Serie 9

1. Berechnen Sie mit Hilfe des Satzes von Fubini die folgenden Integrale:

a)
$$\int_{Q} y \sin(xy) d\mu, \qquad Q = [0, 1] \times [0, \pi/2];$$

b)
$$\int_{Q} \frac{x^2 z^3}{1 + y^2} d\mu, \qquad Q = [0, 1] \times [0, 1] \times [0, 1];$$

c)
$$\int_{Q} \frac{2z}{(x+y)^2} d\mu, \qquad Q = [1,2] \times [2,3] \times [0,2];$$

d)
$$\int_{Q} \sin(x + y + z) d\mu, \qquad Q = [0, \pi] \times [0, \pi] \times [0, \pi];$$

e)
$$\int_{Q} \frac{y}{\sqrt{4 - x^{2}y^{2}}} d\mu, \qquad Q = [0, 1] \times [0, 1].$$

2. Der *n-dimensionale Standardsimplex* Σ_n ist gegeben durch

$$\Sigma_n := \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n; \ x_i \ge 0, \sum_{i=1}^n x_i \le 1 \right\}.$$

Berechnen Sie

- a) das Volumen von Σ_n .

 Hinweis: Deuten Sie für $n \geq 2$ das Volumen als Integral der Funktion $f(x_1, x_2, \ldots, x_{n-1}) := 1 \sum_{i=1}^{n-1} x_i$.
- b) das Integral

$$\int_{\Sigma_n} \exp\left(\sum_{i=1}^n x_i\right) d\mu.$$

- **3.** Betrachten Sie den Rotationskörper $\Omega = \{(x, y, 0) \in [a, b] \times [0, \infty) \times \{0\} ; y \leq f(x)\}$, der durch Rotation einer stetigen Funktion $f : [a, b] \to [0, \infty)$ um die x-Achse entsteht.
 - a) Ist Ω Jordan-messbar?

- b) Bestimmen Sie das Volumen $\mu(\Omega)$.
- 4. Bestimmen Sie das Volumen $\mu(B)$ der folgenden Menge (Skizze!):

$$B:=\left\{(x,y,z)\in\mathbb{R}^3;\; x\geq 0,\; y\geq 0,\; z\geq 0,\; x+y+z\leq 2,\; x^2+y^2\leq 1\right\}.$$

5. Kehren Sie in den folgenden Beispielen die Integrationsreihenfolge um:

a)
$$\int_{-1}^{2} \int_{-x}^{2-x^2} f(x,y) \, dy \, dx$$
,

b)
$$\int_0^2 \int_{y^3}^{4\sqrt{2y}} f(x,y) \, dx \, dy,$$

c)
$$\int_{-4}^{4} \int_{-\sqrt{4-|z|}}^{\sqrt{4-|z|}} \int_{-\sqrt{4-y^2-|z|}}^{\sqrt{4-y^2-|z|}} f(x,y,z) \, dx \, dy \, dz$$
.

- **6.** Finden Sie die globalen Extrema der Funktion f(x, y, z) = x + y + z unter den Nebenbedingungen $x^2 + y^2 + z^2 = 1$ und $z \ge \frac{1}{2}$.
- 7. Multiple Choice Aufgabe: Das Integral der Funktion $f(x,y) := \sqrt{4-x^2-y^2}$ über die Menge $B := \{(x,y) \, | \, x,y \geq 0, x^2+y^2 \leq 4 \}$ ist:

$$\bigcirc \int_B f \, d\mu = \frac{2}{3}\pi$$

$$\bigcirc \int_B f \, d\mu = \frac{4}{3}\pi$$

$$\bigcirc \int_B f \, d\mu = \frac{16}{3} \pi$$

$$\bigcirc \int f \, d\mu = 8\pi$$

$$\bigcirc \int_B f \, d\mu = \frac{32}{3}\pi$$

8. Programmieraufgabe in SAGE: Verwenden Sie SAGE, um die Integrationsbereiche in Aufgabe 5 zu visualisieren.

Abgabe: Montag 13. Mai 2013.