

orname:		Departement: Legi-Nr.:		
tte lassen Sie	die folgend	en Felder fr benut	•	len von den Korrekto
	1. Korr.	2. Korr.	Punkte	Bemerkungen
Aufgabe 1				
Aufgabe 2				
Aufgabe 3				
Aufgabe 4				
Aufgabe 5				
Total				
				_
	Vol	lständigkeit		_
	Pui	nktzahl		_

Dr. P. Thurnheer

Prüfung in Mathematik III

für die Studiengänge Agrar-, Erd-, Lebensmittel- und Umweltnaturwissenschaften

Wichtig

- Füllen Sie den Kopf des Deckblattes aus!
- Legen Sie Ihre Legi offen auf den Tisch!
- Notieren Sie alle Zwischenresultate und Lösungswege! Begründen Sie ihre Lösungen!
- Hinter jeder (Teil-)Aufgabe steht die maximal erreichbare Punktzahl.

Zugelassene Hilfsmittel

- Schriftliche Unterlagen,
- kein Taschenrechner,
- kein Handy.

Viel Erfolg!

Nützliche Hinweise:

 \bullet Volumen der Kugel mit Radius $r{:}$

$$V = \frac{4}{3}\pi r^3$$

• $\sin^2 \alpha = \frac{1}{2}(1 - \cos(2\alpha))$

1. a) Integrieren Sie die Funktion f(x,y,z) := xyz über den Bereich

$$\mathcal{O} := \left\{ (x, y, z) \left| x^2 + y^2 + z^2 \leqslant 1, x \geqslant 0, y \geqslant 0, z \geqslant 0 \right\} \right.$$

den im ersten Oktanten liegenden Teil der Einheitskugel.

(2 Punkte)

b) Überlegen Sie mit Hilfe von Symmetriebetrachtungen, was man erhält, wenn man dieselbe Funktion über die ganze Einheitskugel

$$B_1(0) := \{(x, y, z) | x^2 + y^2 + z^2 \le 1 \}$$

integriert.

(1 Punkt)

2. Zeichnen Sie den Graphen der auf dem Intervall $[0,2\pi]$ definierten Funktion

$$g(x) := \begin{cases} x, & 0 \leqslant x \leqslant \pi \\ 2\pi - x, & \pi < x \leqslant 2\pi \end{cases}$$

und entwickeln Sie diese in eine Fourierreihe.

(5 Punkte)

3. Bestimmen Sie den Fluss des Vektorfeldes

$$G(x, y, z) := \begin{pmatrix} x + \ln(1+z) \\ 2y + x^2 z^2 \\ 26 \end{pmatrix}$$

durch die Fläche $\mathcal{K}:=\{(x,y,z)\,|x^2+y^2+z^2=1\ \mathrm{und}\ z\geqslant 0\}$ (Sie können die Fläche selber orientieren).

(5 Punkte)

Hinweis: Bestimmen Sie zunächst den Fluss durch

$$\mathcal{H} := \left\{ (x, y, z) \left| x^2 + y^2 \leqslant 1 \text{ und } z = 0 \right. \right\}$$

und verwenden Sie anschliessend den Satz von Gauss.

- 4. Es sei Γ die Schnittellipse des Zylinders $\{(x,y,z)|x^2+y^2=1\}$ mit der Ebene $\{(x,y,z)|z=2y\}.$
 - a) Bestimmen Sie eine Funktion g(x, y, z) so, dass die Arbeit des Vektorfeldes

$$F(x, y, z) := \begin{pmatrix} g(x, y, z) \\ xz e^{xyz} \\ xy e^{xyz} \end{pmatrix}$$

längs des einmal durchlaufenen Weges Γ gleich 0 ist.

(2 Punkte)

b) Berechnen Sie die Arbeit des Vektorfeldes

$$V(x, y, z) := \begin{pmatrix} y^2 \\ -xy \\ 0 \end{pmatrix}$$

längs des einmal durchlaufenen Weges Γ (wählen Sie selbst eine Orientierung)

- i. direkt.
- ii. mit Hilfe des Satzes von Stokes.

(4 Punkte)

5. Bestimmen Sie mit Hilfe eines Separationsansatzes die allgemeine Lösung der folgenden partiellen Differentialgleichung.

$$u_x(x,t) - \frac{u(x,t)}{x} - \frac{u_t(x,t)}{t} = 0$$

(4 Punkte)