Serie 8

1. Gegeben sei der Bereich

$$D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 25 \text{ und } y \le 4 \} \subseteq \mathbb{R}^2.$$

Bestimmen Sie die globalen Extrema der Funktion $f:D \to \mathbb{R}$,

$$f(x,y) := y^2 - 2x^2 - 1$$
.

Skizzieren Sie dazu zunächst D.

Hinweis: Bestimmen Sie zuerst alle kritischen Punkte! Vergessen Sie nicht den Rand und die Ecken.

2. Gegeben ist die auf \mathbb{R}^2 definierte Funktion f,

$$f(x,y) = x^2 + y^2 + 6xy .$$

- a) Finden Sie die kritischen Stellen von f.
- **b**) Genügen die Bedingungen $\nabla f(x_0, y_0) = 0$ und

$$\frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0 , \quad \frac{\partial^2 f}{\partial y^2}(x_0, y_0) > 0 ,$$

(d.h. anschaulich: "sowohl in $\pm x$ -Richtung als auch in $\pm y$ -Richtung geht es nur aufwärts") um nachzuweisen, dass im Punkt (x_0,y_0) ein lokales Minimum von f vorliegt?

3. Die Fläche \mathcal{F} sei gegeben durch die Koordinatengleichung

$$3x^2 + 2y^2 + z^2 = 36$$

a) Bestimmen Sie diejenigen Punkte auf \mathcal{F} , in denen die Tangentialebene an die Fläche parallel zur Ebene 3x+2y+2z-3=0 ist.

Bitte wenden!

b) Betrachten Sie die Gesamtheit der Punkte auf \mathcal{F} , für welche $z \geq 0$ ist. Fassen Sie diese Punktmenge auf als Bild (Graph) einer Funktion $g: \mathbb{R}^2 \to \mathbb{R}$. In welche Richtung ist die Richtungsableitung von g im Punkt (1,2) minimal und wie gross ist dieser Minimalwert?

4. Online-Abgabe

Kreuzen Sie in den folgenden Aufgaben die richtigen Aussagen an.

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine Funktion.

- \bigcirc grad f(a,b)=0 ist eine notwendige Bedingung dafür, dass P(a,b) ein Sattelpunkt ist.
- \bigcirc Zu sagen "grad f(a,b)=0 ist eine hinreichende Bedingung dafür, dass P(a,b) ein lokales Extremum ist." bedeutet: Immer wenn grad f(a,b)=0 ist, dann ist P(a,b) ein lokales Extremum.
- O Die obige (in Anführungszeichen stehende) Implikation ist falsch.
- O Eine hinreichende Bedingung ist immer auch eine notwendige Bedingung.
- O Es gibt Beispiele von notwendigen Bedingungen, die nicht hinreichend sind.

Die Richtungsableitung in einem Punkt P einer Funktion $f:\mathbb{R}^2\to\mathbb{R}$ hat in Richtung $\binom{3}{4}$ den Wert 1 und $\binom{2}{1}$ ist ein Tangentialvektor an die Niveaulinie von f durch P.

 \bigcirc Dann ist der kleinste Wert der Richtungsableitung von f in P gleich $-\sqrt{5}$ und er wird angenommen in Richtung $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

Die Fläche ${\mathcal F}$ sei in Parameterdarstellung gegeben durch

$$\mathcal{F}: (u,v) \in \mathbb{D} \subset \mathbb{R}^2 \mapsto f(u,v) \in \mathbb{R}^3$$

 $\bigcirc 2(-2f_u \times 3f_v)_{(a,b)}$ ist ein Normalvektor der Tangentialebene an $\mathcal F$ im Punkt P(a,b).

Die Fläche $\mathcal F$ sei das Bild einer Funktion $f:\mathbb R^2\to\mathbb R$.

 \bigcirc $\mathcal F$ ist die Niveaufläche der Funktion $g:\mathbb R^3\to\mathbb R,\ g(x,y,z)=f(x,y)-z$ zum Wert 0.

Wir betrachten die Funktion $f:\mathbb{R}^2\to\mathbb{R},\ f(x,y)=\frac{x^2}{2}+xy^2-\frac{x}{4}$ und den Bereich $D=\left\{(x,y)||x|\leq 1,\ |y|\leq \frac{2}{3}\right\}\subset\mathbb{R}^2.$

- \bigcirc Der Bereich D ist ein achsenparalleles Rechteck.
- \bigcirc Die Funktion f hat genau drei kritische Punkte, welche alle in D liegen.
- \bigcirc Auf dem Randstück x=1 von D gilt $\frac{1}{4} \le f(x,y) \le \frac{25}{36}$.
- Oas Maximum von f auf dem Rand von D beträgt $M = \frac{3}{4}$, das Minimum $m = -\frac{49}{72}\frac{1}{36}$.
- \bigcirc Das globale Maximum von f auf D wird auf dem Rand angenommen und ist somit gleich M. Das globale Minimum wird in einem kritischen Punkt angenommen und beträgt $-\frac{1}{32}$.
- \bigcirc Einer der kritischen Punkte ist ein globales und damit lokales Minimum. Die anderen liegen auf der Niveaulinie von f zum Wert 0.
- \bigcirc Auch ein Punkt, in dem der Funktionswert 0 ist, kann ein lokales oder globales Maximum einer Funktion sein. Für die Funktion f ist dies aber nicht der Fall.

Abgabe: Freitag, 3. Mai, in den Übungsstunden