Least Squares

Example 3.0.1 (linear regression).

Given: measured data $y_{i}, \mathbf{x}_{i}, \quad y_{i} \in \mathbb{R}, \mathbf{x}_{i} \in \mathbb{R}^{n}, i=1, \ldots, m, m \geq n+1$ (y_{i}, \mathbf{x}_{i} have measurement errors).

Known: without measurement errors data would satisfy
affine linear relationship $y=\mathbf{a}^{T} \mathbf{x}+c, \mathbf{a} \in \mathbb{R}^{n}, c \in \mathbb{R}$.
Goal: estimate parameters a, c.

Remark: In statistics we learn that the least squares estimate provides a maximum likelihood estimate, if the measurement errors are uniformly and independently normally distributed.

Example 3.0.2 (Linear data fitting). (\rightarrow Ex. 3.3.1 for a related problem)
Given: "nodes" $\left(t_{i}, y_{i}\right) \in \mathbb{K}^{2}, i=1, \ldots, m, t_{i} \in I \subset \mathbb{K}$, basis functions $b_{j}: I \mapsto \mathbb{K}, j=1, \ldots, n$.
Find: coefficients $x_{j} \in \mathbb{K}, j=1, \ldots, n$, such that

$$
\begin{equation*}
\sum_{i=1}^{m}\left|f\left(t_{i}\right)-y_{i}\right|^{2} \rightarrow \min \quad, \quad f(t):=\sum_{j=1}^{n} x_{j} b_{j}(t) \tag{3.0.2}
\end{equation*}
$$

Special case: polynomial fit: $\quad b_{j}(t)=t^{j-1}$.
MATLAB-function: $\mathrm{p}=$ polyfit($\mathrm{t}, \mathrm{y}, \mathrm{n}$); $n=$ polynomial degree.

Remark 3.0.3 (Overdetermined linear systems).

In Ex. 3.0.1 we could try to find a, c by solving the linear system of equations

$$
\left(\begin{array}{cc}
\mathbf{x}_{1}^{T} & 1 \\
\vdots & \vdots \\
\mathbf{x}_{m}^{T} & 1
\end{array}\right)\binom{\mathbf{a}}{c}=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

but in case $m>n+1$ we encounter more equations than unknowns.

In Ex. 3.0.2 the same idea leads to the linear system

$$
\left(\begin{array}{ccc}
b_{1}\left(t_{1}\right) & \ldots & b_{n}\left(t_{1}\right) \\
\vdots & & \vdots \\
b_{1}\left(t_{m}\right) & \ldots & b_{n}\left(t_{m}\right)
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

with the same problem in case $m>n$.

Recast as linear least squares problem, cf. Rem. 3.0.3:
Ex. 3.0.1: $\quad \mathbf{A}=\left(\begin{array}{cc}\mathbf{x}_{1}^{T} & 1 \\ \vdots & \vdots \\ \mathbf{x}_{m}^{T} & 1\end{array}\right) \in \mathbb{R}^{m, n+1} \quad, \quad \mathbf{b}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{m}\end{array}\right) \in \mathbb{R}^{n} \quad, \quad \mathbf{x}=\binom{\mathbf{a}}{c} \in \mathbb{R}^{n+1}$.
Ex. 3.0.2: $\quad \mathbf{A}=\left(\begin{array}{ccc}b_{1}\left(t_{1}\right) & \ldots & b_{n}\left(t_{1}\right) \\ \vdots & & \vdots \\ b_{1}\left(t_{m}\right) & \ldots & b_{n}\left(t_{m}\right)\end{array}\right) \in \mathbb{R}^{m, n} \quad, \quad \mathbf{b}=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{m}\end{array}\right) \in \mathbb{R}^{m} \quad, \quad\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n}$.
In both cases the residual norm $\|\mathbf{b}-\mathbf{A x}\|_{2}$ allows to gauge the quality of the model.

Lemma 3.0.1 (Existence \& uniqueness of solutions of the least squares problem). The least squares problem for $\mathbf{A} \in \mathbb{K}^{m, n}, \mathbf{A} \neq 0$, has a unique solution for every $\mathbf{b} \in \mathbb{K}^{m}$.

Proof. The proof is given by formula (3.2.4) and its derivation, see Sect. 3.2.
scipy.linalg.lstsqr (A,b) Reassuring: stable (\rightarrow Def.??) implementation (for dense matrices).

By Lemma 3.0.1 the solution operator of the least squares problem (3.0.3) defines a linear mapping $\mathbf{b} \mapsto \mathbf{x}$, which has a matrix representation.

Definition 3.0.2 (Pseudoinverse). The pseudoinverse $\mathbf{A}^{+} \in \mathbb{K}^{n, m}$ of $\mathbf{A} \in \mathbb{K}^{m, n}$ is the matrix representation of the (linear) solution operator $\mathbb{R}^{m} \mapsto \mathbb{R}^{n}, \mathbf{b} \mapsto \mathbf{x}$ of the least squares problem (3.0.3) $\|\mathbf{A x}-\mathbf{b}\| \rightarrow \min ,\|\mathbf{x}\| \rightarrow$ min.

```
scipy.linalg.pinv(A) computes the pseudoinverse.
```

Remark 3.0.5 (Conditioning of the least squares problem).

Definition 3.0.3 (Generalized condition (number) of a matrix, \rightarrow Def. 2.0.3).
Let $\sigma_{1} \geq \sigma_{2} \geq \sigma_{r}>\sigma_{r+1}=\ldots=\sigma_{p}=0, p:=\min \{m, n\}$, be the singular values $(\rightarrow$ Def. 2.2.2) of $\mathbf{A} \in \mathbb{K}^{m, n}$. Then

Theorem 3.0.4. For $m \geq n, \mathbf{A} \in \mathbb{K}^{m, n}, \operatorname{rank}(\mathbf{A})=n$, let $\mathbf{x} \in \mathbb{K}^{n}$ be the solution of the least squares problem $\|\mathbf{A x}-\mathbf{b}\| \rightarrow \min$ and $\widehat{\mathbf{x}}$ the solution of the perturbed least squares problem $\|(\mathbf{A}+\Delta \mathbf{A}) \widehat{\mathbf{x}}-\mathbf{b}\| \rightarrow$ min. Then

$$
\frac{\|\mathbf{x}-\widehat{\mathbf{x}}\|_{2}}{\|\mathbf{x}\|_{2}} \leq\left(2 \operatorname{cond}_{2}(\mathbf{A})+\operatorname{cond}_{2}^{2}(\mathbf{A}) \frac{\|\mathbf{r}\|_{2}}{\|\mathbf{A}\|_{2}\|\mathbf{x}\|_{2}}\right) \frac{\|\Delta \mathbf{A}\|_{2}}{\|\mathbf{A}\|_{2}}
$$

holds, where $\mathbf{r}=\mathrm{Ax}-\mathrm{b}$ is the residual.

This means: if $\|\mathbf{r}\|_{2} \ll 1>$ condition of the least squares problem $\approx \operatorname{cond}_{2}(\mathbf{A})$
if $\|\mathbf{r}\|_{2}$ "large" $>$ condition of the least squares problem $\approx \operatorname{cond}_{2}^{2}(\mathbf{A})$

3.1 Normal Equations

Setting: $\quad \mathbf{A} \in \mathbb{R}^{m, n}, m \geq n$, with full rank $\operatorname{rank}(\mathbf{A})=n$.

Geometric interpretation of
linear least squares problem (3.0.3):
$\mathbf{x} \hat{=}$ orthogonal projection of b on the subspace
linear least squares problem (3.0.3):
$\mathbf{x} \hat{=}$ orthogonal projection of b on the subspace $\operatorname{Im}(\mathbf{A}):=\operatorname{Span}\left\{(\mathbf{A})_{:, 1}, \ldots,(\mathbf{A})_{:, n}\right\}$.

Geometric interpretation: the least squares problem (3.0.3) amounts to searching the point $\mathbf{p} \in$ $\operatorname{Im}(\mathbf{A})$ nearest (w.r.t. Euclidean distance) to $\mathrm{b} \in \mathbb{R}^{m}$.

Geometric intuition, see Fig. 33: \mathbf{p} is the orthogonal projection of \mathbf{b} onto $\operatorname{Im}(\mathbf{A})$, that is $\mathbf{b}-\mathbf{p} \perp$ $\operatorname{Im}(\mathbf{A})$. Note the equivalence

$$
\mathbf{b}-\mathbf{p} \perp \operatorname{Im}(\mathbf{A}) \Leftrightarrow \mathbf{b}-\mathbf{p} \perp(\mathbf{A})_{:, j}, \quad j=1, \ldots, n \Leftrightarrow \mathbf{A}^{H}(\mathbf{b}-\mathbf{p})=0
$$

Representation $\mathbf{p}=\mathbf{A x}$ leads to normal equations (3.1.2).

Solve (3.0.3) for $\mathrm{b} \in \mathbb{R}^{m}$

$$
\begin{equation*}
\mathbf{x} \in \mathbb{R}^{n}: \quad\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2} \rightarrow \min \quad \Leftrightarrow \quad f(\mathbf{x}):=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} \rightarrow \min . \tag{3.1.1}
\end{equation*}
$$

A quadratic functional, cf. (??)

$$
f(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}=\mathbf{x}^{H}\left(\mathbf{A}^{H} \mathbf{A}\right) \mathbf{x}-2 \mathbf{b}^{H} \mathbf{A} \mathbf{x}+\mathbf{b}^{H} \mathbf{b} .
$$

Minimization problem for $f>$ study gradient, cf. (??)

$$
\operatorname{grad} f(\mathbf{x})=2\left(\mathbf{A}^{H} \mathbf{A}\right) \mathbf{x}-2 \mathbf{A}^{H} \mathbf{b}
$$

$$
\begin{equation*}
\operatorname{grad} f(\mathbf{x}) \stackrel{!}{=} 0: \quad \mathbf{A}^{H} \mathbf{A} \mathbf{x}=\mathbf{A}^{H} \mathbf{b} \quad=\text { normal equation of (3.1.1) } \tag{3.1.2}
\end{equation*}
$$

$$
\operatorname{rank}(\mathbf{A})=n \Rightarrow \mathbf{A}^{H} \mathbf{A} \in \mathbb{R}^{n, n} \text { s.p.d. (} \rightarrow \text { Def. ??) }
$$

Remark 3.1.1 (Conditioning of normal equations).
Caution: danger of instability, with SVD $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{H}$

$$
\operatorname{cond}_{2}\left(\mathbf{A}^{H} \mathbf{A}\right)=\operatorname{cond}_{2}\left(\mathbf{V} \Sigma^{H} \mathbf{U}^{H} \mathbf{U} \Sigma \mathbf{V}^{H}\right)=\operatorname{cond}_{2}\left(\Sigma^{H} \Sigma\right)=\frac{\sigma_{1}^{2}}{\sigma_{n}^{2}}=\operatorname{cond}_{2}(\mathbf{A})^{2}
$$

$>$ For fairly ill-conditioned A using the normal equations (3.1.2) to solve the linear least squares problem (3.1.1) numerically may run the risk of huge amplification of roundoff errors incurred during the computation of the right hand side $\mathbf{A}^{H} \mathbf{b}$: potential instability (\rightarrow Def. ??) of normal equation approach.

Example 3.1.2 (Instability of normal equations).
i

Caution: loss of information in the computation of $\mathbf{A}^{H} \mathbf{A}$, e.g.

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
\delta & 0 \\
0 & \delta
\end{array}\right) \Rightarrow \mathbf{A}^{H} \mathbf{A}=\left(\begin{array}{cc}
1+\delta^{2} & 1 \\
1 & 1+\delta^{2}
\end{array}\right)
$$

If $\delta<\sqrt{\text { eps }} \Rightarrow 1+\delta^{2}=1$ in \mathbb{M}, i.e. $\mathbf{A}^{H} \mathbf{A}$ "numeric singular", though $\operatorname{rank}(\mathbf{A})=2$, see Sect. ??, in particular Rem. ??.

Another reason not to compute $\mathbf{A}^{H} \mathbf{A}$, when both m, n large:

$$
\text { A sparse } \nRightarrow \mathbf{A}^{T} \mathbf{A} \text { sparse }
$$

- Potential memory overflow, when computing $\mathbf{A}^{T} \mathbf{A}$
- Squanders possibility to use efficient sparse direct elimination techniques, see Sect. ??

A way to avoid the computation of $\mathbf{A}^{H} \mathbf{A}$:

Expand normal equations (3.1.2): introduce residual $\mathbf{r}:=\mathbf{A x}-\mathbf{b}$ as new unknown:

$$
\mathbf{A}^{H} \mathbf{A} \mathbf{x}=\mathbf{A}^{H} \mathbf{b} \quad \Leftrightarrow \mathbf{B}\binom{\mathbf{r}}{\mathbf{x}}:=\left(\begin{array}{cc}
-\mathbf{I} & \mathbf{A} \tag{3.1.3}\\
\mathbf{A}^{H} & 0
\end{array}\right)\binom{\mathbf{r}}{\mathbf{x}}=\binom{\mathbf{b}}{0} .
$$

More general substitution $\mathbf{r}:=\alpha^{-1}(\mathbf{A x}-\mathbf{b}), \alpha>0$ to improve the condition:

$$
\mathbf{A}^{H} \mathbf{A} \mathbf{x}=\mathbf{A}^{H} \mathbf{b} \quad \Leftrightarrow \quad \mathbf{B}_{\alpha}\binom{\mathbf{r}}{\mathbf{x}}:=\left(\begin{array}{cc}
-\alpha \mathbf{I} & \mathbf{A} \tag{3.1.4}\\
\mathbf{A}^{H} & 0
\end{array}\right)\binom{\mathbf{r}}{\mathbf{z}}=\binom{\mathbf{b}}{0} .
$$

For $m, n \gg 1$, A sparse, both (3.1.3) and (3.1.4) lead to large sparse linear systems of equations, amenable to sparse direct elimination techniques, see Sect. ??

Example 3.1.3 (Condition of the extended system).

Consider (3.1.3), (3.1.4) for

$$
\mathbf{A}=\left(\begin{array}{cc}
1+\epsilon & 1 \\
1-\epsilon & 1 \\
\epsilon & \epsilon
\end{array}\right)
$$

Plot of different condition numbers in dependence on ϵ $\left(\alpha=\|\mathbf{A}\|_{2} / \sqrt{2}\right)$

3.2 Orthogonal Transformation Methods

Consider the linear least squares problem (3.0.3)

$$
\text { given } \quad \mathbf{A} \in \mathbb{R}^{m, n}, \mathbf{b} \in \mathbb{R}^{m} \quad \text { find } \quad \mathbf{x}=\underset{\mathbf{y} \in \mathbb{R}^{n}}{\operatorname{argmin}}\|\mathbf{A y}-\mathbf{b}\|_{2}
$$

Assumption: $m \geq n$ and \mathbf{A} has full (maximum) rank: $\quad \operatorname{rank}(\mathbf{A})=n$.

Recall Thm. 2.1.2: orthogonal (unitary) transformations $(\rightarrow$ Def. 2.1.1) leave 2-norm invariant.

Idea: Transformation of $\mathrm{Ax}-\mathrm{b}$ to simpler form by orthogonal row transformations:

$$
\underset{\mathbf{y} \in \mathbb{R}^{n}}{\operatorname{argmin}}\|\mathbf{A} \mathbf{y}-\mathbf{b}\|_{2}=\underset{\mathbf{y} \in \mathbb{R}^{n}}{\operatorname{argmin}}\|\tilde{\mathbf{A}} \mathbf{y}-\tilde{\mathbf{b}}\|_{2}
$$

where $\widetilde{\mathbf{A}}=\mathbf{Q A}, \quad \widetilde{\mathbf{b}}=\mathbf{Q b}$ with orthogonal $\mathbf{Q} \in \mathbb{R}^{m, m}$.
As in the case of LSE $(\rightarrow$ Sect. 2.1): "simpler form" = triangular form.

QR-decomposition

2.1

QR-decomposition: $\quad \mathbf{A}=\mathbf{Q R}, \quad \mathbf{Q} \in \mathbb{K}^{m, m}$ unitary, $\mathbf{R} \in \mathbb{K}^{m, n}$ (regular) upper triangular matrix.

$$
\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}=\left\|\mathbf{Q}\left(\mathbf{R} \mathbf{x}-\mathbf{Q}^{H} \mathbf{b}\right)\right\|_{2}=\|\mathbf{R} \mathbf{x}-\widetilde{\mathbf{b}}\|_{2} \quad, \quad \widetilde{\mathbf{b}}:=\mathbf{Q}^{H} \mathbf{b} .
$$

Implementation: successive orthogonal row transformations (by means of Householder reflections (2.1.1) for general matrices, and Givens rotations (2.1.2) for banded matrices, see Sect. 2.1 for details) of augmented matrix $(\mathbf{A}, \mathbf{b}) \in \mathbb{R}^{m, n+1}$, which is transformed into $(\mathbf{R}, \widetilde{\mathbf{b}})$

Q need not be stored!

Alternative:
Most general setting:

$$
\mathrm{A}
$$

$$
\left[\begin{array}{ll}
\mathbf{U}_{1} & \mathbf{U}_{2}
\end{array}\right]
$$

$$
\left(\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right)
$$

$$
\binom{\mathbf{V}_{1}^{H}}{\mathbf{V}_{2}^{H}}
$$

$$
\left.\mathbf{A} \in \mathbb{K}^{m, n}, \operatorname{rank}(\mathbf{A})=r \leq \min \{m, n\}\right)
$$

$$
\begin{align*}
& \mathbf{U}_{1} \in \mathbb{K}^{m, r}, \quad \mathbf{U}_{2}=\mathbb{K}^{m, m-r}, \quad \Sigma_{r}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in \mathbb{R}^{r, r}, \quad \mathbf{V}_{1} \in \mathbb{K}^{n, r}, \quad \mathbf{V}_{2} \in \mathbb{K}^{k} \tag{3.2.2}\\
& \text { the columns of } \mathbf{U}_{1}, \mathbf{U}_{2}, \mathbf{V}_{1}, \mathbf{V}_{2} \text { are orthonormal. } \\
& \|\mathbf{A x}-\mathbf{b}\|_{2}=\left\|\left[\mathbf{U}_{1} \mathbf{U}_{2}\right]\left(\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right)\binom{\mathbf{V}_{1}^{H}}{\mathbf{V}_{2}^{H}} \mathbf{x}-\binom{\mathbf{b}_{1}}{\mathbf{b}_{2}}\right\|_{2}=\left\|\binom{\Sigma_{r} \mathbf{V}_{1}^{H} \mathbf{x}}{0}-\binom{\mathbf{U}_{1}^{H} \mathbf{b}_{1}}{\mathbf{U}_{2}^{H} \mathbf{b}_{2}}\right\|_{2}
\end{align*}
$$

Logical strategy: choose \mathbf{x} such that the first r components of $\binom{\Sigma_{r} \mathbf{V}_{1}^{H} \mathbf{x}}{0}-\binom{\mathbf{U}_{1}^{H} \mathbf{b}_{1}}{\mathbf{U}_{2}^{H} \mathbf{b}_{2}}$ vanish:

$$
\begin{equation*}
>\text { underdetermined linear system } \quad \Sigma_{r} \mathbf{V}_{1}^{H} \mathbf{x}=\mathbf{U}_{1}^{H} \mathbf{b}_{1} \tag{3.2.3}
\end{equation*}
$$

To fix a unique solution we appeal to the minimal norm condition in (3.0.3): solution x of (3.2.3) is unique up to contributions from $\operatorname{Ker}\left(\mathbf{V}_{1}\right)=\operatorname{Im}\left(\mathbf{V}_{2}\right)$. Since \mathbf{V} is orthogonal, the minimal norm solution is obtained by setting contributions from $\operatorname{Im}\left(\mathbf{V}_{2}\right)$ to zero, which amounts to choosing $\mathrm{x} \in$ $\operatorname{Im}\left(\mathbf{V}_{1}\right)$.

$$
\begin{equation*}
\text { solution } \quad \mathbf{x}=\left(\mathbf{V}_{1} \Sigma_{r}^{-1} \mathbf{U}_{1}^{H}\right) \mathbf{b}_{1} \quad, \quad\|\mathbf{r}\|_{2}=\left\|\mathbf{U}_{2}^{H} \mathbf{b}_{2}\right\|_{2} . \tag{3.2.4}
\end{equation*}
$$

Practical implementation:
"numerical rank" test:
$r=\max \left\{i: \sigma_{i} / \sigma_{1}>\mathrm{tol}\right\}$

Code 3.2.1: Solving LSQ problem via SVD
def Isqsvd(A,b,eps=1e-6):
$\mathrm{U}, \mathrm{s}, \mathrm{Vh}=\operatorname{svd}(\mathrm{A})$
$r=1+$ where(s/s[0]>eps)[0].max() \# numerical rank
$3 \quad r=1+$ incal \quad (s/s[0]>eps)[0].max() \#

```
\(y=\operatorname{dot}(\mathrm{Vh}[:,: r] . \mathrm{T}\), \(\operatorname{dot}(\mathrm{U}[:,: r] . \mathrm{T}, \mathrm{b}) / \mathrm{s}[: r])\)
return y
dot(U[:,:r].T,b)/s[:r])
```

5

Remark 3.2.2 (Pseudoinverse and SVD). $\quad \rightarrow$ Rem. 3.0.4

The solution formula (3.2.4) directly yields a representation of the pseudoinverse \mathbf{A}^{+}(\rightarrow Def. 3.0.2) of any matrix A:

Superior numerical stability (\rightarrow Def. ??) of orthogonal transformations methods:
D Use orthogonal transformations methods for least squares problems (3.0.3), whenever $\mathbf{A} \in$ $\mathbb{R}^{m, n}$ dense and n small.

SVD/QR-factorization cannot exploit sparsity:
D Use normal equations in the expanded form (3.1.3)/(3.1.4), when $\mathbf{A} \in \mathbb{R}^{m, n}$ sparse $(\rightarrow$ Def. ??) and m, n big.

3.3 Non-linear Least Squares

Example 3.3.1 (Non-linear data fitting (parametric statistics)).

Given: data points $\left(t_{i}, y_{i}\right), i=1, \ldots, m$ with measurements errors.
Known: $\quad y=f(t, \mathbf{x})$ through a function $f: \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}$ depending non-linearly and smoothly on parameters $\mathrm{x} \in \mathbb{R}^{n}$.

$$
\text { Example: } \quad f(t)=x_{1}+x_{2} \exp \left(-x_{3} t\right), \quad n=3 .
$$

Determine parameters by non-linear least squares data fitting:

$$
\begin{gather*}
\mathbf{x}^{*}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{m}\left|f\left(t_{i}, \mathbf{x}\right)-y_{i}\right|^{2}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|F(\mathbf{x})\|_{2}^{2}, \tag{3.3.1}\\
\text { with } \quad F(\mathbf{x})=\left(\begin{array}{c}
f\left(t_{1}, \mathbf{x}\right)-y_{1} \\
\vdots \\
f\left(t_{m}, \mathbf{x}\right)-y_{m}
\end{array}\right)
\end{gather*}
$$

Non-linear least squares problem

Given: $\quad F: D \subset \mathbb{R}^{n} \mapsto \mathbb{R}^{m}, \quad m, n \in \mathbb{N}, m>n$.
Find: $\quad \mathbf{x}^{*} \in D: \quad \mathbf{x}^{*}=\operatorname{argmin}_{\mathbf{x} \in D} \Phi(\mathbf{x}), \quad \Phi(\mathbf{x}):=\frac{1}{2}\|F(\mathbf{x})\|_{2}^{2}$.

Terminology: $D \hat{=}$ parameter space, $x_{1}, \ldots, x_{n} \hat{=}$ parameter.

As in the case of linear least squares problems (\rightarrow Rem. 3.0.3): a non-linear least squares problem is related to an overdetermined non-linear system of equations $F(\mathbf{x})=0$.

As for non-linear systems of equations (\rightarrow Chapter 1): existence and uniqueness of x^{*} in (3.3.2) has to be established in each concrete case!

We require "independence for each parameter":
\exists neighbourhood $\mathcal{U}\left(\mathrm{x}^{*}\right)$ such that $\quad D F(\mathrm{x})$ has full rank $n \quad \forall \mathrm{x} \in \mathcal{U}\left(\mathrm{x}^{*}\right)$.
(It means: the columns of the Jacobi matrix $D F(\mathbf{x})$ are linearly independent.)

If (3.3.3) is not satisfied, then the parameters are redundant in the sense that fewer parameters would be enough to model the same dependence (locally at x^{*}).

3.3.1 (Damped) Newton method

$$
\Phi\left(\mathbf{x}^{*}\right)=\min \Rightarrow \operatorname{grad} \Phi(\mathbf{x})=0, \quad \operatorname{grad} \Phi(\mathbf{x}):=\left(\frac{\partial \Phi}{\partial x_{1}}(\mathbf{x}), \ldots, \frac{\partial \Phi}{\partial x_{n}}(\mathbf{x})\right)^{T} \in \mathbb{R}^{n}
$$

Simple idea: use Newton's method $\left(\rightarrow\right.$ Sect. 1.4) to determine a zero of $\operatorname{grad} \Phi: D \subset \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$.

Newton iteration (1.4.1) for non-linear system of equations $\operatorname{grad} \Phi(\mathbf{x})=0$

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-H \Phi\left(\mathbf{x}^{(k)}\right)^{-1} \operatorname{grad} \Phi\left(\mathbf{x}^{(k)}\right), \quad(H \Phi(\mathbf{x})=\text { Hessian matrix }) . \tag{3.3.4}
\end{equation*}
$$

Expressed in terms of $F: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ from (3.3.2):
chain rule (1.4.2) $>\operatorname{grad} \Phi(\mathbf{x})=D F(\mathbf{x})^{T} F(\mathbf{x})$,
product rule (1.4.3) >HI(x):=D(grad$\Phi)(\mathbf{x})=D F(\mathbf{x})^{T} D F(\mathbf{x})+\sum_{j=1}^{m} F_{j}(\mathbf{x}) D^{2} F_{j}(\mathbf{x})$,

$$
(H \Phi(\mathbf{x}))_{i, k}=\sum_{j=1}^{n} \frac{\partial^{2} F_{j}}{\partial x_{i} \partial x_{k}}(\mathbf{x}) F_{j}(\mathbf{x})+\frac{\partial F_{j}}{\partial x_{k}}(\mathbf{x}) \frac{\partial F_{j}}{\partial x_{i}}(\mathbf{x})
$$

For Newton iterate $\mathbf{x}^{(k)}$: Newton correction $\mathrm{s} \in \mathbb{R}^{n}$ from LSE

$$
\begin{equation*}
\left(D F\left(\mathbf{x}^{(k)}\right)^{T} D F\left(\mathbf{x}^{(k)}\right)+\sum_{j=1}^{m} F_{j}\left(\mathbf{x}^{(k)}\right) D^{2} F_{j}\left(\mathbf{x}^{(k)}\right)\right) \mathbf{s}=-D F\left(\mathbf{x}^{(k)}\right)^{T} F\left(\mathbf{x}^{(k)}\right) . \tag{3.3.5}
\end{equation*}
$$

Remark 3.3.2 (Newton method and minimization of quadratic functional).

Newton's method (3.3.4) for (3.3.2) can be read as successive minimization of a local quadratic approximation of Φ :

$$
\begin{gather*}
\Phi(\mathbf{x}) \approx Q(\mathbf{s}):=\Phi\left(\mathbf{x}^{(k)}\right)+\operatorname{grad} \Phi\left(\mathbf{x}^{(k)}\right)^{T} \mathbf{s}+\frac{1}{2} \mathbf{s}^{T} H \Phi\left(\mathbf{x}^{(k)}\right) \mathbf{s} \tag{3.3.6}\\
\operatorname{grad} Q(\mathbf{s})=0 \Leftrightarrow H \Phi\left(\mathbf{x}^{(k)}\right) \mathbf{s}+\operatorname{grad} \Phi\left(\mathbf{x}^{(k)}\right)=0 \quad \Leftrightarrow \quad(3.3 .5)
\end{gather*}
$$

\rightarrow Another model function method $(\rightarrow$ Sect. 1.3.2) with quadratic model function for Q.

3.3.2 Gauss-Newton method

Idea: local linearization of $F: \quad F(x) \approx F(y)+D F(\mathbf{y})(\mathbf{x}-\mathbf{y})$
$>$ sequence of linear least squares problems

where x_{0} is an approximation of the solution x^{*} of (3.3.2).
$(\boldsymbol{\oplus}) \Leftrightarrow \underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\| \quad$ with $\quad \mathbf{A}:=D F\left(\mathbf{x}_{0}\right) \in \mathbb{R}^{m, n}, \quad \mathbf{b}:=F\left(\mathbf{x}_{0}\right)-D F\left(\mathbf{x}_{0}\right) \mathbf{x}_{0} \in \mathbb{R}^{m}$. This is a linear least squares problem of the form (3.0.3).

Note: $\quad(3.3 .3) \Rightarrow A$ has full rank, if x_{0} sufficiently close to x^{*}.

Note: Approach different from local quadratic approximation of Φ underlying Newton's method for (3.3.2), see Sect. 3.3.1, Rem. 3.3.2.

$$
\begin{align*}
& \text { Initial guess } \mathbf{x}^{(0)} \in D \\
& \mathbf{x}^{(k+1)}:=\mathbf{x}^{(k)}-\mathbf{s}, \quad \mathbf{s}:=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\|F\left(\mathbf{x}^{(k)}\right)-D F\left(\mathbf{x}^{(k)}\right) \mathbf{s}\right\|_{2} . \tag{3.3.7}\\
& \quad \text { linear least squares problem }
\end{align*}
$$

MATLAB-\used to solve linear least squares problem in each step:

Code 3.3.4: template for Gauss-Newton method

```
def gn(x,F,J,tol):
    s = solve(J(x),F(X)) #
    x = x-s
    while norm(s) > tol* norm(x): #
        s = solve(J(x),F(X)) #
        x = x-s
    return x
```

Comments on Code 3.3.2:

Argument x passes initial guess $\mathbf{x}^{(0)} \in \mathbb{R}^{n}$, argument F must be a handle to a function $F: \mathbb{R}^{n} \mapsto$ \mathbb{R}^{m}, argument J provides the Jacobian of F, namely $D F: \mathbb{R}^{n} \mapsto \mathbb{R}^{m, n}$, argument tol specifies the tolerance for termination

Line 4: iteration terminates if relative norm of correction is below threshold specified in tol.

Summary:
Advantage of the Gauss-Newton method : second derivative of F not needed. Drawback of the Gauss-Newton method : no local quadratic convergence.

Example 3.3.5 (Non-linear data fitting (II)). $\quad \rightarrow$ Ex. 3.3.1

Non-linear data fitting problem (3.3.1) for $f(t)=x_{1}+x_{2} \exp \left(-x_{3} t\right)$.

$$
F(\mathbf{x})=\left(\begin{array}{c}
x_{1}+x_{2} \exp \left(-x_{3} t_{1}\right)-y_{1} \\
\vdots \\
x_{1}+x_{2} \exp \left(-x_{3} t_{m}\right)-y_{m}
\end{array}\right): \mathbb{R}^{3} \mapsto \mathbb{R}^{m}, D F(\mathbf{x})=\left(\begin{array}{ccc}
1 & e^{-x_{3} t_{1}} & -x_{2} t_{1} e^{-x_{3} t_{1}} \\
\vdots & \vdots & \vdots \\
1 & e^{-x_{3} t_{m}} & -x_{2} t_{m} e^{-x_{3} t_{m}}
\end{array}\right)
$$

Numerical experiment:
convergence of the Newton method, damped Newton method (\rightarrow Section 1.4.4) and Gauss-Newton method for

```
t = r_[1:7:0.3]
y = x[0] + x[1]*exp (-x[2]*t)
y = y+0.1*(rand (len (y))-0.5)
``` different initial values


Gauss-Newton method:

\subsection*{3.3.3 Trust region method (Levenberg-Marquardt method)}

As in the case of Newton's method for non-linear systems of equations, see Sect. 1.4.4: often overshooting of Gauss-Newton corrections occurs.

Idea: damping of the Gauss-Newton correction in (3.3.7) using a penalty term
instead of \(\left\|F\left(\mathbf{x}^{(k)}\right)+D F\left(\mathbf{x}^{(k)}\right) \mathbf{s}\right\|^{2} \quad\) minimize \(\quad\left\|F\left(\mathbf{x}^{(k)}\right)+D F\left(\mathbf{x}^{(k)}\right) \mathbf{s}\right\|^{2}+\lambda\|\mathbf{s}\|_{2}^{2}\).
\(\lambda>0 \hat{=}\) penalty parameter (how to choose it ? \(\rightarrow\) heuristic)
\[
\lambda=\gamma\left\|F\left(\mathbf{x}^{(k)}\right)\right\|_{2} \quad, \quad \gamma:= \begin{cases}10 & , \text { if }\left\|F\left(\mathbf{x}^{(k)}\right)\right\|_{2} \geq 10 \\ 1 & , \text { if } 1<\left\|F\left(\mathbf{x}^{(k)}\right)\right\|_{2}<10 \\ 0.01 & , \text { if }\left\|F\left(\mathbf{x}^{(k)}\right)\right\|_{2} \leq 1\end{cases}
\]
- Modified (regularized) equation for the corrector s:
\[
\begin{equation*}
\left(D F\left(\mathbf{x}^{(k)}\right)^{T} D F\left(\mathbf{x}^{(k)}\right)+\lambda \mathbf{I}\right) \mathbf{s}=-D F\left(\mathbf{x}^{(k)}\right) F\left(\mathbf{x}^{(k)}\right) . \tag{3.3.8}
\end{equation*}
\]

\subsection*{3.4 Essential Skills Learned in Chapter 3}

You should know:
- several possibilities to solve linear least squares problems
- how to solve non-linear least squares problems```

