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We review some recent results in digital geometry obtained by using a combinatorics on words ap-
proach to discrete geometry. Motivated on the one hand by thewell-known theory of Sturmian words
which model conveniently discrete lines in the plane, and onthe other hand by the development of
digital geometry, this study reveals strong links between the two fields. Discrete figures are iden-
tified with polyominoes encoded by words. The combinatorialtools lead to elegant descriptions of
geometrical features and efficient algorithms. Among these, radix-trees are useful for efficiently de-
tecting path intersection, Lyndon and Christoffel words appear as the main tools for describing digital
convexity; equations on words allow to better understand tilings by translations.

1 Introduction

The expansion of computers has led in the last few decades to several breakthrough in technological
achievements. Among these, digital imaging is increasing its spread and is extensively used in a wide
range of applications such as image synthesis, remote sensing, medical image processing to cite a few.
Developed mostly by the engineering world, digital geometry has led to the discovery (sometimes a
rediscovery) of new results about discrete sets, concurrently to the design of new algorithms tools, and
enriched the broader field of discrete geometry.

Combinatorics on words has imposed itself as a powerful toolfor the study of discrete, linear, and
non-commutative objects that appear in almost any branchesof mathematics, and discrete geometry is not
an exception. Traditionally, digital geometry works on characterization and recognition of discrete ob-
jects using an arithmetic approach or computational geometry. However combinatorics on words provide
some useful tools and efficient algorithms for handling discrete objects. Lothaire’s books [20, 21, 22]
constitute the reference for presenting a unified view on combinatorics on words and many of its appli-
cations.

As mentioned by Klette and Rozenfeld in their survey on digital straightness [18]

“Related work even earlier on the theory of words, specifically, on mechanical or Sturmian
words, remained unnoticed in the pattern recognition community”

there was a need for new investigations where combinatoricson words would enrich the classical Eu-
clidean approach of digital geometry.

We revisit some classical problems in discrete geometry from this new point of view. For our purpose
the discrete plane is identified with the square gridZ×Z.
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2 Interactions between Digital Geometry and Combinatorics on Words

2 Preliminaries

We refer to Lothaire [20] for the basic terminology and notation about words on a finite alphabetA .
It includes theemptyword ε , length, , conjugate, factor, prefix, suffix, proper factor, free monoidA ∗,
morphism, antimorphism, occurrences, palindrome, period, power, primitive, reversal. The set of all
factors ofw is denoted by Fact(w), those of lengthn is Factn(w) = Fact(w)∩A n, Pref(w) is the set of
all prefixes ofw, and the set of its palindromic factors is Pal(L). If w= pu, with |w| = n and |p| = k,
then p−1w = w[k..n− 1] = u is the word obtained by erasing fromw its prefix p. The class of a word
w is denoted w . Every word contains palindromes, the letters andε being necessarily part of them.
This justifies the introduction of the function LPS :A ∗ →A ∗ which associates to any wordw its longest
palindromic suffix LPS(w). Given a total order< onA , thelexicographic orderingis defined as usual.

Lyndon words Introduced asstandard lexicographic sequencesby Lyndon in 1954, Lyndon words
have several characterizations (see [20]). We shall define them as words being strictly smaller than any
of their circular permutations.

Definition 1. A Lyndon word l∈ A + is a word such that l= uv with u,v∈ A + implies that l< vu.

Note that Lyndon words are always primitive. The most important result about Lyndon words is the
following unique factorization theorem (see Lothaire [20]Theorem 5.1.1).

Theorem 1. Any word w∈A + admits a unique factorization as a sequence of decreasing Lyndon words:

w= ln1
1 ln2

2 · · · lnk
k , l1 > l2 > · · ·> lk (1)

where ni ≥ 1 and li is a Lyndon word, for all i such that1≤ i ≤ k.

There exist several algorithms for factorizing a wordw = w1w2 · · ·wn into Lyndon words and the
more efficient are linear . An elegant one was invented by Duval [16]. It works by reading from left to
right, with at most 2n comparisons of letters (see also [31], Section 7.4). Another one, uses the concept
of suffix standardizationof the wordw, and builds asuffix arrayof w, which may be computed in linear
time [14]. Then the Lyndon factorization ofw is obtained by cuttingw just before each left-to-right
minimum of its suffix-array.

A quadtree with a radix tree structure for points in the integer plane ([9, 10]) LetB = {0,1} be
the base for writing integers. Words inB∗ are conveniently represented in theradix orderby a complete
binary tree (see for instance [19, 22]), where the levelk contains all the binary words of lengthk, and the
order is given by the breadth-first traversal of the tree. To distinguish a natural numberx∈ N from its
representation we writex ∈ B

∗. The edges are defined inductively by the rewriting rulex → x ·0+x ·1,
with the convention that 0 and 1 are the labels of, respectively, the left and right edges of the node having
valuex. This representation is extended toB∗×B

∗ as follows. As usual, the concatenation is extended
to the cartesian product of words by setting for(x,y) ∈ B

∗×B
∗, and(α ,β ) ∈ B×B

(x,y) · (α ,β ) = (x ·α ,y ·β ).

Let x andy be two binary words having same length. Then the rule

(x,y)→ (x ·0,y ·0)+ (x ·0,y ·1)+ (x ·1,y ·0)+ (x ·1,y ·1) (2)

defines aG ′ = (N,R), sub-graph ofG = (N,R,T), such that :
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(i) the root is labeled(0,0);

(ii) each node (except the root) has four sons;

(iii) if a node is labeled(x,y) then|x|= |y|;

(iv) edges are undirected, e.g. may be followed in both directions.

By convention, edges leading to the sons have labels from theordered set{(0,0),(0,1),(1,0),(1,1)}.
These labels equip the quadtree with aradix treestructure for Equation (2) implies that(x′,y′) is a son
of (x,y), if and only if

(x′,y′) = (2x+α ,2y+β ),

for some(α ,β ) ∈ B×B. Observe that any pair(x,y) of nonnegative integers is represented exactly once
in this tree. Indeed, if|x|= |y| (by filling with zeros at the left of the shortest one), the sequence of pairs
of digits (the two digits in first place, the two digits in second place, and so on) gives the unique path in
the tree leading to this pair. Of course the root may have up tothree sons since no edge labeled(0,0)
starts from the root.

a

b a

b

4,2

2,2

5,3

3,1

1,1

5,2

0,0

4,3

1,0

(1,1)

(0,1)

2,1

(0,1)

(1,0)(0,0)

(0,1)

(1,0)

(1,0)

(1,1)(1,0)

(0,0)

(1,1)

(0,1)(1,1) (0,0)

2,0

Figure 1: The point(2,1) with its neighbors.

Neighboring links [9, 10] Given(x,y) ∈ Z
2, a point(x′,y′) is anε-neighborof (x,y) if there exists

ε ∈ F such that(x′,y′) = (x,y)+ ε = (x+ ε1,y+ ε2).

We superpose onG′ the neighboring relation given by the edges ofT (dashed lines). More precisely,
for each elementary translationε ∈ F , each nodez© = (x,y) is linked to itsε-neighbor z©+ ε, when it
exists. If a levelk is fixed, it is easy to construct the graph

G
(k) = (N(k),R(k),T(k))

such that

(i) if (x,y) ∈ N(k), then|x|= |y|= k;

(ii) the functionsN(k) →֒ N×N →֒ B
∗×B

∗ are injective;

(iii) R(k) is the radix-tree representation :(B<k×B
<k)× (B×B)

•
→ B

≤k×B
≤k;

(iv) the neighboring relation isT(k) ⊆ N× (B×B)×N.



4 Interactions between Digital Geometry and Combinatorics on Words

Note that the labeling in Fig. 1 is superfluous: each node represents indeed an integer unambiguously
determined by the path from the root using edges inR; similarly for the ordered edges. Moreover, if a
given subsetM ⊂ N×N has to be represented, then one may trim the unnecessary nodes so that the
corresponding graphGM is not necessarily complete.

Recall that adding 1 to an integerx ∈ B
k is easily performed by a sequential function. Indeed, every

positive integer can be writtenx = u1i0 j , wherei ≥ 1, j ≥ 0, with u ∈ {ε}∪
{
B

k−i− j−1 ·0
}
. In other

words, 1j is the last run of 1’s. The piece of code for adding 1 to an integer written in base 2 is

1 : If j 6= 0 then Return u1i0 j−11;
2 : else If u= ε then Return1·0i ;
3 : elseReturn u·0−1 ·1·0i ;
4 : end if
5 : end if

where 0−1 means to erase a 0. Clearly, the computation time of this algorithm is proportional to the
length of the last run of 1’s. Much better is achieved with theradix tree structure, where, given a node
z©, its father is denotedf ( z©), and we writef (x,y) or f (x,y) if its label is(x,y). The following technical

lemma is a direct adaptation toB∗×B
∗ of the addition above.

Lemma 2. Let G(k) be the complete graph representingB≤k×B
≤k for some k≥ 1, ε ∈F , and z©=(x, y)

be a node of Nk. If one of the four conditions holds:

(i) ε = 0 and x[k] = 0, (ii) ε = 2 and x[k] = 1,
(iii) ε = 1 and y[k] = 0, (iv) ε = 3 and y[k] = 1,

then f( z©) = f ( z©+ ε). Otherwise, f( z©)+ ε = f ( z©+ ε).

The process is illustrated for case (i) in the diagram

10111,01011 11000,01011

...

1011,0101

10110,01011

1100,0101

a a

a

(0,1)

(1,1) (0,1)

(1,1) (0,1)

on the right where the nodes(10110,•) and (10111,•)

share the same father while fathers of neighboring
nodes

(•,01011) and (•,01011)

are distinct but share the same neighboring relation.

A representation for paths in the square grid Here, we encode paths with the so-calledFreeman
chain code[23] based on the alphabetF = {0,1,2,3}, considered as the additive group of integers
mod 4. Basic transformations onF are rotationsρ i : x 7→ x+ i and reflectionsσi : x 7→ i − x, which
extend uniquely to morphisms (w.r.t concatenation) onF ∗. Given a nonempty wordw∈ F ∗, thefirst
differences word∆(w) ∈ F ∗ of w is

∆(w) = (w2−w1) · (w3−w2) · · · (wn−wn−1). (3)

One may verify that ifz∈ F ∗, then∆(wz) = ∆(w)∆(wnz1)∆(z). Words inF ∗ are interpreted as paths
in the square grid, so that we indistinctly talk of any wordw ∈ F ∗ as thepath w. Moreover, the word
ŵ := ρ2(w̃) is homologousto w, i.e., in direction opposite to that ofw (Figure 2). A wordu∈ F ∗ may
contain factors inC = {02,20,13,31}, corresponding to cancelling steps on a path. Nevertheless, each
word w can be reduced in a unique way to a wordw′, by sequentially applying the rewriting rules in
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0
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33(b)

2
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33
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0
1

(c)

Figure 2: (a)w= 01012223211. (b) ∆(w) = 1311001330. (c) ŵ= 33010003232.

{u 7→ ε | u∈ C }. Thereduced word w′ of w is nothing but a word inP = F ∗ \F ∗C F ∗. Theturning
number1 of w is defined byT (w) = (|∆(w′)|1−|∆(w′)|3)/4.

A pathw is closedif it satisfies|w|0 = |w|2 and|w|1 = |w|3, and it issimpleif no proper factor ofw
is closed. Aboundary wordis a simple and closed path, and apolyominois a subset ofZ2 contained in
some boundary word. It is convenient to represent each closed pathw by its conjugacy classw , also
calledcircular word. An adjustment is necessary to the functionT , for we take into account the closing
turn. The first differences also noted∆ is defined on any closed pathw by setting

∆( w )≡ ∆(w) · (w1−wn),

which is also a closed word. By applying the same rewriting rules, a circular word w is circularly-
reducedto a unique word w′ . If w is a closed path, then theturning number1 of w is

T❞(w) = T ( w ) =
(
|∆( w′ )|1−|∆( w′ )|3

)
/4.

It corresponds to its total curvature divided by 2π. Clearly, the turning numberT ( w ) of a closed path
w belongs toZ (see [3, 6]).

The convex hull of a finite set of points The lexicographic order< on points ofR2 or Z2 is such
that (x,y) < (x′,y′) when eitherx < x′ or x = x′ andy < y′. Theconvex hullof a finite setS of points
in R

2 is the intersection of all convex sets containing these points and is denoted by Conv(S). S being
finite, it is clearly a polygon in the plane whose vertices areelements ofS. Theupper convex hullof S,
denoted by Conv+(S), is the clockwise oriented sequence of consecutive edges ofConv(S) starting from
the lowest vertex and ending on the highest vertex. Thelower convex hullof S, denoted by Conv−(S),
is the clockwise oriented sequence of consecutive edges of Conv(S) starting from the highest vertex and
ending on the lowest vertex.

3 The Daurat-Nivat relation [4, 5]

We recall from Daurat and Nivat [15] that adiscretesetE is a subset ofZ2 and an element(i, j) ∈ E
corresponds to a unit square with vertices(i ± 1

2, j ± 1
2). One setsP1/2 = (1

2,
1
2)+Z2 and the salient and

reentrant points are defined as follows:

Definition 2. (Daurat and Nivat[15])Let E be a discrete set. Then

(i) A corneris a couple(M ,N) whenM ∈ P1/2 andN ∈ Z2 andM −N is in ({±1
2,±

1
2}).

(ii) A corner(M ,N) is salient if N ∈ E andM is the extremity of two edges of the border of E which
are also sides of the squareN+[−1

2,
1
2]

2.

1In [3, 6], the authors introduced the notion ofwinding numberof w which is 4T (w).
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(iii) A corner (M ,N) is reentrant if N ∈ E andM is the extremities of two consecutive edges of the
border E which are not sides of the squareN+[−1

2,
1
2]

2.

Definition 3. (Daurat and Nivat[15])The multiset of border-salient (resp. border-reentrant) points of a
discrete set E, denoted SB(E) (resp. RB(E)) is the multiset whose support is included in P1/2 and such
that for anyM ∈ P1/2, the numbermultSB(E)(M) (resp. multRB(E)(M)) is the number ofN such that
(M ,N) is a salient corner (resp. reentrant corner).

In other words, in their terminology modulo a translation by(1
2,

1
2), a pointM on the boundary of

a polyominoP is salient (see Figure 3 (a)) if it belongs to the intersection of two consecutive sides of
a square belonging toP. The pointM is reentrant (see Figure 3 (b)) if it is the intersection of two
consecutive edges of the contour ofP which are sides of a square not belonging toP.

M

(b)

M

(a)

Figure 3: Salient and reentrant points in the terminology ofDaurat and Nivat

In our framework, a salient point of the boundaryw of a polyomino corresponds to a left turn (a1 in
∆(w)) and a reentrant one to a right one (a3 in ∆(w)), provided the traversal is done in a counterclockwise
manner. The Daurat-Nivat [15] states that theS salient andR reentrant points in every polyomino are
related by the formula

S−R= 4. (4)

N

W E

S

Figure 4: A region and its four extremal points.

The fourextremalpoints are defined by the coordinates:W is the lowest intersection with the left
side of the bounding rectangleQ, N the leftmost intersection with the top side,E the highest intersection
with the right side, andS the rightmost intersection with the bottom side. Note that the four extra salient
points can be canonically identified asW, S, E andN. Then, the Daurat-Nivat relation [15] may be
restated as

Proposition 3. The turning number of a boundary word w isT❞(w) =±1.

Note that a boundary wordw is positively oriented(counterclockwise) iff its turning number is
T❞(w) = 1.
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Remarks 1. This rather elementary geometrical property is fundamental in proving a result about
deciding whether a polyomino tiles the plane by translationor not.

2. This result can be extended easily to take into account hexagonal grids in which case the alphabet
F must be extended to 6 letters, in which case the Daurat-Nivatrelation becomes (see [4, 5] for more
details)

S−R= 6. (5)

3. The statement above includes closed paths not necessarily simple. It cannot therefore be used to
determine whether a closed path is simple or not.

4 Path Intersection[9, 10]

Many problems in discrete geometry involve the analysis of the contour of discrete sets and many prob-
lems are solved by using linear algorithms in the length of the contour word. However, most of the time
it is assumed that the path encoded by this word does not intersect itself. Checking non intersection
amounts to check if a grid point is visited twice. Of course, one might easily provide anO(nlogn) al-
gorithm where sorting is involved, or use hash tables providing a linear time algorithm on average but
not in worst case. The underlying principle of the algorithmis to build a graphG = (N,R,T) whereN
is a set of nodes associated to points of the plane,R andT are two distincts sets of oriented edges. The
edges inR give a quadtree structure on the nodes while the edges inT are links from each node to its
neighbors.

The Algorithm First, we assume that the path is coded by a wordw starting at the origin(0,0), and
stays in the first quadrantN×N. This means that the coordinates of all points are nonnegative. Note that
in N×N, each point has exactly four neighbors with the exception ofthe origin(0,0) which admits only
two neighbors, namely(0,1) and (1,0), and the points on the half lines(x,0) and(0,y) with x,y ≥ 1
which admit only three neighbors.

Now, assume that the node(x,y) exists and that its neighbor(x+1,y+0) does not. If|x|= |y|= k,
then the translation(x,y)+ (1,0) is obtained in three steps by the following rules:

1. take the edge inR to f (x,y) = (x[1..k−1],y[1..k−1]);

2. take (or create) the edge inT from f (x,y) to z©= f (x,y)+ (1,0);

3. take (or create) the edge inR from z© to z©· (0,y[k]).

By Lemma 2, we havez©·(0,y[k]) = (x+1,y+0), so that it remains to add the neighboring link(x,y)
0

99K

(x+1,y+0). Then, a nonempty wordw∈ F n is sequentially processed to build the graphGw, and we
illustrate the algorithm on the input wordw= 0011.

• Initialization: one starts with the graph consisting of the
node(0,0) marked as visited. For convenience, thenon-
visited nodes(0,1),(1,0), and the links from(0,0) to its
neighbors are also added. This is justified by the fact that
the algorithm applies to nonempty words.
Since(0,0) is an ancestor of all nodes, this ensures that ev-
ery node has an ancestor linked with its neighbors. Thecur-
rent nodeis set to(0,0) and this graph is called theinitial
graphGε .

0,1

b aa

1,0 Current node

0,0

b

T

R

Edges in

Visited

Non−visited

Edges in 

(1,0)(0,1)

Figure 5: Initial graphGε .
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• Read w1 = 0: this corresponds to the translation(0,0)+(1,0). A neighboring
link labeled0 starting from(0,0) and leading to the node(1,0) does exist, so
the only thing to do is to follow this link and mark the node(1,0) as visited.
The current node is now set to(1,0), and this new graph is calledG0.

b ab a

0,0

1,00,1

(0,1) (1,0)

Figure 6: GraphG0.

• Read w2 = 0: this time, there is no edge inG0 labeled0 starting from(1,0).
Using the translation rules above, we perform:

(1) go back to the fatherf (1,0) = (0,0);

(2) follow the link 0 to (1,0);

(3) add node(2,0) ∼ (1,0) · (0,0) = (10,00).

Then an edge from(1,0) to (2,0) with label0 is added toT. Finally the node
(2,0) is marked asvisited, and becomes the current node.

b

a

b a a

0,0

1,00,1

2,0

(1,0)(0,1)

(0,0)

Figure 7: GraphG00.

• Read w3 = 1: this amounts to perform the translation(2,0)+(0,1). Since the
edge tof (2,0) is labeled by(0,0), we know that the second coordinate of the
current node(2,0) is even. Therefore,(2,1) and(2,0) must be siblings, that is
f ((2,0)+ (0,1)) = f ((2,0)). What we need to do then is :

(1) go back to the fatherf (2,0) = (1,0);
(2) follow the edge1 if it exists;

Since it is does not exist, it must be created to reach the node(2,1)∼ (10,01) =
(1,0) · (0,1). Again an edge from(2,0) to (2,1) with label1 is added,(2,1) is
marked asvisitedand is now the current node.

b

a

b

b a a

0,0

0,1

2,0

1,0

2,1

(0,1)(0,0)

(1,0)(0,1)

Figure 8: GraphG001.

• Read w4 = 1: since f ((2,1)) has no neighboring link labeled by
1, recursion is used to find (or build if necessary) the node corre-
sponding to its translation by1. This leads to the creation of the
node(1,1) ∼ (0,0) · (1,1) marked asnon-visited. Then, the node
(2,2) ∼ (1,1) · (0,0) is added, marked asvisited, and becomes the
current node. Note that a neighboring links between(1,0) and(1,1),
(2,1) and(2,2) are added in order to possibly avoid searches.

a
b

b

a

b

b ab

0,0

2,0

1,0 1,11,1

2,2

0,1

2,1

(1,0)

(0,0) (0,1) (0,0)

(0,1) (1,1)

Figure 9: GraphG0011.

This algorithm is linear and we refer to [10] for details about the complexity analysis which is rather
involved.

5 Digital convexity[12, 7]

The notion of convexity does not translate trivially, and detecting if a discrete region of the plane is
convex requires a deeper analysis. There are several (more or less) equivalent definitions of digital
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convexity, depending on whether or not one asks the digital set to be connected. We say that a word
w is digitally convexif it is the boundary word of a finite 4-connected subsetS of Z2 such thatS=
Conv(X)∩Z

2. Given such a region:

S
w4

w1

3w

w2

N

W
E

W is the lowest on the Left side;
N is the leftmost on the Top side;
E is the highest on the Right side;
S is the rightmost on the Bottom side;
So thatw≡ w1w2w3w4.

We say that a wordw1 in F ∗ is NW-convexiff there are no integer points between the upper convex hull
of the points{φwi ( j)} j=1...|wi | and the pathwi. Then we have

wi is convex⇐⇒ ρ i−1(wi) is NW-convex.

Clearly, the convexity ofw requires the convexity of eachwi for i = 1,2,3,4, and we have the following
obvious property. Observe that if for somei, wi contains more than 2 letters, that is if Alph(ρ i−1(wi)) 6⊆
{0,1}, thenw is not digitally convex.

Theorem 4([7]). A word v is NW-convex iff its unique Lyndon factorization ln1
1 ln2

2 · · · lnk
k is such that all

l i are primitive Christoffel words.

For example, the Lyndon factorization of the wordv =
1011010100010is

v= (1)1 · (011)1 · (01)2 · (0001)1 · (0)1,

where0, 011, 01, 0001and0 are all Christoffel words.

0

1

0 1

1

0 1

0 1

0 0 0 1

This result leads to a fast optimal algorithm for checking digital convexity of a boundary word. It is
based on the linear time algorithms for computing the Lyndonfactorization of the contour word and for
the recognition of Christoffel factors which digital line segments. By avoiding arithmetical computations
the algorithm is much simpler to implement and much faster inpractice (see [7] for more details).

It is worth noting that many results about Sturmian words have been obtained by using geometrical
properties. This close relation between the two domains raises a number of combinatorial problems
such as enumeration of convex words of given length [30]. Another interesting property is the factorial
closure of digitally convex words: while a geometrical proof is rather easy to obtain, it begs for a purely
combinatorial proof. A formal language characterization is also a challenge.

6 Tilings

Tilings appeared as one of the archetypes of the close relationship between art and mathematics, and are
present in human history under various representations. The beautiful book of Grünbaum and Shephard
[17] contains a systematic study of tilings, presenting a number of challenging problems (see also [2]
for related work). For instance, the problem of designing anefficient algorithm for deciding whether a
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given polygon tiles the plane becomes more tractable when restricted to polyominoes, that is, subsets of
the square latticeZ2 whose boundary is a non-crossing closed path. Indeed, whilea sufficient condition
is provided by theConway criterionin [32], one of its consequences is that the only objects thattile
the plane by translation in two directions are generalizations of parallelograms and parallel hexagons,
hexagons whose opposite sides are equal and parallel (see [32] p. 225 for more details). One may
consider these tiles are continuous deformations of eithertheunit squareor theregular hexagon.

Tiling the plane by translating a single polyomino ([13, 8]) Such a polyomino is calledexact in
[33] and Beauquier and Nivat [1] characterized them by showing that their boundary word satisfies the
equationb(P) = X ·Y ·Z · X̂ ·Ŷ · Ẑ, where at most one of the variables is empty and whereŴ = ρ2(W̃).
This condition is referred to as the BN-factorization. An exact polyomino is said to be ahexagonif
none of the variablesX, Y, Z is empty and asquare if one of them is so. While decidability was
already established in [33], recently, aO(nlog3n) was designed for deciding if a wordw∈ F tiles the
plane by translation [8, 11]. It uses several data structures that include radix-trees, for checking that
w is a closed non crossing path [10], and suffix-trees for building a tricky algorithm for checking the
BN-factorization [13].

Square tiles In this case there is a linear algorithm for deciding if a wordis a square [8]. Moreover,
it turns out that a square has at most two distinct square tilings [26, 27], which means that the BN-
factorizations are distinct and therefore not conjugate. Motivated by the attempt of characterizing the
square tiles, the study of equations of the formABÃB̃≡ X YX̃Ỹ lead to a subset of solutions in bijec-
tion with the BN-factorizations. It turns out that the solutions are strongly related to local periodicity
involving palindromes and conjugate words [25, 29]. They also give some insight on their shape since
palindromes represent symmetric sides. An interesting fact is that some infinite families of such tiles,
namely the Fibonacci tiles have a fractal characteristic and are connected with some problems in number
theory [28], while Christoffel words yield another infinitefamily of squares [24].

Remark Again a number of problems are raised by these connections about the enumeration and gen-
eration of tiling polyominoes. It turns out that the prototype of a square is the basic one cell polyomino,
and it suffices to replace each pair of sides by homologous paths. It remains only to check that theses
paths do not intersect, which is achieved in linear time thanks to the optimal algorithm we have. For the
generation of double square tiles, the prototype is the cross polyomino, and their generation is a bit more
involved. The case of hexagon grids deserves also some attention [8].
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[27] A. Blondin Massé, S. Brlek & S. Labbé:A square tile fills the plane by translation in at most two distinct
ways. Submitted to Discrete Appl. Math.
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