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We discuss the theory of certain partially ordered sets ¢hature the structure of commutation
classes of words in monoids. As a first application, it foboreadily that counting words in com-
mutation classes is #P-complete. We then apply the pgrbadlered sets to Coxeter groups. Some
results are a proof that enumerating the reduced words mfeglts of Coxeter groups is #P-complete,
a recursive formula for computing the number of commutatiasses of reduced words, as well as
stronger bounds on the maximum number of commutation daks@é were previously known. This
also allows us to improve the known bounds on the number ofipivie sorting networks.

1 Introduction

If Sis a set of symbols, we recall that the free mon8idhenerated bys is the set of all words irs of
finite length. An arbitrary monoid generated gan be obtained fror8* by declaring certain words to
be equal, which determines an equivalence relatio8‘of-or example, the relatiom= v indicates that
whenevelu occurs in some word as a contiguous subsequence, the sebhsequay be replaced mto
obtain an equivalent word. & b € S, a relation of the fornab= bais called acommutation relationand

a andb are then said tcommute Two words that are equivalent using only commutation et are
said to be in the sammmmutation classWe will assume throughout that some set of monoid relations
is fixed in advance.

There is a method of representing commutation classes paitiglly ordered sets that captures their
essential structure. We recall that a Babgether with a relatio< is a partially ordered set K is re-
flexive, transitive, and antisymmetric (meaning that i y andy < x, thenx = y); we will sometimes
use< to denote the corresponding antireflexive relatignz y if and only if x <y andx #y. A finite
partially ordered seP together with a functiors: P — Swill be called aword posetif the following
conditions are satisfied for atly € P:

(@) If s(x) ands(y) are equal or do not commute, then eitiket y ory < x, and

(b) If x<yand thereis naec P such thak < z <y, then we have eithex(x) = s(y), or otherwises(x)
ands(y) do not commute.

Two word posetgP,s) and (P',s) are said to be isomorphic, or in the same isomorphism cléss, i
there is a bijective functior : P — P’ such that'(f(x)) = s(x) for all x € P, and furthermore we require
thatx <yif and only if f(x) < f(y) for all x,y € P. Then the first theorem on word posets is

Theorem 1.1 The isomorphism classes of word posets with m elements higative correspondence
with the commutation classes of words of length m.
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We illustrate with an example. Suppose we h8ve {a, b, c,d}, which satisfy

ab=ba,
cd=dc,
and
ad=da
Then the word poset @bcdis
c d
a b

Notice that if we read the labels in such a way that wheneverriades are connected by a line, we
read the bottom one first, we obtain a word in the same comiontelass agbcd This illustrates the
following general result.

We recall that a linear extension of a partially orderedPsetith m elements is a bijective function
e:P—[m ={1,2,...,m} such that(x) < e(y) under the usual ordering on integers whenevsry in
P. If wis a word and is a positive integer, we will writgy; to mean théth symbol inw. Then

Theorem 1.2 If (P s) is a word poset, then the linear extensions of P are in biyectiorrespondence
with the words in the associated commutation class. If eiiseal extension of P, then the corresponding
word w(e) is determined by (e); = s(e"1(i)).

The proof of this theorem is given as an exercise in Stanlgy [8

Counting linear extensions of partially ordered sets isfkmto be a #P-complete problem (ske [4]).
It follows from our work that the problem of counting words @@mmutation classes with arbitrary
(finite) sets of monoid relations is polynomial time equéral and hence a first application is

Theorem 1.3 The problem of counting words in commutation classes of iderg#P-complete.

We have found further applications in the realm of Coxeteugs, which we now describe.

2 Coxeter groups

A Coxeter group generated I84is a monoid determined by relations of the foam= 1 (where 1 is the
empty word) for allain S as well as zero or more relations of the foaina--- = bab--- for certain
a,b € S one side of such a relation is an alternating wordajb of lengthm > 3 whose odd-index
symbols area and even-index symbols ate and the other side is the alternating word of the same
length with odd-index symbols equallband even-index symbols equaldoNote that the commutation
relationab = bais in this form. The Coxeter groups generated3are in bijective correspondence with
graphs on the vertex s8twhose edges are labeled eitherdypr a positive integer greater than or equal
to 3, known asCoxeter graphgsee [3]). The lack of an edge between two vertices indidzde they
commute, an integer label on an edge gives the length of tamating word in a relation between the
vertices, and a label @6 indicates that there is no relation.

Coxeter groups have applications in many areas of mathesnatit we will be interested mostly in
the fact that they suggest interesting problems involvimgds. A wordw in a Coxeter group is said to
be reducedif there is no equivalent word of shorter length. Evei infinite, an equivalence class of
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words in a Coxeter group will always contain only finitely iganeduced words; in fact, it will contain
at mostm!, wheremis the length. Thus, a natural problem is to try to find forrsutaunting reduced
words. Our work on word posets has resulted in a theorem thgatests that trying to find an efficient
formula may not be a worthwhile endeavor:

Theorem 2.1 The problem of counting reduced words in Coxeter groups isatRplete.

There exist formulas counting reduced words in certaindi@ibxeter groups, expressing the number of
reduced words as a sum of certain easy-to-compute numle&@sr(g to Young tableaux, which are linear
extensions of certain partially ordered sets) with coedfits. These formulas follow the work of Stanley
in [7]. However, computing the coefficients is itself a #Rwmete problem (seé[[6]), and the number
of terms in the formula is superpolynomial, so the appeahe$é formulas is not in their ease of use or
efficiency. Rather, the formulas relate reduced words tongdableaux, which are combinatorial objects
that can be defined visually and are ubiquitous in other aséatgebraic combinatorics. Attempts to
extend these formulas to completely general Coxeter grbaps so far failed.

A formula for numbers of reduced words in general Coxeteugsan terms of linear extensions of
partially ordered sets does arise naturally from our workthie case of the finite Coxeter groups for
which there are formulas in terms of Young tableaux, our fdamsnot, in general, the same. Fis a
partially ordered set, denote B(P) the number of linear extensions Bf Also, we denote by WRv)
the set of reduced word posets (that is, word posets comdgppto commutation classes of reduced
words) forw. Then our formula for the number of reduced wordsvids

E(P).
PeWP(w)

The question then becomes: can we compute WP

In fact, the structure of Coxeter groups makes recursivehstucting WRw) relatively easy. The
lengthof w, denoted by/(w), is the length of any reduced word far The seD(w) of all elementsa of
Ssuch that’(aw) < ¢(w), called theleft descent setf w, can be determined in polynomial time. If we
know WRaw) for all a € D(w), then givenP € WP(aw) we can construd®’ € WP(w) by adjoining an
elementx to P such thats(x) = aandx < y for y € P if s(y) does not commute with (then extending
transitively). This leads to an inclusion-exclusion fotenfor the number of commutation classes of
reduced words fow.

Denote byC(w) = |WP(w)| the number of reduced word posets for If T C Sis such that all
elements off commute, then we will also denote Bythe product of all elements af. Such a subset
of Swill be calledindependentas it is an independent subset of the Coxeter graph. Thetussiee
formula forC(w) is given by

Theorem 2.2 We have
C(w) = S (=1)THc(Tw).
0£TCD(w)
T independent
For the purpose of enumerating words, we may assumeShat/(w), because every reduced word
for an elementv of a Coxeter group has the same set of distinct symbols asthey & |S = n, a trivial
bound orC(w) is
C(w) < nW),

This is trivial becaus@’™) is in fact equal to the total number of words$h of length/(w). However,
we have proved the following stronger bound.
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Theorem 2.3 For any element w in any Coxeter group wittw) > O, we have

C(w) < 232w,

wIN

The best bound that was previously known w4¥)Jor all w in the symmetric group, or about4® (W)
for £(w) sufficiently large (se€ [5]). In any case, if it is always tthat

C(w) < a‘™

for somea and allw, then computations indicate that> 1.715, and we conjecture that in fact we must
havea > 37 ~ 1.732.

Let M (k) denote the maximum number of commutation classes an elefiemgthk in any Coxeter
group can have. We have thdt(0) = M(1) = M(2) =1, M(3) = M(4) = 2, M(5) = 3, M(6) = 8. We
have shown that

logM(k) 1
k

< -log3
—2097

! log3 < Iim
2.03669 9°< M,

and we conjecture that the upper bound is equal to the limgtheée also proved that

Theorem 2.4 An element of length k with () commutation classes can always be found in some finite
Coxeter group.

Thus, computindv (k) can be done via a terminating algorithm.

3 Sorting networks

In the case thatvg is the longest element of the finite Coxeter group of tyae; for n > 0 (i.e., the
symmetric grougs,), C(wp) is equal to the number of primitive sorting networksroelements, as well
as the number of rhombic tilings of agjon (seel[1]). Denote this number Byn). P(n) for n < 11
had been computed and posted as sequence A006245 on the Bntinclopedia of Integer Sequences
before January 30) 2011. We were able to compute thé™M2rm using our formula, so that the terms
posted as of the date of this writing are

1,1,2,8,62,908 24698 12329441120181901841058188(544919238998£2894710651370536

Setk, = ”(”—2_” In [10], it is stated that

<log2~ 0.69315

1 . logP(n)
O.23105~§I092§Am0 K

However,P(n) < M(ky) for all n, and we can prove that

fim @ > | logP(m)

for anym> 1. Thus,

1 __logP 1
0.53941~ — log 2894710651370536 lim —2 m 1 log3~ 0.54931
66 e Ky 2

and we conjecture that the limit is equal to the upper bound.
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