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3 Least Squares

Example 3.0.1 (linear regression).

Given: measured data vy;,x;, ¥, € R, x; eR"i=1,....m,m>n+1
(y;, X; have measurement errors).

Known: without measurement errors data would satisfy

affine linear relationship y = alx+caecR" ceR.

Gradinaru

Goal: estimate parameters a, c. D-MATH

least squares estimate

m
: 2
(a,c) = argmin Z lyi —px; —q|” (3.0.1)
linear regression forn = 2, m = 8§ >,
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Remark: In statistics we learn that the least squares estimate provides a maximum likelihood esti- Num.

mate, if the measurement errors are uniformly and independently normally distributed. a
Example 3.0.2 (Linear data fitting). (— Ex. 3.3.1 for a related problem)
Given: “nodes” (t;,y;) € K%, i=1,...,m,t; € I CK,
basis functions 0; : [ — K, 7 =1,...,n.

Find:  coefficients x; € K, 7 =1,...,n,such that

m n

Z ‘f(tz) — y2’2 — min ) f(t) = ijbj<t> . (302) Gradinaru

i=1 ]:1 D-MATH
Special case:  polynomial fit: b;(t) = =1

MATLAB-function: p = polyfit(t,y,n); n=polynomial degree.
&
Remark 3.0.3 (Overdetermined linear systems).
3.0
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In Ex. 3.0.1 we could try to find a, ¢ by solving the linear system of equations

T
: : )= : ;
I Ym

X

but in case m > n + 1 we encounter more equations than unknowns.

In Ex. 3.0.2 the same idea leads to the linear system

bi(t1) ... bn(ty) 1 Y1

B0l o o) T Yrn,

with the same problem in case m > n.

Num.
Meth.
Phys.

Gradinaru

A D-MATH

find:

x € K" such that

(Linear) least squares problem:

given: A € K"™" m,ne N, b e K",

() |Ax — b||y = inf{||Ay — b||y: y € K"},

(ii) ||x||5 is minimal under the condition (i).

(3.0.3)

3.0
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Recast as linear least squares problem, cf. Rem. 3.0.3: Num.

Phys.
I

X1 Y1 o ]
Ex.3.01: A=| : :|eR™  pb=[:|erR* A6 x= (C) c R
X% 1 Ym
bi(t1) ... bn(ty) U1 T
Ex.3.0.2. A= : : eR™" b=|: | eR"™ | : | e R".

In both cases the residual norm ||b — Ax||, allows to gauge the quality of the model.

Gradinaru

Lemma 3.0.1 (Existence & unigueness of solutions of the least squares problem). D-MATH
The least squares problem for A € K>, A = (0, has a unique solution for every b € K",

Proof. The proof is given by formula (3.2.4) and its derivation, see Sect. 3.2. ]

scipy.linalg.lstsqgr(A, b) Reassuring: stable (— Def.??) implementation (for dense

matrices). 3.0
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Remark 3.0.4 (Pseudoinverse). Viath.
Phys.

By Lemma 3.0.1 the solution operator of the least squares problem (3.0.3) defines a linear mapping
b — x, which has a matrix representation.

Definition 3.0.2 (Pseudoinverse). The pseudoinverse A" € K'» of A € K"™" is the matrix
representation of the (linear) solution operator R""* — R, b + x of the least squares problem

(3.0.3) ||Ax — b|| — min, ||x|| — min.
Gradinaru
sci py. i nal g. pi nv(A) computes the pseudoinverse. D-MATH
JAN
Remark 3.0.5 (Conditioning of the least squares problem).
Definition 3.0.3 (Generalized condition (number) of a matrix, — Def. 2.0.3).
Let oy > 09 > oy > 0pgp1 = ... = 0p = 0, p := min{m, n}, be the singular values (—
Def. 2.2.2) of A € K", Then 3.0
o p. 158
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Theorem 3.0.4. For m > n, A € K""" rank(A) = n, let x € K" be the solution of the least

squares problem [[Ax — b|| — min and X the solution of the perturbed least squares problem
|(A + AA)X — b|| — min. Then

IAA[;
Al

Ix — x5 ( 2 Il
< | 2conds(A) + cond5(A)
Il Al 15

holds, where r = Ax — b is the residual.

Gradinaru

D-MATH

This means: if ||r||, < 1 O condition of the least squares problem ~ conds(A)
if ||r||, “large” O condition of the least squares problem =~ cond5(A)

3.1
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3.1 Normal Equations

Num.
Meth.
Phys.

Setting: A € R"™" m > n, with full rank rank(A) = n.

Geometric interpretation of

{Ax,x € R" linear least squares problem (3.0.3):

AX x = orthogonal projection of b on the subspace
Im(A) := Span {(A):J, . (A);’n}.

Gradinaru

D-MATH

Geometric interpretation: the least squares problem (3.0.3) amounts to searching the point p &
Im(A) nearest (w.r.t. Euclidean distance) to b € R"".

Geometric intuition, see Fig. 33: p is the orthogonal projection of b onto Im(A), thatisb — p L
Im(A). Note the equivalence

b-—plIm(A) & b—pl(A).:, j=1,....n & Alb-p)=0,

]
3.1
p. 160

Representation p = Ax leads to normal equations (3.1.2).



Solve (3.0.3) for b € R™
x € R" |[Ax—b|, —»min < f(x):=]|Ax—b|5— min .
A guadratic functional, cf. (??)
f(x) = [|Ax — b5 = xT (AT A)x — 2b Ax + bPb .

Minimization problem for f [ study gradient, cf. (??)

grad f(x) = 2(A7A)x — 2A"b .

—~——
Ly Hp, _ AH _ .
grad f(x) = 0: A" Ax=A"b = normal equation of (3.1.1)
Notice: rank(A) =n = A7 A € R"" sp.d. (— Def. 2?)

Remark 3.1.1 (Conditioning of normal equations).

Caution: danger of instability, with SVD A = uxvi

o

2
condg(AT A) = condy(VEHFUHUSVH) = condy(575) = ZL = conda(A)? .
n

Num.
Meth.
Phys.

(3.1.1)

(3 1. 2) Gradinaru

D-MATH

3.1
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[ For fairly ill-conditioned A using the normal equations (3.1.2) to solve the linear least squares
problem (3.1.1) numerically may run the risk of huge amplification of roundoff errors incurred
during the computation of the right hand side Afp: potential instability (— Def. ??) of normal

equation approach.

Example 3.1.2 (Instability of normal equations).

Caution: loss of information in the compu-
tation of A7 A, e.g.

11
A=1|60 :>AHA_<
06

f6 < Jeps = 14062 =1inM,i.e. A A “numeric singular”, though rank(A) = 2, see Sect. ??,

in particular Rem. ??.

~N o o~ W N P

>> A = [1 1;...
sqrt(eps) O;...
0 sqrt(eps) ];
>> rank (A)
ans = 2
>> rank (A'xA)
ans = 1

Num.
Meth.

Phys.

Gradinaru

D-MATH
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Num

Another reason not to compute A A when both m, n large: eth.
yS.

A sparse %A Al A sparse

P> s Potential memory overflow, when computing ATA
» Squanders possibility to use efficient sparse direct elimination techniques, see Sect. ??

A way to avoid the computation of ATA:

Gradinaru

Expand normal equations (3.1.2): introduce residual r := Ax — b as new unknown: D-MATH

Aflax=Aflb = B (}‘;) - (};{, ‘8‘) (i) - ('8) | (3.1.3)

More general substitution r := o~ '(Ax — b), & > 0 to improve the condition:

AfAx = Ay = B, ()‘;) — (Z}i} ‘8) (;) - ('8) . (3.1.4)

For m,n > 1, A sparse, both (3.1.3) and (3.1.4) lead to large sparse linear systems of equations,

amenable to sparse direct elimination techniques, see Sect. ?? 5l
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Example 3.1.3 (Condition of the extended system).

Consider (3.1.3), (3.1.4) for

l14+e1
A.: 1_61 . 105;
€ € ’

Plot of different condition numbers
in dependence on € >

(a=Ally/v2)

109 3
10° b

10 3

10° ¢
102 3

10" b

- condZ(AHA)
_ cond,(B) ]
__cond,(B)

condZ(A) ]

107

10

3.2 Orthogonal Transformation Methods

Consider the linear least squares problem (3.0.3)

given A € R"™" beR™ find x=argmin|Ay —Db| .

yeR"?

107

107

10" 10°

Num.
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Phys.
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Assumption: m >n and A has full (maximum) rank: rank(A) = n. e
Phys.

Recall Thm. 2.1.2:  orthogonal (unitary) transformations (— Def. 2.1.1) leave 2-norm invariant.

Idea: Transformation of Ax — b to simpler form by orthogonal row transformations:

argmin ||Ay — b||, = argmin ‘Ky — BHQ :

yeR" yeR"
where A = QA , b= Qb withorthogonal Q € R"""" .

As in the case of LSE (— Sect. 2.1): “simpler form” = triangular form.
Gradinaru
D-MATH
QR-decomposition 2.1
QR-decomposition: A = QR, Q € K" unitary, R € K" (regular) upper triangular matrix.
|Ax — b, = HQ(RX - QHb)H2 — HRX - BH2 . b:=Qp.
3.2
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—~———

|Ax — b||, = min & R

o

X = : 3

L1

residuum r=Q |+

()

) . . . . 79 X
Note: residual norm readily available ||r||, = \/bnle + 4 D2,

i ),

— min .

Num.
Meth.
Phys.
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Implementation: successive orthogonal row transformations (by means of Householder reflections  Nun.
(2.1.1) for general matrices, and Givens rotations (2.1.2) for banded matrices, see e
Sect. 2.1 for details) of augmented matrix (A, b) € R™"*1 which is transformed
into (R, b)

Q need not be stored !

Alternative: Solving linear least squares problem by SVD

Most general setting: A € K" rank(A) = r < min{m, n}):

svo: A = (U Uy (% 8) (&g) v
( V(T Y (NS )
| i
A — Uli U2 \\/]ZH )
) AL JA\

(3.2.1) p. 167



' Num.

U; € K", Uy =K"""" ¥, =diag(oy,...,0,) € R"", V€ KW', Vye KW'
the columns of Uy, Uy, V1, V5 are orthonormal. Py

v (5 ) () (-4 - ()

H H
Logical strategy: choose x such that the first » components of (Zr\gl X) — <8¥,El> vanish:
9 P2

(3.2.2)

2

[l underdetermined linear system ZrV{[X = U{[bl : (3.2.3)

To fix a unique solution we appeal to the minimal norm condition in (3.0.3): solution x of (3.2.3)
is unique up to contributions from Ker(V) = Im(Vy). Since V is orthogonal, the minimal norm

solution is obtained by setting contributions from Im(V5) to zero, which amounts to choosing x €
Im (V7).

Gradinaru

D-MATH

B~ soluton |x= (VX lufb, | | ||r|12:HU§fb2H2. (3.2.4)

3.2
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Code 3.2.1: Solving LSQ problem via SVD Num.

Practical implementation: 1|def Isqsvd(A,b,eps=1le—6): %fyt?f
_ 2 U,s,Vh = svd(A)
‘numerical rank” test: 3 r = 1+where(s/s[0]>eps) [0].max() #
numerical rank
4 y = dot(Vh[:,:r].T,
r = max{i: 0;/01 > tol} dot(U[:,:r].T,b)/s[:r] )
5 return vy

Remark 3.2.2 (Pseudoinverse and SVD). — Rem. 3.0.4

The solution formula (3.2.4) directly yields a representation of the pseudoinverse A" (— Def. 3.0.2) Gradinaru

of any matrix A S
Theorem 3.2.1 (Pseudoinverse and SVD).
If A € K"" has the SVD decomposition (3.2.1), then AT = VlZf,TlUf[ holds.
sci py. |1 nal g.plinv2(A)
nu .linalg.pinv(A
mpy g. pi nv(A) Al ez
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Num

Remark 3.2.3 (Normal equations vs. orthogonal transformations method). Meth.
Phys.

Superior numerical stability (— Def. ??) of orthogonal transformations methods:

P Use orthogonal transformations methods for least squares problems (3.0.3), whenever A €
R"™ dense and n small.

SVD/QR-factorization cannot exploit sparsity:

P> Use normal equations in the expanded form (3.1.3)/(3.1.4), when A &€ R">" sparse (—
Def. ??) and m, n big. A

Gradinaru

D-MATH

3.3 Non-linear Least Squares

3.3
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Example 3.3.1 (Non-linear data fitting (parametric statistics)). Nu.

Phys.
Given:  data points (¢;,v;), 7 = 1, ..., m with measurements errors.

Known: y = f(¢,x) through a function f : R x R"” — R depending non-linearly and smoothly on
parameters x € R".

Example: f(t) =21 + z9exp(—zst), n =3.

Determine parameters by non-linear least squares data fitting:

m

x" = argminz F(t,%) — y;|° = argmin% HF(X)”% : (3.3.1) Gradinar
xeR™ 4 xcR" D-MATH
f(tla X) — Y1
with  F(x) = ;

.3
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-l Num.
Non-linear least squares problem yl‘léﬁl,
yS.

Given: F:DCR'—R" mneN, m>n.
Find:  x* € D: x* = argmingep ®(x), O(x) =3 [|Fx)|35 . (3.3.2)

Terminology: ) = parameter space, x1, ..., T, = parameter.

As in the case of linear least squares problems (— Rem. 3.0.3): a non-linear least squares problem
is related to an overdetermined non-linear system of equations F'(x) = 0.

Gradinaru

D-MATH
As for non-linear systems of equations (— Chapter 1): existence and uniqueness of x* in (3.3.2) has
to be established in each concrete case!
We require “independence for each parameter”: h
J neighbourhood U(x*)suchthat DF(x) hasfullrankn V x € U(x") . (3.3.3)
(It means: the columns of the Jacobi matrix D F'(x) are linearly independent.) 3.3
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If (3.3.3) is not satisfied, then the parameters are redundant in the sense that fewer parameters would Num

Meth.
be enough to model the same dependence (locally at x*). a

3.3.1 (Damped) Newton method

d(x*) =min = gradd(x)=0, gradd(x): 22 x) T e R

I
VR
3
8
—_
/N
P4
~—
Q
8
S

Simple idea: use Newton’s method (— Sect. 1.4) to determine a zeroof grad ® : D C R" — R,

Gradinaru

D-MATH

3.3

Newton iteration (1.4.1) for non-linear system of equations grad ®(x) = 0
x(b+1) = (k) _ H<I>(><<k))_1 grad <I>(x<k>) , (H®(x) = Hessian matrix) . (3.3.4)
Expressed in terms of F' : R" +— R from (3.3.2):
chainrule (1.42) O grad®(x) = DF(x)' F(x),
productrule (1.4.3) O H®d(x) := D(grad ®)(x) = DF(x)! DF(x) + zm: Fj(X)DQFj(X) :
j=1

p. 173



() e
n 9 Phys.
0 Fj oF: OF;:

(HOM)i5 = 3 ot (x)Fj0) + 5-2(0) 52 (x)
— ;0% L Xy

P> For Newton iterate xk): " Newton correction s € R from LSE

DF(x"TDF®) + 37 Fi(x") D> Fj(x*)) | s = ~-DP )T PxW) . (3.35)
j=1

Gradinaru

Remark 3.3.2 (Newton method and minimization of quadratic functional). D-MATH

Newton’s method (3.3.4) for (3.3.2) can be read as successive minimization of a local quadratic
approximation of ®:

1
O(x) ~ Q(s) := d(x*)) + grad o(x*))T's + §STH<I>(X(k>)S , (3.3.6)
gradQ(s) =0 & H@(x<k>)s + grad @(X<k>> =0 & (33.5).
[1  Another model function method (— Sect. 1.3.2) with quadratic model function for (). A 23
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3.3.2 Gauss-Newton method

Num.
Meth.
Phys.
Idea: local linearization of F:  F(xz) =~ F(y) + DF(y)(x —y)
[ sequence of linear least squares problems
argmin || F'(x)||, approximated by  argmin || F/(xg) + DF(xg)(x — xo)|l5 ,
xcR"? XER" ,
(&)
where x is an approximation of the solution x* of (3.3.2).
Gradinaru
D-MATH

(d) <  argmin||[Ax —Db|| with A:=DF(xg) e R™"  b:=F(xg) — DF(x¢)xg € R"".
xcR"

This is a linear least squares problem of the form (3.0.3).

Note: (3.3.3) = A has full rank, if x( sufficiently close to x*.

Note: Approach different from local quadratic approximation of ¢ underlying Newton’s method for 5 5

(3.3.2), see Sect. 3.3.1, Rem. 3.3.2. p. 175



P Gauss-Newton iteration

Initial guess x(0) cD

xh )= x(B)

S := argmin
xcR"

(3.3.7)

F(xk)y — DF(x(k))sHQ |

. i
linear least squares problem

MATLAB-\ used to solve linear least squares prob-

lem in each step:

for A € R"»"
X = Alb

!

x minimizer of || Ax — bl|5
with minimal 2-norm

Comments on Code 3.3.2:

N o o~ W N P

Code 3.3.4: template for Gauss-Newton method

def gn(x,F,J,tol):
s = solve(J(x) ,F(X)) #
X = X—S
while norm(s) > tolxnorm(x): #

s = solve(J(x),F(X)) #
X = X—S
return x

[ Argument X passes initial guess x(0) € R", argument F must be a handle to a function /' : R"
R, argument J provides the Jacobian of F', namely DF' : R" — R"*" argumentt ol specifies

the tolerance for termination

Num.
Meth.
Phys.

Gradinaru

D-MATH
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[ Line 4: iteration terminates if relative norm of correction is below threshold specified int ol .

Summary:

Advantage of the Gauss-Newton method : second derivative of /' not needed.
Drawback of the Gauss-Newton method : no local quadratic convergence.

Example 3.3.5 (Non-linear data fitting (Il)).

— Ex. 3.3.1

Non-linear data fitting problem (3.3.1) for  f(t) = x1 + xo exp(—x3t).

r1 + Ty exp(—xaty) — 1
F(x) = ;
T1 + 9 exXp(—23tm) — Ym

Numerical experiment:

convergence of the Newton method,
damped Newton method (— Section
1.4.4) and Gauss-Newton method for
different initial values

R’ — R, DF(x) =

1 e 130 —gote T3l

1 e~ ¥3lm —got,, e ¥3lm

< <

r [1:7:0.3]
x[0] + x[1] xexp(-x[2]~*t)
y+0. 1*(rand(l en(y))-0.5)

Num.
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Phys.
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Damped Newton method

Convergence behaviour of the Newton method:

initial value (1.8, 1.8, O.l)T (red curve)
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[1  Newton method caught in local minimum,
fast (locally quadratic) convergence.
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Gauss-Newton method:

initial value (1.8,1.8,0.1)" (red curve),
initial value (1.5, 1.5, O.l)T (cyan curve),

convergence in both cases.

Notice: linear convergence.
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Gauss—Newton method

3.3.3 Trust region method (Levenberg-Marquardt method)

As in the case of Newton’s method for non-linear systems of equations, see Sect. 1.4.4: often over-
shooting of Gauss-Newton corrections occurs.

Remedy as in the case of Newton’s method: damping.

16
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ldea: damping of the Gauss-Newton correction in (3.3.7) using a penalty term

Num.
2 Plivs,
instead of HF ")) + DF(x! )SH minimize HF( ¥y + DF(x! H +A|s|l5 .
A > (0 = penalty parameter (how to choose it ? —  heuristic)
(10, if HF H > 10,
)\szF(X(k))HQ , Yi=+41 Jifl < HF H < 10,
0.01 ,if HF H <1.
\
P> Modified (regularized) equation for the corrector s:
Gradinaru
(DF<x<k>>T DF(x%)) + AI) s = —DF(x"FxP)y . (3.3.8) DMATH
sci py.optim ze. | east sq
3.4
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3.4 Essential Skills Learned in Chapter 3

You should know:

e several possibilities to solve linear least squares problems

e how to solve non-linear least squares problems
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