Exercise Sheet 1

1. Fix $0<\alpha<1$. The aim of this exercise is to show that

$$
\begin{equation*}
S_{\alpha}(X)=\sum_{\substack{n \leq X \\ P_{-}(n)>X^{\alpha}}} 1 \sim c(\alpha) \frac{X}{\log X} \quad \text { as } X \rightarrow \infty \tag{1}
\end{equation*}
$$

where $P_{-}(n)$ denotes the smallest prime divisor of n.

1. Define $\left.\left.I_{n}=\right] \frac{1}{n+1}, \frac{1}{n}\right]$ and $\left.\left.J_{n}(X)=\right] X^{\frac{1}{n+1}}, X^{\frac{1}{n}}\right]$. Show that there exists $\beta(p)$ such that $\beta(p) \in I_{n}$ whenever $p \in J_{n+1}(X)$ and such that

$$
S_{\alpha}(X)=\sum_{X^{\alpha}<p \leq X} 1+\sum_{X^{\alpha}<p \leq X^{\frac{1}{2}}} S_{\beta(p)}\left(\frac{X}{p}\right)
$$

2. Show that for $\alpha \in I_{1}$,

$$
S_{\alpha}(X) \sim \frac{X}{\log X} \quad \text { as } X \rightarrow \infty
$$

For the subsequent steps, it actually turns out that we need the stronger statement

$$
S_{\alpha}(X)=\frac{X}{\log X}-\frac{X^{\alpha}}{\alpha \log X}+O\left(\frac{X}{(\log X)^{2}}\right)
$$

Prove it!
3. We prove (1) by induction. It is better, not to work with " \sim ", but instead with an error term of the form $O\left(\frac{X}{(\log X)^{2}}\right)$. Suppose (1) holds for all $\alpha \in I_{k}, k<n$. Use two times integration by parts, to show that for all $\alpha \in I_{n}$

$$
S_{\alpha}(X)=c(\alpha) \frac{X}{\log X}+\text { some error term }
$$

Hint: (i) Note that $c(\alpha)$ is bounded and continuously differentiable on any of the intervals I_{k}. (ii) After the first integration by parts, separate the expression you get into a main term and an error term, estimate the error term and apply integration by parts a second time to the main term.
2. Fix a positive integer k. The aim of this exercise is to show that

$$
\begin{equation*}
\tau_{k}(X)=\sum_{\substack{n \leq X \\ \Omega(n)=k}} 1 \sim \frac{1}{(k-1)!} \frac{X}{\log X}(\log (\log (X)))^{k-1} \quad \text { as } X \rightarrow \infty \tag{2}
\end{equation*}
$$

where $\Omega(n)$ denotes the number of prime factors of n counted with multiplicities.

1. Define

$$
\Pi_{k}(X)=\sum_{\substack{\left(p_{1}, \ldots, p_{k}\right) \\ p_{1} p_{2} \ldots p_{k} \leq X}} 1
$$

where the sum is over all ordered k-tuples of primes $\left(p_{1}, \ldots, p_{k}\right)$ such that $p_{1} p_{2} \ldots p_{k} \leq$ X. First, prove that

$$
\begin{equation*}
\Pi_{k}(X) \sim k \frac{X}{\log X}(\log (\log (X)))^{k-1} \tag{3}
\end{equation*}
$$

implies (2). To do so, let

$$
\pi_{k}(X)=\sum_{\substack{n \leq X \\ n \text { squarefree } \\ \Omega(n)=k}} 1
$$

and show that

$$
\begin{equation*}
k!\pi_{k}(X) \leq \Pi_{k}(X) \leq k!\tau_{k}(X) \quad(k \geq 1) \tag{4}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\tau_{k}(X)-\pi_{k}(X) \leq \Pi_{k-1}(X) \quad(k \geq 2) \tag{5}
\end{equation*}
$$

Now, deduce (2) by using (3) in (4) and (5).
2. It remains to prove (3). Prove (3) for $k=1$ (by using the prime number theorem). Define

$$
\vartheta_{k}(X)=\sum_{\substack{\left(p_{1}, \ldots, p_{k}\right) \\ p_{1} p_{2} \ldots p_{k} \leq X}} \log \left(p_{1} p_{2} \ldots p_{k}\right)
$$

By applying summation by parts to $\vartheta_{k}(X)$ as well as using the fact that $\Pi_{k}(t)=$ $\mathcal{O}(t)$, show that

$$
\Pi_{k}(X)=\frac{\vartheta_{k}(X)}{\log X}+\mathcal{O}\left(\frac{X}{\log X}\right)
$$

Convince yourself that

$$
\begin{equation*}
\vartheta_{k}(X) \sim k X(\log (\log (X)))^{k-1} \quad(k \geq 2) \tag{6}
\end{equation*}
$$

implies (3) for $k \geq 2$.
3. So, we have to verify (6). Prove that

$$
k \vartheta_{k+1}(X)=(k+1) \sum_{p \leq X} \vartheta_{k}\left(\frac{X}{p}\right) \quad(k \geq 1)
$$

Set $L_{0}(X)=1$ and

$$
L_{k}(X)=\sum_{\substack{\left(p_{1}, \ldots, p_{k}\right) \\ p_{1} \ldots p_{k} \leq X}} \frac{1}{p_{1} \ldots p_{k}},
$$

and write

$$
f_{k}(X)=\vartheta_{k}(X)-k x L_{k-1}(X)
$$

Show that (6) follows from

$$
\begin{equation*}
f_{k}(X)=o\left(X(\log (\log (X)))^{k-1}\right) \quad(k \geq 1) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{k}(X) \sim(\log (\log (X)))^{k} \quad(k \geq 1) \tag{8}
\end{equation*}
$$

4. Equation (7) can be proven by induction. Verify it for $k=1$. Use

$$
\begin{equation*}
k f_{k+1}(X)=(k+1) \sum_{p \leq X} f_{k}\left(\frac{X}{p}\right) . \tag{9}
\end{equation*}
$$

and the fact that

$$
\begin{equation*}
\sum_{p \leq X} \frac{1}{p}=\log (\log (X))+\mathcal{O}(1) \tag{10}
\end{equation*}
$$

to prove (7) by induction for all $k \geq 2$.
5. We still have to check (8). Demonstrate that

$$
\left(\sum_{p \leq X^{\frac{1}{k}}} \frac{1}{p}\right)^{k} \leq L_{k}(X) \leq\left(\sum_{p \leq X} \frac{1}{p}\right)^{k}
$$

and use this as well as (10) to prove (8).
Challenge problem: Prove (3) directly by induction, similar to the proof in exercise 1.
3. Consider an infinite sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of integers such that $a_{1}<a_{2}<a_{3}<\ldots$. Further, suppose that there exists an integer $N_{0}>0$ and a constant $c>0$ such that for all $N>N_{0}$, there is an $i \in \mathbb{N}$ such that $N^{c}<a_{i}<(N+1)^{c}-1$. Show that then there is a real number A such that

$$
\left\lfloor A^{c^{n}}\right\rfloor \in \mathcal{A}=\left\{a_{i} \mid i \in \mathbb{N}\right\}
$$

for all $n \in \mathbb{N}$.
To prove this, you may proceed in the following way:

1. Show that there is a subsequence $\left(b_{m}\right)_{m \in \mathbb{N}}$ of $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that

$$
b_{n}^{c}<b_{n+1}<\left(b_{n}+1\right)^{c}-1 .
$$

2. Define the sequences $u_{m}=b_{m}^{c^{-m}}$ and $v_{m}=\left(b_{m}+1\right)^{c^{-m}}$. Show that $u_{m}<v_{m}$, $u_{m}<u_{m+1}$ and $v_{n}>v_{n+1}$. Deduce from this that the limit

$$
A=\lim _{m \rightarrow \infty} u_{n}
$$

exists.
3. Conclude that $\left\lfloor A^{c^{m}}\right\rfloor \in \mathcal{A}$ for all m, by showing that $b_{m}<A^{c^{m}}<b_{m}+1$.
4. As was mentioned in the lecture, M. N. Huxley ${ }^{1}$ has shown that for all $\epsilon>0$,

$$
p_{n+1}-p_{n}<K p_{n}^{7 / 12+\epsilon}
$$

where p_{n} denotes the nth prime number and K is some fixed positive integer. Set $N_{0}=K^{2}$ (you also can do better if you like). Use the result of Huxley to prove that for all $N>N_{0}$, there exists a prime p such that

$$
N^{3}<p<(N+1)^{3}-1 .
$$

Using this, conclude that there exists a real number A such that $\left\lfloor A^{3^{n}}\right\rfloor$ is prime for all $n \in \mathbb{N}$.

Course website: http://www.math.ethz.ch/education/bachelor/lectures/fs2013/math/primes2/

