
Serie 8

- 1. Betrachten Sie für a>0 den Körper K_a , der vom Paraboloid $x^2+y^2=2az$ und der Kugel $x^2+y^2+z^2=3a^2$ begrenzt wird, und dessen Dichte durch $\varrho(x,y,z)=x^2+y^2+z^2$ gegeben ist. Berechnen Sie die Masse von K_a .
- 2. Bestimmen Sie die globalen Extrema der Funktion

$$f(x,y) = x^2 + y^2 - 8x - 6y$$

auf dem Bereich B der untenstehenden Figur.

3. 1) Seien $F, G : \mathbb{R} \to \mathbb{R}$ glatte Funktionen. Jede Funktion der Form u(x,t) = F(x+ct) + G(x-ct) ist eine Loesung der eindimensionalen Wellengleichung

$$u_{tt} - c^2 u_{xx} = 0$$

2) Zeigen Sie dass die Funktion u(x,t) gegeben durch

$$u(x,t) = \frac{1}{2} \left(f(x+ct) + f(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$$

eine Lösung der eindimensionalen Wellengleichung ist, die die Anfangsbedingungen

$$u(x,0) = f(x), \quad u_t(x,0) = g(x)$$

erfüllt.

4. Der Direktor einer Klinik hat ein jährliches Budget von 600.000 Chf. Er möchte sein Budget so einteilen , dass die Anzahl Patientenbezuche, V, maximiert wird. V ist gegeben durch

$$V = 1000D^{0.6}N^{0.3}$$
.

wobei N die Anzahl Pflegepersonen und D die Anzahl Ärzte bezeichnet. Die Ärzte haben ein Lohn von 40000 Chf und das Pflegepersonal verdient 10000 Chf.

- a) Stellen Sie das Optimierungsproblem des Direktors auf.
- b) Beschreiben Sie in Worten welche Bedingungen $\frac{\partial V}{\partial D}$ und $\frac{\partial V}{\partial N}$ für V erfüllen müssen um einen optimalen Wert zu erhalten.
- c) Lösen Sie das in a) formulierte Problem.
- d) Finden Sie dan Wert des Lagrangmultiplikators und interpretieren Sie seine Bedeutung in diesem Problem.