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We review some recent results in digital geometry obtainedding a combinatorics on words ap-
proach to discrete geometry. Motivated on the one hand byéfieknown theory of Sturmian words
which model conveniently discrete lines in the plane, andhenother hand by the development of
digital geometry, this study reveals strong links betwdenttvo fields. Discrete figures are iden-
tified with polyominoes encoded by words. The combinatdaals lead to elegant descriptions of
geometrical features and efficient algorithms. Among thestix-trees are useful for efficiently de-
tecting path intersection, Lyndon and Christoffel wordpegr as the main tools for describing digital
convexity; equations on words allow to better understdim)s by translations.

1 Introduction

The expansion of computers has led in the last few decadesveyas breakthrough in technological

achievements. Among these, digital imaging is increadimgpread and is extensively used in a wide
range of applications such as image synthesis, remotenggmsedical image processing to cite a few.
Developed mostly by the engineering world, digital geoméias led to the discovery (sometimes a
rediscovery) of new results about discrete sets, condiyremthe design of new algorithms tools, and

enriched the broader field of discrete geometry.

Combinatorics on words has imposed itself as a powerful flmothe study of discrete, linear, and
non-commutative objects that appear in almost any brarafhmaathematics, and discrete geometry is not
an exception. Traditionally, digital geometry works on i&wderization and recognition of discrete ob-
jects using an arithmetic approach or computational geymidbwever combinatorics on words provide
some useful tools and efficient algorithms for handling e objects. Lothaire’s books [20,121, 22]
constitute the reference for presenting a unified view onlpatorics on words and many of its appli-
cations.

As mentioned by Klette and Rozenfeld in their survey on digitraightness [18]

“Related work even earlier on the theory of words, specificalth mechanical or Sturmian
words, remained unnoticed in the pattern recognition comitygt

there was a need for new investigations where combinatoricsords would enrich the classical Eu-
clidean approach of digital geometry.

We revisit some classical problems in discrete geometim fias new point of view. For our purpose
the discrete plane is identified with the square @fid Z.
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2 Preliminaries

We refer to Lothaire[[20] for the basic terminology and niotatabout words on a finite alphabet.

It includes theemptyword &, length, , conjugate, factor, prefix, suffix, proper factogef monoide7*,
morphism, antimorphism, occurrences, palindrome, permmlver, primitive, reversal The set of all
factors ofw is denoted by Fattv), those of lengtm is Fack(w) = Fac{w) N.e/", Prefw) is the set of
all prefixes ofw, and the set of its palindromic factors is Ral If w= pu, with |w| = nand|p| =k,
then p~tw = wlk..n— 1] = u is the word obtained by erasing fromits prefix p. The class of a word
w is denoted[w]. Every word contains palindromes, the letters artuking necessarily part of them.
This justifies the introduction of the function LP&~* — &7* which associates to any wowdits longest
palindromic suffix LP$w). Given a total ordek on <7, thelexicographic orderings defined as usual.

Lyndon words Introduced asstandard lexicographic sequencbkyg Lyndon in 1954, Lyndon words
have several characterizations (se€ [20]). We shall ddfiema tas words being strictly smaller than any
of their circular permutations.

Definition 1. A Lyndon word le .7 " is a word such that & uv with uv € .7 implies that I< vu.

Note that Lyndon words are always primitive. The most imaatrresult about Lyndon words is the
following unique factorization theorem (see Lothairel [ZBorem 5.1.1).

Theorem 1. Any word we .7 ™ admits a unique factorization as a sequence of decreasinddrywords:
W=IPH22 I 1> D> > 1)

where n> 1 and | is a Lyndon word, for all i such thet <i <Kk.

There exist several algorithms for factorizing a wavd= wyws - - - Wy, into Lyndon words and the
more efficient are linear . An elegant one was invented by DiI]. It works by reading from left to
right, with at most & comparisons of letters (see al50][31], Section 7.4). Anathe, uses the concept
of suffix standardizatioof the wordw, and builds auffix arrayof w, which may be computed in linear
time [14]. Then the Lyndon factorization of is obtained by cuttingv just before each left-to-right
minimum of its suffix-array.

A quadtree with a radix tree structure for points in the integer plane ([9,10]) LetB ={0,1} be

the base for writing integers. WordsBt are conveniently represented in tta@lix orderby a complete
binary tree (see for instande |19/ 22]), where the I&vantains all the binary words of lengkhand the
order is given by the breadth-first traversal of the tree. iStirdyuish a natural numbere N from its
representation we write € B*. The edges are defined inductively by the rewriting sule- x- 0+ x- 1,
with the convention that 0 and 1 are the labels of, respdgtiilee left and right edges of the node having
valuex. This representation is extendedRb x B* as follows. As usual, the concatenation is extended
to the cartesian product of words by setting fery) € B* x B*, and(a,B) € Bx B

(va) ' (avﬁ) = (X' a>y'B)‘
Let x andy be two binary words having same length. Then the rule

defines &’ = (N,R), sub-graph off = (N,R, T), such that :
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(i) the root is labeledO,0);
(ii) each node (except the root) has four sons;
(i) if a node is labeledx,y) then|x| = |y|;
(iv) edges are undirected, e.g. may be followed in both toas.

By convention, edges leading to the sons have labels fronortdtered sef (0,0),(0,1),(1,0),(1,1)}.
These labels equip the quadtree withadix treestructure for Equatiori{2) implies that',y') is a son
of (x,y), if and only if

(X.Y) = (2x+a,2y+B),

for some(a, B) € B x B. Observe that any pafk,y) of nonnegative integers is represented exactly once
in this tree. Indeed, ifx| = |y| (by filling with zeros at the left of the shortest one), theisstre of pairs

of digits (the two digits in first place, the two digits in secbplace, and so on) gives the unique path in
the tree leading to this pair. Of course the root may have upree sons since no edge label€d0)

starts from the root.

0,1 (1,0) (e

(00 (01) (L0 (L) 0,0) 0,1) (1,0) (1.1)

2, ol |, Jsi oz
= b a %

a .

©0 ©1 o Ly P

o

Figure 1: The point2,1) with its neighbors.

Neighboring links [9,[10] Given(x,y) € Z2, a point(x,y’) is an&-neighborof (x,y) if there exists
€ € Z such thatX,y) = (X,y) + € = (X+ &1,y + &).

We superpose 068’ the neighboring relation given by the edgeSTafdashed lines). More precisely,
for each elementary translatienc .%, each node€2) = (x,y) is linked to itse-neighbor(® + €, when it
exists. If a levekis fixed, it is easy to construct the graph

@0 — (N®, R, T0)

such that
(i) if (x,y) € N, then|x| = y| = k;
(i) the functionsN® < N x N < B* x B* are injective;

(i) R is the radix-tree representatioriB<k x B<K) x (B x B) > B<K x B=k;

(iv) the neighboring relation i C N x (B x B) x N.
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Note that the labeling in Fid.] 1 is superfluous: each nodeesgmts indeed an integer unambiguously
determined by the path from the root using edgeR;isimilarly for the ordered edges. Moreover, if a
given subseM C N x N has to be represented, then one may trim the unnecessaryg sodhat the
corresponding grap# is not necessarily complete.

Recall that adding 1 to an integer B is easily performed by a sequential function. Indeed, every
positive integer can be written= ul'0’, wherei > 1, j > 0, withu € {e} U {ka'*lfl-o}. In other
words, 1 is the last run of 1's. The piece of code for adding 1 to an ietegitten in base 2 is

1: If j #0thenReturn W/'0i—11;

2: else Ifu= ¢ then Returnl-0';

3: elseReturn u01.1.0';
4 end if

5: endif

where 0! means to erase a 0. Clearly, the computation time of thisrighgo is proportional to the
length of the last run of 1's. Much better is achieved with theix tree structure, where, given a node
(2, itsfatheris denotedf ((2), and we writef (x,y) or f(x,y) if its label is(x,y). The following technical
lemma is a direct adaptation B x B* of the addition above.

Lemma 2. Let G¥ be the complete graph representiigh x B=* for some k> 1, £ € .#, and@ = (X, y)
be a node of K If one of the four conditions holds:

i) €=0 and x[K] =0, (i) e€=2 and xk] =1,
(i) =1 and yk] =0, (iv) €=3 and yk] =1,

then f(@) = f (@ + ¢). Otherwise, {2)+ &= f(@+¢).

The process is illustrated for case (i) in the diagram

/ L] \
on the right where the nod¢4011Qe) and (10111e) @D A o1
ooy " (oo
/

share the same father while fathers of neighboring
nodes

(¢,01011 and (e,0101]
are distinct but share the same neighboring relation.

0,1) 1,2) 0,1)

\ 10110,0101;1'*3* ~ 10111,0101}1*3-*{ 11000,01011]

A representation for paths in the square grid Here, we encode paths with the so-calledeman
chain cod¢23] based on the alphabe¥ = {0,1,2, 3}, considered as the additive group of integers
mod 4. Basic transformations off are rotationsp' : x — x+i and reflectionss; : x — i — x, which
extend uniquely to morphisms (w.r.t concatenation)%®n Given a nonempty word/ € .7*, thefirst
differences word\(w) € .#* of wis

A(W) = (Wo — W) - (W3 — W) -+« (Wi — Wp_1). (3)

One may verify that iz € .7*, thenA(wz) = A(w)A(Wnz1)A(z). Words in.Z* are interpreted as paths
in the square grid, so that we indistinctly talk of any weve: .%* as thepath w Moreover, the word
W := p?(W) is homologougo w, i.e., in direction opposite to that @f (Figure[2). A wordu € .Z* may
contain factors irs” = {02,20,13,31}, corresponding to cancelling steps on a path. Neverthetesh
word w can be reduced in a unique way to a wevd by sequentially applying the rewriting rules in
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Figure 2: (aw = 01012223211 (b) A(w) = 1311001330(c) W = 33010003232

{ur €| ue %}. Thereduced word Wof w is nothing but a word in”? = .Z*\ .Z#*¢.%*. Theturning
numbet of wis defined by (w) = (JA(W)]1 — |AW)|3) /4.

A pathw is closedif it satisfies|w|o = |w|; and|w|1 = |w|3, and it issimpleif no proper factor ofw
is closed. Aboundary words a simple and closed path, angg@yominois a subset o%? contained in
some boundary word. It is convenient to represent eachdlpathw by its conjugacy clasgw], also
calledcircular word. An adjustment is necessary to the functi@n for we take into account the closing
turn. The first differences also not&ds defined on any closed pathby setting

A([w]) =A(w) - (W —Wp),

which is also a closed word. By applying the same rewritingsua circular word/w] is circularly-
reducedto a unique word W]. If wis a closed path, then therning numbet of wis

gw) = 7 ([w]) = (|A([wW )] — [A(LwWT)l3) /4.

It corresponds to its total curvature divided . Zlearly, the turning numbe# ([w]) of a closed path
w belongs tdzZ (see[3|_6]).

The convex hull of a finite set of points The lexicographic ordeg on points ofR? or Z?2 is such
that (x,y) < (X,¥') when eitherx < X or x =X andy < y. Theconvex hullof a finite setS of points
in R? is the intersection of all convex sets containing thesetpaind is denoted by Co(8). Sbeing
finite, it is clearly a polygon in the plane whose verticese@mments ofS. Theupper convex huldf S
denoted by Conv(S), is the clockwise oriented sequence of consecutive edgésmf S) starting from
the lowest vertex and ending on the highest vertex. [dler convex hulbf S, denoted by Conv(S),

is the clockwise oriented sequence of consecutive edgesmof(§) starting from the highest vertex and
ending on the lowest vertex.

3 The Daurat-Nivat relation [4, 5]

We recall from Daurat and Nivaf [15] thatdiscretesetE is a subset oZ? and an elementi, j) € E
corresponds to a unit square with verti¢es: 3, j + 3). One set$,, = (3,3) + 22 and the salient and
reentrant points are defined as follows:

Definition 2. (Daurat and Nivat[15]).et E be a discrete set. Then
(i) Acorneris a couple(M,N) whenM € Py, andN € Z2 andM —Niis in ({£3,+3}).
(i) Acorner(M,N) is salient if N € E andM is the extremity of two edges of the border of E which

are also sides of the squahe+ [—3, 3]°.

1in [3[6], the authors introduced the notionwinding numbeiof w which is 47 (w).
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(i) A corner(M,N) is reentrantif N € E andM is the extremities of two consecutive edges of the

border E which are not sides of the squae+ [—3, 3]2.

Definition 3. (Daurat and Nivat[15]The multiset of border-salient (resp. border-reentrant)rps of a
discrete set E, denotes& ) (resp. R(E)) is the multiset whose support is included iy,Rand such
that for anyM € Py, the numbemults,gy(M) (resp. multz,)(M)) is the number oN such that
(M,N) is a salient corner (resp. reentrant corner).

In other words, in their terminology modulo a translation (t%y%), a pointM on the boundary of
a polyominoP is salient (see Figulg 3 (a)) if it belongs to the intersectib two consecutive sides of
a square belonging tB. The pointM is reentrant (see Figuié 3 (b)) if it is the intersection 0btw
consecutive edges of the contourroivhich are sides of a square not belongingPto

= r
M
@) (b)

Figure 3: Salient and reentrant points in the terminologafirat and Nivat

In our framework, a salient point of the boundawof a polyomino corresponds to a left turnXan
A(w)) and a reentrant one to a right one8(a A(w)), provided the traversal is done in a counterclockwise
manner. The Daurat-Nivat [15] states that Bisalient andR reentrant points in every polyomino are
related by the formula

S—R=4. (4)

Figure 4: A region and its four extremal points.

The fourextremalpoints are defined by the coordinatd#’ is the lowest intersection with the left
side of the bounding rectang@ N the leftmost intersection with the top sidethe highest intersection
with the right side, ané the rightmost intersection with the bottom side. Note thatfour extra salient
points can be canonically identified ¥¢, S, E andN. Then, the Daurat-Nivat relation [15] may be
restated as

Proposition 3. The turning number of a boundary word w i§{w) = £1.

Note that a boundary word is positively oriented(counterclockwise) iff its turning number is

gw) = 1.
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Remarks 1. This rather elementary geometrical property is fundaaien proving a result about
deciding whether a polyomino tiles the plane by translationot.
2. This result can be extended easily to take into accourad@al grids in which case the alphabet
Z must be extended to 6 letters, in which case the Daurat-kaation becomes (seel[4, 5] for more
details)
S—-R=6. (5)

3. The statement above includes closed paths not necgssiarjple. It cannot therefore be used to
determine whether a closed path is simple or not.

4 Path Intersection[9, 10]

Many problems in discrete geometry involve the analysihefdontour of discrete sets and many prob-
lems are solved by using linear algorithms in the length efdbntour word. However, most of the time
it is assumed that the path encoded by this word does noséteitself. Checking non intersection
amounts to check if a grid point is visited twice. Of coursee anight easily provide aw(nlogn) al-
gorithm where sorting is involved, or use hash tables progid linear time algorithm on average but
not in worst case. The underlying principle of the algoritisnto build a grapt¥ = (N,R T) whereN

is a set of nodes associated to points of the pl&wndT are two distincts sets of oriented edges. The
edges inR give a quadtree structure on the nodes while the edgé&saire links from each node to its
neighbors.

The Algorithm  First, we assume that the path is coded by a westarting at the origir{0,0), and
stays in the first quadrail x N. This means that the coordinates of all points are nonnegatiote that
in N x N, each point has exactly four neighbors with the exceptiath@brigin(0,0) which admits only
two neighbors, namely0,1) and (1,0), and the points on the half linég,0) and (0,y) with x,y > 1
which admit only three neighbors.

Now, assume that the node,y) exists and that its neighbdr + 1,y + 0) does not. Ifix| = |y| =k,
then the translatiofx, y) + (1,0) is obtained in three steps by the following rules:

1. take the edge iRto f(x,y) = (x[1..k— 1],y[1..k— 1]);
2. take (or create) the edgenfrom f(x,y) to @ = f(X,y) + (1,0);
3. take (or create) the edgeRirom (2 to @ - (0,y[k]).
By Lemmd 2, we havé®) - (0,y[K]) = (x+1,y+0), so that it remains to add the neighboring liixy) 9,

(x4 1,y+0). Then, a nonempty wordl € .%#" is sequentially processed to build the gragh and we
illustrate the algorithm on the input wom= 0011

e Initialization: one starts with the graph consisting of the 0.0 Edges in R
node (0,0) marked as visited. For convenience, then- AN ~ EdgesinT
visited nodes(0,1), (1,0), and the links from(0,0) to its

neighbors are also added. This is justified by the fact that @ l? / { (1,0)/‘7 [ Visited
the algorithm applies to nonempty words. , B [] Non-visited
Since(0,0) is an ancestor of all nodes, this ensures that (0,1 ] currentnode
ery node has an ancestor linked with its neighbors. dilre Figure 5: Initial graphé,.

rent nodeis set to(0,0) and this graph is called thaitial
graph¥;.
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e Read w = 0: this corresponds to the translatit® 0) + (1,0). A neighboring m
link labeledO starting from(0,0) and leading to the nodgl, 0) does exist, so )

the only thing to do is to follow this link and mark the no@& 0) as visited. o Y,/ (1 °"
The current node is now set t@, 0), and this new graph is calleg,. K

Figure 6: Grapt%.

e Read w = 0: this time, there is no edge it} labeledO starting from(1,0). m
Using the translation rules above, we perform: . /

(1) go back to the fathef(1,0) = (0,0): e ff’b,l) L6
(2) follow the link0to (1,0); 0.1 -
(3) add nod€2,0) ~ (1,0)-(0,0) = (10,00). ,fe’l ©.0)
Then an edge fron(1,0) to (2,0) with label 0 is added tor . Finally the node 2,0

(2,0) is marked awisited and becomes the current node. Figure 7: Grapl¥o.

e Read w = 1: this amounts to perform the translati@® 0) + (0,1). Since the 0,0
edge tof(2,0) is labeled by(0,0), we know that the second coordinate of the .-~ 4T,
current nodg2,0) is even. Therefore(2,1) and(2,0) must be siblings, thatis %"/ 4%,
f((2,0)+(0,1)) = f((2,0)). What we need to do then is : -

(1) go back to the fathef(2,0) = (1,0); a’

(2) follow the edgel if it exists; ;oo 0y
Since it is does not exist, it must be created to reach the (®d¢~ (10,01) = 2,0} L. 2,1
(1,0)-(0,1). Again an edge front2,0) to (2,1) with label 1 is added,2,1) is
marked awisitedand is now the current node.

Figure 8: Graph¥o1.

e Read w = 1: sincef((2,1)) has no neighboring link labeled by m
1, recursion is used to find (or build if necessary) the nodeeeor .-~~~
01y /1 0)\ (LY

sponding to its translation by. This leads to the creation of the /5/ b a

node(1,1) ~ (0,0) - (1,1) marked ason-visited Then, the node / ,

(2,2) ~ (1,1) - (0,0) is added, marked assited and becomes the —

current node. Note that a neighboring links betwge®) and(1, 1), 00 o ©0

(2,1) and(2,2) are added in order to possibly avoid searches. b b
20

N2.2
Figure 9: Grapt¥o11.

This algorithm is linear and we refer o [10] for details abthe complexity analysis which is rather
involved.
5 Digital convexity[12,[7]

The notion of convexity does not translate trivially, anded¢ing if a discrete region of the plane is
convex requires a deeper analysis. There are several (mdess) equivalent definitions of digital
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convexity, depending on whether or not one asks the digitatesbe connected. We say that a word
w is digitally convexif it is the boundary word of a finite 4-connected subSaif Z? such thatS =
Conv(X)NZ2. Given such a region:

N
W, o W;... W is the lowest on the Left side;
N is the leftmost on the Top side;
R RRE E E is the highest on the Right side;
L L Sis the rightmost on the Bottom side;
W, i—gi So thatw = w;WowWaWa.

We say that a worevy in .7 ™ is NW-conveiff there are no integer points between the upper convex hull
of the points{ @y (j)}j—1..w| and the pattw;. Then we have

w; is convex<= p'"Y(w;) is NW-convex

Clearly, the convexity ol requires the convexity of eaeh for i = 1,2,3,4, and we have the following
obvious property. Observe that if for somev; contains more than 2 letters, that is if Algh—(w;)) Z
{0,1}, thenw is not digitally convex.

n

Theorem 4([7]). A word v is NW-convex iff its unique Lyndon factorizatigh2f - - -1,
l; are primitive Christoffel words.

“is such that all

For example, the Lyndon factorization of the wowd=
1011010100015

v= (1) (012)*- (01)2- (0001 - (0)%,

where0, 011, 01, 0001andO0 are all Christoffel words.

This result leads to a fast optimal algorithm for checkingitdi convexity of a boundary word. It is
based on the linear time algorithms for computing the Lynfdatorization of the contour word and for
the recognition of Christoffel factors which digital linegments. By avoiding arithmetical computations
the algorithm is much simpler to implement and much fast@ractice (se€ [7] for more details).

It is worth noting that many results about Sturmian wordsehbgen obtained by using geometrical
properties. This close relation between the two domairsesaa number of combinatorial problems
such as enumeration of convex words of given length [30]. tAeointeresting property is the factorial
closure of digitally convex words: while a geometrical prisorather easy to obtain, it begs for a purely
combinatorial proof. A formal language characterizatismalso a challenge.

6 Tilings

Tilings appeared as one of the archetypes of the closeaesdtip between art and mathematics, and are
present in human history under various representations.b&hutiful book of Griinbaum and Shephard
[17] contains a systematic study of tilings, presenting mper of challenging problems (see also [2]
for related work). For instance, the problem of designingetiicient algorithm for deciding whether a
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given polygon tiles the plane becomes more tractable wharigied to polyominoes, that is, subsets of
the square lattic&? whose boundary is a non-crossing closed path. Indeed, alsilgficient condition

is provided by theConway criterionin [32], one of its consequences is that the only objects tileat
the plane by translation in two directions are generaliratiof parallelograms and parallel hexagons,
hexagons whose opposite sides are equal and parallel[ (2e@.[225 for more details). One may
consider these tiles are continuous deformations of eftfeunit squareor theregular hexagon

Tiling the plane by translating a single polyomino ([13,[8]) Such a polyomino is calleexactin
[33] and Beauquier and Nivdtl[1] characterized them by shgvtihat their boundary word satisfies the
equationb(P) = X-Y -Z-X-Y - Z, where at most one of the variables is empty and wki¢ee p2(W).
This condition is referred to as the BN-factorization. Araeixpolyomino is said to be hexagonif
none of the variableX, Y, Z is empty and asquareif one of them is so. While decidability was
already established in [33], recently/Zgnlog®n) was designed for deciding if a womd € .7 tiles the
plane by translation [8, 11]. It uses several data strusttinat include radix-trees, for checking that
w is a closed non crossing path [10], and suffix-trees for mglda tricky algorithm for checking the
BN-factorization [13].

Square tiles In this case there is a linear algorithm for deciding if a wré square [8]. Moreover,

it turns out that a square has at most two distinct squargsl{26,/27], which means that the BN-
factorizations are distinct and therefore not conjugatentivdted by the attempt of characterizing the
square tiles, the study of equations of the foBAB = X YXY lead to a subset of solutions in bijec-
tion with the BN-factorizations. It turns out that the sabduis are strongly related to local periodicity
involving palindromes and conjugate words|[25] 29]. Theyoalive some insight on their shape since
palindromes represent symmetric sides. An interestingigaihiat some infinite families of such tiles,
namely the Fibonacci tiles have a fractal characteristitae connected with some problems in number
theory [28], while Christoffel words yield another infinitamily of squares [24].

Remark Again a number of problems are raised by these connectiang éfe enumeration and gen-

eration of tiling polyominoes. It turns out that the profetyof a square is the basic one cell polyomino,
and it suffices to replace each pair of sides by homologousspdt remains only to check that theses
paths do not intersect, which is achieved in linear time kban the optimal algorithm we have. For the
generation of double square tiles, the prototype is thesquo/omino, and their generation is a bit more
involved. The case of hexagon grids deserves also soméiaittds].
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