes of word posets with m elements are inbijective correspondence
with the commutation classes of words of length m.
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We illustrate with an example. Suppose we haveS= {a,b,c,d}, which satisfy

ab= ba,

cd= dc,

and
ad= da.

Then the word poset ofabcd is

a b

c d

Notice that if we read the labels in such a way that whenever two nodes are connected by a line, we
read the bottom one first, we obtain a word in the same commutation class asabcd. This illustrates the
following general result.

We recall that a linear extension of a partially ordered setP with m elements is a bijective function
e : P→ [m] = {1,2, . . . ,m} such thate(x)≤ e(y) under the usual ordering on integers wheneverx≤ y in
P. If w is a word andi is a positive integer, we will writewi to mean theith symbol inw. Then

Theorem 1.2 If (P,s) is a word poset, then the linear extensions of P are in bijective correspondence
with the words in the associated commutation class. If e is a linear extension of P, then the corresponding
word w(e) is determined by w(e)i = s(e−1(i)).

The proof of this theorem is given as an exercise in Stanley [8].
Counting linear extensions of partially ordered sets is known to be a #P-complete problem (see [4]).

It follows from our work that the problem of counting words incommutation classes with arbitrary
(finite) sets of monoid relations is polynomial time equivalent, and hence a first application is

Theorem 1.3 The problem of counting words in commutation classes of monoids is #P-complete.

We have found further applications in the realm of Coxeter groups, which we now describe.

2 Coxeter groups

A Coxeter group generated byS is a monoid determined by relations of the formaa= 1 (where 1 is the
empty word) for alla in S, as well as zero or more relations of the formaba· · · = bab· · · for certain
a,b ∈ S; one side of such a relation is an alternating word ina,b of length m≥ 3 whose odd-index
symbols area and even-index symbols areb, and the other side is the alternating word of the same
length with odd-index symbols equal tob and even-index symbols equal toa. Note that the commutation
relationab= ba is in this form. The Coxeter groups generated bySare in bijective correspondence with
graphs on the vertex setSwhose edges are labeled either by∞ or a positive integer greater than or equal
to 3, known asCoxeter graphs(see [3]). The lack of an edge between two vertices indicate that they
commute, an integer label on an edge gives the length of the alternating word in a relation between the
vertices, and a label of∞ indicates that there is no relation.

Coxeter groups have applications in many areas of mathematics, but we will be interested mostly in
the fact that they suggest interesting problems involving words. A wordw in a Coxeter group is said to
be reducedif there is no equivalent word of shorter length. Even ifS is infinite, an equivalence class of
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words in a Coxeter group will always contain only finitely many reduced words; in fact, it will contain
at mostm!, wherem is the length. Thus, a natural problem is to try to find formulas counting reduced
words. Our work on word posets has resulted in a theorem that suggests that trying to find an efficient
formula may not be a worthwhile endeavor:

Theorem 2.1 The problem of counting reduced words in Coxeter groups is #P-complete.

There exist formulas counting reduced words in certain finite Coxeter groups, expressing the number of
reduced words as a sum of certain easy-to-compute numbers (relating to Young tableaux, which are linear
extensions of certain partially ordered sets) with coefficients. These formulas follow the work of Stanley
in [7]. However, computing the coefficients is itself a #P-complete problem (see [6]), and the number
of terms in the formula is superpolynomial, so the appeal of these formulas is not in their ease of use or
efficiency. Rather, the formulas relate reduced words to Young tableaux, which are combinatorial objects
that can be defined visually and are ubiquitous in other areasof algebraic combinatorics. Attempts to
extend these formulas to completely general Coxeter groupshave so far failed.

A formula for numbers of reduced words in general Coxeter groups in terms of linear extensions of
partially ordered sets does arise naturally from our work. In the case of the finite Coxeter groups for
which there are formulas in terms of Young tableaux, our formula isnot, in general, the same. IfP is a
partially ordered set, denote byE(P) the number of linear extensions ofP. Also, we denote by WP(w)
the set of reduced word posets (that is, word posets corresponding to commutation classes of reduced
words) forw. Then our formula for the number of reduced words forw is

∑
P∈WP(w)

E(P).

The question then becomes: can we compute WP(w)?
In fact, the structure of Coxeter groups makes recursively constructing WP(w) relatively easy. The

lengthof w, denoted byℓ(w), is the length of any reduced word forw. The setD(w) of all elementsa of
Ssuch thatℓ(aw) < ℓ(w), called theleft descent setof w, can be determined in polynomial time. If we
know WP(aw) for all a∈ D(w), then givenP∈ WP(aw) we can constructP′ ∈ WP(w) by adjoining an
elementx to P such thats(x) = a andx< y for y∈ P if s(y) does not commute witha (then extending
transitively). This leads to an inclusion-exclusion formula for the number of commutation classes of
reduced words forw.

Denote byC(w) = |WP(w)| the number of reduced word posets forw. If T ⊂ S is such that all
elements ofT commute, then we will also denote byT the product of all elements ofT. Such a subset
of S will be called independent, as it is an independent subset of the Coxeter graph. Then a recursive
formula forC(w) is given by

Theorem 2.2 We have
C(w) = ∑

/06=T⊂D(w)
T independent

(−1)|T|+1C(Tw).

For the purpose of enumerating words, we may assume that|S| ≤ ℓ(w), because every reduced word
for an elementw of a Coxeter group has the same set of distinct symbols as any other. If |S|= n, a trivial
bound onC(w) is

C(w)≤ nℓ(w).

This is trivial becausenℓ(w) is in fact equal to the total number of words inS∗ of lengthℓ(w). However,
we have proved the following stronger bound.
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Theorem 2.3 For any element w in any Coxeter group withℓ(w)> 0, we have

C(w)≤
2
3

3
1
2ℓ(w).

The best bound that was previously known was 3ℓ(w) for all w in the symmetric group, or about 2.49ℓ(w)

for ℓ(w) sufficiently large (see [5]). In any case, if it is always truethat

C(w)≤ αℓ(w)

for someα and allw, then computations indicate thatα > 1.715, and we conjecture that in fact we must
haveα ≥ 3

1
2 ≈ 1.732.

Let M(k) denote the maximum number of commutation classes an elementof lengthk in any Coxeter
group can have. We have thatM(0) = M(1) = M(2) = 1, M(3) = M(4) = 2, M(5) = 3, M(6) = 8. We
have shown that

1
2.03669

log3< lim
k→∞

logM(k)
k

≤
1
2

log3,

and we conjecture that the upper bound is equal to the limit. We have also proved that

Theorem 2.4 An element of length k with M(k) commutation classes can always be found in some finite
Coxeter group.

Thus, computingM(k) can be done via a terminating algorithm.

3 Sorting networks

In the case thatw0 is the longest element of the finite Coxeter group of typeAn−1 for n > 0 (i.e., the
symmetric groupSn), C(w0) is equal to the number of primitive sorting networks onn elements, as well
as the number of rhombic tilings of a 2n-gon (see [1]). Denote this number byP(n). P(n) for n ≤ 11
had been computed and posted as sequence A006245 on the Online Encyclopedia of Integer Sequences
before January 30th, 2011. We were able to compute the 12th term using our formula, so that the terms
posted as of the date of this writing are

1,1,2,8,62,908,24698,1232944,112018190,18410581880,5449192389984,2894710651370536.

Setkn =
n(n−1)

2 . In [10], it is stated that

0.23105≈
1
3

log2≤ lim
n→∞

logP(n)
kn

≤ log2≈ 0.69315.

However,P(n)≤ M(kn) for all n, and we can prove that

lim
n→∞

logP(n)
kn

≥
1
km

logP(m)

for anym> 1. Thus,

0.53941≈
1
66

log2894710651370536≤ lim
n→∞

logP(n)
kn

≤
1
2

log3≈ 0.54931,

and we conjecture that the limit is equal to the upper bound.
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