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These are brief notes to accompany the talk on Ratner’s Theorems, as part of the Dynamics working
seminar in Herbstemester 2024.

Basically everything here is taken (almost verbatim) from the book of Manfred Einsiedler and
Thomas Ward [2], all mistakes here are of course introduced by the author and the associated
blame lies solely with him.

Most noticeable is the lack of diagrams to help explain the arguments (especially Lemma 2.3 and
Proposition 2.6), for these look at [2, Figures 6.2 and 6.3].
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1 Introduction

Let G be a connected Lie Group, and Γ ≤ G a lattice1, and consider the homogeneous space
X = Γ/G.

We aim to study measures on X that are invariant under certain types of flows. In particular, we
will need to study orbits of different (but nearby) points in X under this flow.

Suppose that our flow is given by a one-parameter subgroup B = {bt ∣ t ∈ R}, and consider the
orbits of x and y = ε ⋅ x (where ε is small, and is the local displacement between x and y). Then

bt ⋅ y = bt ⋅ (ε ⋅ x) = btεb−1t ⋅ (bt ⋅ x) (⋆)

Of course btεb
−1
t might not be the smallest displacement between bt ⋅ y and bt ⋅ x, but if ε is small

1For the measure classification theorem it will suffice to take Γ discrete, or even closed, but we won’t concern
ourselves with this.
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enough this calculation can be repeated several times. So it makes sense to study the conjugation
action of our flow on G, or equivalently the adjoint representation Ad ∶ G→ GL(g).

Recall we also have the adjoint action of the Lie algebra, which is related to Ad via log and exp,
which are local diffeomorphisms. If Adbt has only 1 as an eigenvalue, then N = log(I + (bt − I))
is nilpotent, and exp(N) is a polynomial. So we might hope the dynamics in this case will be
particularly simple to understand in this setting.

Definition 1.1. An element u ∈ G is unipotent if all the eigenvalues of Adu are +1 (if G is linear
we simply ask that the eigenvalues of u are +1). A unipotent flow is a one-parameter subgroup of
unipotent elements U = {us ∣ s ∈ R}.

We now recall from last time the following statements, collectively known as Ratner’s Theorems,
proven in [3, 4, 5]. In all that follows X = Γ/G where Γ is a lattice, and U = {us ∣ s ∈ R} is a
unipotent flow.

Theorem 1.2 (Dani’s conjecture; Ratner’s measure classification). Every U -invariant ergodic prob-
ability measure µ on X is algebraic.

That is, there exists a closed, connected, unimodular subgroup U ≤ L ≤ G such that µ is the L-
invariant normalised probability measure (that is, the normalised Haar measure mL⋅x0) on a closed
orbit L ⋅ x0 (for any x0 ∈ supp(µ)).

Theorem 1.3 (Ratner’s equidistribution theorem). For any x0 ∈X there exists a closed connected
unimodular subgroup U ≤ L ≤ G such that:

(i) L ⋅ x0 is closed with finite L-invariant volume;

(ii)
1

T ∫
T

0
f(us ⋅ x0)dsÐ→

1

vol(L ⋅ x0) ∫L⋅x0
f dmL⋅x0 as T →∞.

Theorem 1.4 (Ranghunathan’s conjecture; Ratner’s orbit closure theorem). Let H ≤ G be a
subgroup generated by unipotent flows. Then for any x0 ∈X the orbit closure is algebraic.

That is, there exists some closed connected unimodular group H ≤ L ≤ G such that

H ⋅ x0 = L ⋅ x0

and L ⋅ x0 supports a finite L-invariant measure.

Our aim today is to prove a special case of the measure classification theorem.

2 First ideas in unipotent dynamics

We have our measure µ, and we want it to be invariant under some closed subgroup L ≤ G. What
should this L be?

A reasonable guess (really, the only guess) is to consider Stab(µ), or even better L ∶= Stab(µ)○.
Clearly U ≤ L, L is closed, and any element close enough to the identity in Stab(µ) is in fact in L.
To see this last point recall that exp ∶ Lie(L) → Stab(µ) is a local diffeomorphism whose image lies
in (in fact generates) L.

We want to show that µ is supported on a single orbit of L, which we will achieve indirectly — if µ
is not supported on a single orbit of a particular subgroup H which leaves the measure invariant,
then we show that we can find arbitrarily small elements ∉H that also stabilise µ. For L, this will
lead to a contradiction.
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In the setting of the measure classification theorem this is all we need, thanks to the following
result:

Lemma 2.1. Let X = Γ/G be a quotient of a Lie group G by a discrete subgroup Γ. Let H be
a connected subgroup of G, and let µ be an H-invariant and ergodic probability measure. If µ is
concentrated on a single orbit of Stab(µ), then in fact µ is the Haar measure on a closed orbit of
Stab(µ)○.

It is a general fact that finite volume orbits are closed, see for example [2, Proposition 1.22].

Observe now that if there is some x0 ∈ X and δ > 0 such that µ(Bδ
L ⋅ x0) > 0, by ergodicity of µ we

must have that µ(L ⋅ x0) = 1, and by lemma 2.1 we would obtain the measure classification. Hence
we will assume that µ(L ⋅ x) = 0 for all x.

Now we turn to obtaining the additional invariance we seek.

2.1 Centraliser gives invariance

In some very special cases the additional invariance comes almost for free.

Definition 2.2. x ∈X is generic with respect to µ and U = {us ∣ s ∈ R} if

1

T
∫

T

0
f(us ⋅ x)dsÐ→ ∫

X
f dµ

as T →∞ for all Cc(X).

The pointwise ergodic theorem and separability of C0(X) tell us that µ-a.e. x ∈X is generic if and
only if µ is invariant and ergodic under U .

Lemma 2.3 (Centraliser lemma). If x, y = h ⋅ x are generic for µ and

h ∈ CG(U) ∶= {h ∈ G ∣ gu = ug for all u ∈ U}

then h preserves µ.

Proof. We know that
1

T
∫

T

0
f(us ⋅ y)dsÐ→ ∫

X
f dµ

for any f ∈ Cc(X) as y is generic. We can also calculate

1

T
∫

T

0
f(us ⋅ y)ds =

1

T
∫

T

0
f(us ⋅ (h ⋅ x))ds

= 1

T
∫

T

0
f(h ⋅ (us ⋅ x))ds

= 1

T
∫

T

0
f ○Lh(us ⋅ x)ds

Ð→ ∫
X
f ○Lh dµ

So µ is h-invariant.
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2.2 Polynomial divergence leading to invariance

So far we haven’t used the fact that U is unipotent, so recall the calculation (⋆). In fact, Adu(s) is
now a (matrix valued) polynomial in s.

Given nearby points x and y = ε ⋅ x, let v = log ε, and consider the g-valued polynomial Adu(s)(v).
If ε is very small, this polynomial is close to zero in the space of all polynomials. However, we can
speed up our flow by choosing a large T and considering the polynomial

p(r) = Adu(rT )(v)

If our original polynomial is non-constant (equivalently, ε ∉ CG(U)), we can choose T so that the
polynomial p belongs to a compact set of polynomials not containing the zero polynomial. In fact
if T > 0 is the smallest number with ∣∣Adu(T )(v)∣∣ = 1, then

sup
r∈[0,1]

∣∣p(r)∣∣ = 1

Moreover, p is a polynomial of bounded degree.

Remark 2.4. This behaviour (that accelerating a polynomial is again a polynomial from the same
finite dimensional space) is specific to polynomials, and hence to unipotent flows. By contrast,
diagonalisable flows give exponential maps — accelerating these change the base of the exponential
functions.

We will use this polynomial divergence to obtain more invariance, but first we need a uniform
version of genericity.

Definition 2.5. A set K ⊂ X is a set of uniformly generic points if for any f ∈ Cc(X) and ε > 0
there is some T = T0(f, ε) with

∣ 1
T
∫

T

0
f(us ⋅ x)ds − ∫

X
f dµ∣ < ε

for all T ≥ T0 and all x ∈K.

Let us first see why his leads to more invariance, before finding large sets of uniformly generic
points.

Proposition 2.6 (Polynomial divergence leads to invariance). Suppose that (xn) and (yn) are two
sequences of uniformly generic points with

(i) xn → z, yn → z;

(ii) yn = εn ⋅ xn with εn → I and εn ∉ CG(U) for all n ≥ 1.

Let vn ∶= log(εn) and consider the polynomials

pn(r) ∶= Adu(Tnr)(vn)

where we’ve picked the speeding-up parameter Tn →∞ such that

sup
r∈[0,1]

∣∣pn(r)∣∣ = 1

for each n. Suppose that pn(r) → p(r) for all r ∈ [0,1] where

p ∶ R→ g

is a polynomial with entries in g. Then µ is preserved by exp(p(r)) for all r ∈ R≥0.
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Remark 2.7. The assumption that εn ∉ CG(U) is unproblematic, since if some εn ∈ CG(U) we might
be able to apply the centraliser lemma. Similarly the assumption that the polynomials converge is
mild as they lie in a compact subset of a finite-dimensional space, so we may pass to a convergent
subsequence.

Proof. Fix some r0 ∈ R>0, f ∈ Cc(X), and ε > 0. Since f is uniformly continuous there is some
δ = δ(f, ε) > 0 with

d(h1, h2) < δ Ô⇒ ∣f(h1 ⋅ x) − f(h2 ⋅ x)∣ < ε

for all x ∈X. Furthermore choose κ > 0 such that

d(expp(r), expp(r0)) < δ/2

for all r ∈ [r0 − κ, r0]. Then there is an N such that we also have

d(exppn(r), expp(r0)) < δ (⋆⋆)

for all n ≥ N and r ∈ [r0 − κ, r0].

Since the xn are uniformly generic we have that

1

r0Tn
∫

r0Tn

0
f(us ⋅ xn)dsÐ→ ∫

X
f dµ

and
1

(r0 − κ)Tn
∫
(r0−κ)Tn

0
f(us ⋅ xn)dsÐ→ ∫

X
f dµ

(both as n → ∞). Taking the correct linear combination (with κ > 0 fixed) and replacing f by
f ○Lexp(p(r0)) we get

1

κTn
∫

r0Tn

(r0−κ)Tn

f ○Lexp(p(r0))(us ⋅ xn)dsÐ→ ∫
X
f ○Lexp(p(r0)) dµ.

By the same argument we also have

1

κTn
∫

r0Tn

(r0−κ)Tn

f(us ⋅ yn)dsÐ→ ∫
X
f dµ.

Using our definition of vn and pn we have that

us ⋅ yn = us exp(vn) ⋅ xn
= exp(Adus(vn))(us ⋅ xn)
= exp(pn(s/Tn))(us ⋅ xn)

for all s ∈ R.

Restricting now to s ∈ R with s
Tn
∈ [r0 − κ, r0], together with (⋆⋆), we deduce that

d(us ⋅ yn, expp(r0)us ⋅ xn) < δ

and so
∣f(us ⋅ yn) − f(expp(r0)us ⋅ xn)∣ < ε
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for every s ∈ [(r0 − κ)Tn, r0Tn]. Using this estimate in the integrals above gives

∣ 1

κTn
∫

r0Tn

(r0−κ)Tn

f ○Lexp(p(r0))(us ⋅ xn)ds −
1

κTn
∫

r0Tn

(r0−κ)Tn

f(us ⋅ yn)ds∣ < ε

and so

∣ ∫
X
f ○Lexpp(r0) dµ − ∫

X
f dµ∣ ≤ ε

Since this holds for any ε > 0 and f ∈ Cc(X) we have invariance of µ under expp(r0). Since r0 > 0
was arbitrary, the result follows.

2.3 Large sets of uniformly generic points

Now back to the problem of finding large sets of uniformly generic points.

Lemma 2.8 (Large sets of uniformly generic points). Let µ be an invariant and ergodic probability
measure on X for the action of a one-parameter flow {us ∣ s ∈ R}. For any ρ > 0 there is a compact
K ⊂X with µ(K) > 1 − ρ consisting of uniformly generic points.

Proof. Let D = {f1, f2, . . .} ⊂ Cc(X) be countable and dense. Then by the pointwise ergodic
theorem for every fℓ ∈D we have

1

T
∫

T

0
fℓ(us ⋅ x)dsÐ→ ∫

X
fℓ dµ

for µ-a.e. x.

Equivalently for every ε > 0 we have

µ({x ∈X ∣ sup
T>T0

∣ 1
T
∫

T

0
fℓ(us ⋅ x)ds − ∫

X
fℓ dµ∣ > ε}) Ð→ 0

as T0 →∞. Now choose for every fℓ ∈D and for every ε = 1
n a time Tℓ,n so that

µ({x ∈X ∣ sup
T>Tℓ,n

∣ 1
T
∫

T

0
fℓ(us ⋅ x)ds − ∫

X
fℓ dµ∣ >

1

n
}) < ρ

2ℓ+n

Let K ′ ⊂ X be the complement of the union of these sets, so that µ(K ′) > 1 − ρ by construction.
It is clear that the points of K ′ are uniformly generic for all f ∈ D, and by density of D ⊂ Cc(X)
in the uniform norm this extends to all functions. Finally, we may choose a compact K ⊂K ′ with
µ(K) < 1 − ρ, by regularity of µ.

3 Semisimple groups

We are studying the adjoint representation, and so we might hope to deduce invariance when
the representation theory of our acting group has good properties. In particular, as noticed by
Einsiedler in [1], in the case our acting group is semisimple with no compact factors the proof
simplifies. Here, the Mautner phenomenon (as explained by Konstantin two weeks ago) can be
used to find an ergodic unipotent flow.
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Theorem 3.1 (Ratner measure classification; semisimple case, [1]). Let G be a connected Lie group,
Γ ≤ G discrete, and H ≤ G semisimple without compact factors. Suppose that µ is an H-invariant
and ergodic probability measure on X. Then µ is algebraic.

As indicated before, set L ∶= Stab(µ)○ with Lie algebra l. We need to show that µ is concentrated
on a single L-orbit (and then use Lemma 2.1), let us assume this is not the case. By ergodicity of
µ, every L-orbit must have measure 0 since H ≤ L.
Claim 1 (Reduce to SL(2,R) case). H contains a subgroup that is locally isomorphic to SL(2,R)
which acts ergodically on X with respect to µ.

Proof. By assumptionH is an almost direct product of simple Lie groups, and each of these contains
a subgroup that is locally isomorphic to SL(2,R), so consider the diagonally embedded group. It
projects non-trivially to each factor, and by the Mautner phenomenon for H acts ergodically.

So we can assume that H itself is locally isomorphic to SL(2,R). Let U ≤ SL(2,R) be the upper
unipotent group, by the Mautner phenomenon again U acts ergodically with respect to µ.

Since SL(2,R) is completely reducible, the H-invariant subspace l ≤ g (with the adjoint action) has
an H-invariant complement V ≤ g.

Now let K ⊂ X be a set with µ(K) > 0.99 consisting of uniformly generic points for U ≤ H (by
lemma 2.8).

Claim 2. There are points xn, yn ∈K with yn = gn ⋅ xn such that

(i) gn ≠ I, gn → I as n→∞;

(ii) gn ∈ exp(V ) (that is, the gn belong in the transverse direction to L).

We will consider the polynomials

pn(r) = Adu(Tnr)(log gn) (†)

(or a convergent subsequence of these) and apply Proposition 2.6. Since V is H-invariant all these
polynomials, and hence their limit p ∶ R → g takes values in V . Hence µ is preserved by expp(r)
for all r > 0, which contradicts the definition of L = Stab(µ)○.

Let BL
δ be a small open ball in L around the identity, and define

Y = {x ∈X∣ ∫
BL

δ

χK(ℓ ⋅ x)dmL(ℓ) > 0.9mL(BL
δ )}

Claim 3. µ(Y ) > 0.9.

Proof. We calculate

µ(X/Y ) = µ({x ∈X∣ ∫
BL

δ

χX/K(ℓ ⋅ x)dmL(ℓ) ≥ 0.1mL(BL
δ )})

≤ 1

0.1mL(BL
δ )
∫
X
∫
BL

δ

χX/K(ℓ ⋅ x)dmL(ℓ)dµ

= 1

0.1mL(BL
δ )
∫
BL

δ

∫
X
χX/K(ℓ ⋅ x)dµdmL(ℓ)

= µ(X/K)
0.1

< 0.01

0.1
= 0.1
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and hence µ(Y ) > 0.9.

Claim 4. For any nearby points x, y ∈ Y we can find ℓx, ℓy ∈ BL
δ such that

(P1) x′ = ℓx ⋅ x ∈K;

(P2) y′ = ℓy ⋅ y ∈K;

(P3) y′ = exp(v) ⋅ x′ with v ∈ V .

Proof. By definition of Y , at least 90% of all ℓx ∈ BL
δ satisfy (P1), and similarly 90% of ℓy ∈ BL

δ

satisfy (P2). However, we would like to do this while ensuring (P3) holds.

If δ is sufficiently small then

φ ∶ BL
2δ ×B

V
2δ(0) → G

(ℓ, v) ↦ ℓ exp v

is a diffeomorphism onto an open neighbourhood I ∈ O ⊂ G (using the inverse mapping theorem).

Pick g ∈ BG
κ chosen with y = g ⋅x, then we want to find ℓx, ℓy ∈ BL

δ with gℓ−1x = ℓ−1y exp v, which would

give (P3). Indeed, using the local diffeomorphism above, if κ is sufficently small then gℓ−1x ∈ O and
we can define

(ℓy, v) = φ−1(gℓ−1x ) (‡)

Define the map
ϕ ∶ BL

δ → BL
2δ ∶ ℓx ↦ ℓy

with ℓy as in (‡). This is a smooth map that depends on the parameter g ∈ BG
κ , and for κ

sufficiently small is close to the identity in the C1-topology. Therefore ϕ doesn’t distort thw chosen
Haar measure of L much, and sends BL

δ into a ball around the identity that isn’t much bigger than
BL

δ .

In other words, for κ sufficiently small,

mL(ϕ({ℓx ∈ BL
δ ∣ ℓx ⋅ x ∈K}) ∩B

L
δ ) > 0.9mL(ϕ({ℓx ∈ BL

δ ∣ ℓx ⋅ x ∈K}))
> 0.8mL({ℓx ∈ BL

δ ∣ ℓx ⋅ x ∈K})
> (0.8) (0.9)mL(BL

δ ) > 0.7mL(BL
δ )

Together with
mL(ϕ({ℓx ∈ BL

δ ∣ ℓx ⋅ x ∈K})) > 0.9mL(BL
δ )

we see that there are many points ℓx ∈ BL
δ satisfying (P1) such that ℓy defined using (‡) also satisfies

(P2).

Proof of claim 2. Let z ∈ Stab(µ)∩Y . Then for every κ = 1
n there exist xn = z, yn = gn ⋅xn ∈ Y with

gn ∈ BG
1/n/L

Applying claim 4 above to xn, yn for n large enough we get

x′n, y′n = exp vn ⋅ x′n ∈K, vn ∈ V, vn ≠ 0, vn → 0
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Proof of Theorem. There are two cases to consider

• If vn is in the eigenspace of Adus for infinitely many n (let’s assume for all n) then apply the
centraliser lemma to deduce that exp(vn) preserves µ.

By passing again to a subsequence, we may assume that vn
∣∣vn∣∣
→ w in the unit sphere of V .

Since Stab(µ) is closed, exp(tw) ∈ Stab(µ) for all t. But since V is a linear complement to
the Lie algebra of L = Stab(µ)○, this is a contradiction.

• Assume vn is not in an eigenspace for any n ≥ 1 (delete finitely many terms), define Tn so
that the polynomials in † have norm one. By compactness a sequence converges to p say,
and by Proposition 2.6 µ is preserved by expp(t) for all t > 0. p takes values in V , again
contradicting the definition of V .
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