Integration of Ordinary Differential
 Equations (ODEs)

8.1 ODEs and initial value problems (IVPs) for ODEs

Definition 8.1.1 (ODEs and IVPs for ODEs). Let $d \in \mathbb{N}, D \subset \mathbb{R}^{d}, y_{0} \in D, I \in\{[0, \infty)\} \cup$ $\{[0, T]: T \in(0, \infty)\}$ and let $f: D \rightarrow \mathbb{R}^{d}$ be a continuous function. Then a function $y: I \rightarrow D$ is called solution of the ODE

$$
\begin{equation*}
\dot{y}(t)=f(y(t)), \quad t \in I \tag{8.1.1}
\end{equation*}
$$

if y is continuously differentiable and if it holds that $\forall t \in I: \dot{y}(t):=y^{\prime}(t)=f(y(t))$. Equation (8.1.2a) is called ODE, the function f is called right hand side (or vector field) of (the ODE) (8.1.2a) and the set D is called state space of (the ODE) (8.1.2a). Moreover, a function $y: I \rightarrow D$ is called solution of the IVP (ger.: Anfangswertproblem (AWP))

$$
\begin{align*}
& \dot{y}(t)=f(y(t)), \quad t \in I, \tag{8.1.2a}\\
& y(0)=y_{0} \tag{8.1.2b}
\end{align*}
$$

if y is continuously differentiable and if it holds that $y(0)=y_{0}$ and $\forall t \in[0, T]: y^{\prime}(t)=f(y(t))$. (8.1.2) is called IVP, (8.1.2b) is called initial condition of (the IVP) (8.1.2) and y_{0} is called initial value of (the IVP) (8.1.2).

Example 8.1.1 (Scalar linear ODEs). Let $\alpha, y_{0} \in \mathbb{R}$. Then the function $y:[0, \infty) \rightarrow \mathbb{R}$ given by $y(t)=e^{\alpha t} y_{0}$ for all $t \in[0, \infty)$ is a solution of the IVP

$$
\begin{align*}
& \dot{y}(t)=\alpha \cdot y(t), \quad t \in[0, \infty), \\
& y(0)=y_{0} . \tag{8.1.3}
\end{align*}
$$

Notation: Instead of

$$
\begin{equation*}
\dot{y}(t)=f(y(t)), \quad t \in I \tag{8.1.4}
\end{equation*}
$$

in Definition 8.1.1 one sometimes also writes

$$
\begin{equation*}
\dot{y}=f(y), \quad t \in I \tag{8.1.5}
\end{equation*}
$$

for short. Moreover, note in the setting of Definition 8.1.1 that a continuous function $y: I \rightarrow \mathbb{R}$ is a solution of the IVP (8.1.2) if and only if it satisfies

$$
\begin{equation*}
\forall t \in I: \quad y(t)=y_{0}+\int_{0}^{t} f(y(s)) d s \tag{8.1.6}
\end{equation*}
$$

Equation (8.1.6) is called integral representation of the IVP (8.1.2).

Theorem 8.1.2 (Existence and uniqueness of solutions of IVPs). Let $d \in \mathbb{N}$, let $D \subset \mathbb{R}^{d}$ be an open set, let $y_{0} \in D$, let $I \in\{[0, \infty)\} \cup\{[0, T]: T \in(0, \infty)\}$ and let $f: D \rightarrow \mathbb{R}^{d}$ be a locally Lipschitz continuous function. Then there exit at most one solution of the IVP

$$
\begin{align*}
& \dot{y}(t)=f(y(t)), \quad t \in I \\
& y(0)=y_{0} \tag{8.1.7}
\end{align*}
$$

and there exists a real number $T \in(0, \infty)$ such that the IVP

$$
\begin{align*}
& \dot{y}(t)=f(y(t)), \quad t \in[0, T], \tag{8.1.8}\\
& y(0)=y_{0}
\end{align*}
$$

has a unique solution.

Remark 8.1.2 (Conversion of non-autonomous ODEs into autonomous ODEs). Let $d \in \mathbb{N}$, $T \in(0, \infty), O \subset \mathbb{R}^{d}, D:=[0, T] \times O$, let $g:[0, T] \times O \rightarrow \mathbb{R}^{d}$ be a continuous function, let $x:[0, T] \rightarrow O, f: D \rightarrow \mathbb{R}^{d+1}$ and $y:[0, T] \rightarrow D$ be functions satisfying

$$
\begin{equation*}
f(t, v)=(1, g(t, v)) \quad \text { and } \quad y(t)=(t, x(t)) \tag{8.1.9}
\end{equation*}
$$

for all $(t, v) \in D$. Then x is continuously differentiable and satisfies

$$
\begin{equation*}
\forall t \in[0, T]: \quad \dot{x}(t)=g(t, x(t)) \tag{8.1.10}
\end{equation*}
$$

if and only if the function y is a solution of the ODE

$$
\begin{equation*}
\dot{y}(t)=f(y(t)), \quad t \in[0, T] . \tag{8.1.11}
\end{equation*}
$$

Clearly, this conversion can also be used to convert a "non-autonomous IVP" to an autonomous IVP in the sense of Definition 8.1.1.

Remark 8.1.3 (From higher order ODEs to first order systems). Let $n, d \in \mathbb{N}, T \in(0, \infty)$, let $x:[0, T] \rightarrow \mathbb{R}^{d}$ be an n-times continuously differentiable function and let $g: \mathbb{R}^{n d} \rightarrow \mathbb{R}^{d}$, $f: \mathbb{R}^{n d} \rightarrow \mathbb{R}^{n d}$ and $y:[0, T] \rightarrow \mathbb{R}^{n d}$ be continuous functions satisfying

$$
f\left(\begin{array}{c}
v_{0} \tag{8.1.12}\\
v_{1} \\
\vdots \\
v_{n-2} \\
v_{n-1}
\end{array}\right)=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n-1} \\
g\left(v_{1}, \ldots, v_{n-1}\right)
\end{array}\right) \quad \text { and } \quad y(t)=\left(\begin{array}{c}
x(t) \\
x^{\prime}(t) \\
\vdots \\
x^{(n-2)}(t) \\
x^{(n-1)}(t)
\end{array}\right)
$$

for all $v=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \in \mathbb{R}^{n d}$ and all $t \in[0, T]$. Then

$$
\begin{equation*}
\forall t \in[0, T]: \quad x^{(n)}(t)=g\left(x(t), x^{\prime}(t), x^{\prime \prime}(t), \ldots, x^{(n-1)}(t)\right) \tag{8.1.13}
\end{equation*}
$$

if and only if y is a solution of the ODE

$$
\begin{equation*}
\dot{y}(t)=f(y(t)), \quad t \in[0, T] . \tag{8.1.14}
\end{equation*}
$$

Clearly, this conversion can also be used to convert a "higher order IVP" to an IVP in the sense of Definition 8.1.1.

Example 8.1.4 (Predator-prey model).
[?, Sect. 1.1] \& [7, Sect. 1.1.1] initially proposed by Alfred J. Lotka in "The theory of autocatalytic chemical reactions" in 1910. Let $\alpha, \beta, \gamma, \delta \in(0, \infty)$. Then the Lotka-Volterra ODE reads as

$$
\begin{equation*}
\binom{\dot{y}_{1}(t)=\left(\alpha-\beta y_{2}(t)\right) y_{1}(t)}{\dot{y}_{2}(t)=\left(\delta y_{1}(t)-\gamma\right) y_{2}(t)}, \quad t \in[0, \infty) . \tag{8.1.15}
\end{equation*}
$$

The vector field $f:(0, \infty)^{2} \rightarrow \mathbb{R}^{2}$ satisfies $f(x)=\left(\alpha x_{1}-\beta x_{1} x_{2}, \delta x_{1} x_{2}-\gamma x_{2}\right)$ for all $x=\left(x_{1}, x_{2}\right) \in$ $(0, \infty)^{2}$ here.

A solution $y=\left(y_{1}, y_{2}\right):[0, \infty) \rightarrow(0, \infty)^{2}$ of (8.1.15) describes population sizes:
$u(t):=y_{1}(t) \rightarrow$ no. of prey at time $t \in[0, \infty)$, $v(t):=y_{2}(t) \rightarrow$ no. of predators at time $t \in[0, \infty)>$
vector field f for Lotka-Volterra ODE

Solution $y(t)=\left(y_{1}(t), y_{2}(t)\right), t \in[0,10]$, with initial condition $y(0)=(4,2)$

Solution curves for (8.1.15)

Parameter values for Figs. 44, 43: $\alpha=1, \beta=1, \delta=1, \gamma=2$

In this section assume that $T \in(0, \infty), d \in \mathbb{N}, y_{0} \in \mathbb{R}^{d}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and consider the IVP

$$
\begin{align*}
& \dot{y}(t)=f(y(t)), \quad t \in[0, T] \\
& y(0)=y_{0} . \tag{8.2.1}
\end{align*}
$$

Note that if $0 \leq t_{0}<t_{1} \leq T$ and if $y: I \rightarrow \mathbb{R}^{d}$ is a solution of the IVP (8.2.1), then the left rectangle quadrature formula gives the approximation

$$
\begin{align*}
y\left(t_{1}\right)=y\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} f(y(s)) d s & \approx y\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} f\left(y\left(t_{0}\right)\right) d s \tag{8.2.2}\\
& =y\left(t_{0}\right)+\left(t_{1}-t_{0}\right) \cdot f\left(y\left(t_{0}\right)\right) .
\end{align*}
$$

This approximation motivates the next definition.

Definition 8.2.1 ((Explicit) Euler method (Euler 1768)). Let $T \in(0, \infty), d, n \in \mathbb{N}, 0=t_{0}<$ $t_{1}<\ldots<t_{n-1}<t_{n}=T, y_{0} \in \mathbb{R}^{d}$ and let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a continuous function. Then a sequence $Y_{k} \in \mathbb{R}^{d}, k \in\{0,1, \ldots, n\}$, satisfying

$$
\begin{equation*}
Y_{0}=y_{0} \quad \text { and } \quad \forall k \in\{0,1, \ldots, n-1\}: \quad Y_{k+1}=Y_{k}+\left(t_{k+1}-t_{k}\right) \cdot f\left(Y_{k}\right) \tag{8.2.3}
\end{equation*}
$$

is called the explicit Euler approximation for the IVP (8.2.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{k+1}-t_{k}$ for all $k \in\{0,1, \ldots, n-1\}$, then a sequence $Y_{k} \in \mathbb{R}^{d}, k \in\{0,1, \ldots, n\}$, satisfying (8.2.3) is also called the explicit Euler approximation for the IVP (8.2.1) with step size h.

Next note that if $0 \leq t_{0}<t_{1} \leq T$ and if $y: I \rightarrow \mathbb{R}^{d}$ is a solution of the IVP (8.2.1), then a forward difference approximation of $y^{\prime}\left(t_{0}\right)$ gives that

$$
\begin{aligned}
& \frac{y\left(t_{1}\right)-y\left(t_{0}\right)}{\left(t_{1}-t_{0}\right)} \approx y^{\prime}\left(t_{0}\right)=f\left(y\left(t_{0}\right)\right) \\
& \quad \text { and this demonstrates that }
\end{aligned}
$$

$$
\begin{equation*}
y\left(t_{1}\right) \approx y\left(t_{0}\right)+\left(t_{1}-t_{0}\right) \cdot f\left(y\left(t_{0}\right)\right) \tag{8.2.5}
\end{equation*}
$$

This illustrates why the explicit Euler method is also called forward Euler method.

Moreover, if $0 \leq t_{0}<t_{1} \leq T$ and if $y: I \rightarrow \mathbb{R}^{d}$ is a solution of the IVP (8.2.1),
then the right rectangle quadrature formula gives the approximation

$$
\begin{align*}
y\left(t_{1}\right)=y\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} f(y(s)) d s & \approx y\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} f\left(y\left(t_{1}\right)\right) d s \tag{8.2.6}\\
& =y\left(t_{0}\right)+\left(t_{1}-t_{0}\right) \cdot f\left(y\left(t_{1}\right)\right) .
\end{align*}
$$

This approximation motivates the next definition.

Definition 8.2.2 (Implicit Euler method). Let $T \in(0, \infty), d, n \in \mathbb{N}, 0=t_{0}<t_{1}<\ldots<$ $t_{n-1}<t_{n}=T, y_{0} \in \mathbb{R}^{d}$ and let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a continuous function. Then a sequence $Y_{k} \in \mathbb{R}^{d}, k \in\{0,1, \ldots, n\}$, satisfying

$$
\begin{equation*}
Y_{0}=y_{0} \quad \text { and } \quad \forall k \in\{0,1, \ldots, n-1\}: \quad Y_{k+1}=Y_{k}+\left(t_{k+1}-t_{k}\right) \cdot f\left(Y_{k+1}\right) \tag{8.2.7}
\end{equation*}
$$

is called an implicit Euler approximation for the IVP (8.2.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{k+1}-t_{k}$ for all $k \in\{0,1, \ldots, n-1\}$, then a sequence $Y_{k} \in \mathbb{R}^{d}, k \in\{0,1, \ldots, n\}$, satisfying (8.2.7) is also called an implicit Euler approximation for the IVP (8.2.1) with step size h.

If $0 \leq t_{0}<t_{1} \leq T$ and if $y: I \rightarrow \mathbb{R}^{d}$ is a solution of the IVP (8.2.1),
then a backward difference approximation of $y^{\prime}\left(t_{1}\right)$ gives that

$$
\begin{aligned}
& \frac{y\left(t_{1}\right)-y\left(t_{0}\right)}{\left(t_{1}-t_{0}\right)} \approx y^{\prime}\left(t_{1}\right)=f\left(y\left(t_{1}\right)\right) \\
& \quad \text { and this demonstrates that }
\end{aligned}
$$

$$
\begin{equation*}
y\left(t_{1}\right) \approx y\left(t_{0}\right)+\left(t_{1}-t_{0}\right) \cdot f\left(y\left(t_{1}\right)\right) \tag{8.2.9}
\end{equation*}
$$

This illustrates why the implicit Euler method is also called backward Euler method.

The explicit and the implicit Euler method are under suitable assumptions special cases of so-called numerical one-step schemes for IVPs. More formally, for a function $\Psi:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $n \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{n}=T, y_{0} \in \mathbb{R}^{d}$ consider $Y_{k} \in \mathbb{R}^{d}, k \in\{0,1, \ldots, n\}$, given by

$$
\begin{equation*}
Y_{0}=y_{0} \quad \text { and } \quad \forall k \in\{0,1, \ldots, n-1\}: \quad Y_{k+1}=\Psi\left(t_{k+1}-t_{k}, Y_{k}\right) . \tag{8.2.10}
\end{equation*}
$$

The function Ψ is called one-step function and defines a numerical one-step scheme for the IVP (8.2.1). For instance, if

$$
\begin{equation*}
\forall(t, y) \in[0, T] \times \mathbb{R}^{d}: \quad \Psi(t, y)=y+t \cdot f(y), \tag{8.2.11}
\end{equation*}
$$

then $\left(Y_{k}\right)_{k \in\{0,1, \ldots, n\}}$ is the explicit Euler approximation for the IVP (8.2.1) on $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$.

8.3 Convergence of numerical one-step step methods

In this section assume that $T \in(0, \infty), d \in \mathbb{N}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), y_{0} \in \mathbb{R}^{d}$ and consider the IVP

$$
\begin{align*}
& \dot{y}(t)=f(y(t)), \quad t \in[0, T] \tag{8.3.1}\\
& y(0)=y_{0} .
\end{align*}
$$

Definition 8.3.1 (Algebraic convergence order of a numerical one-step scheme for IVPs). Let $T, p \in(0, \infty), d \in \mathbb{N}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, $y_{0} \in \mathbb{R}^{d}$, let $y:[0, T] \rightarrow \mathbb{R}^{d}$ be a solution of the IVP (8.3.1) and let $\Psi:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a function. Then we say that the numerical one-step scheme described by Ψ converges with algebraic order p to y if there exist $c, C \in(0, \infty)$ such that for all $n \in \mathbb{N}$, for all $0=t_{0}<t_{1}<\cdots<t_{n}=T$ fulfilling $\max _{k \in\{0,1, \ldots, n-1\}}\left|t_{k+1}-t_{k}\right| \leq c$ and for all $Y_{k} \in \mathbb{R}^{d}, k \in\{0,1, \ldots, n\}$, fulfilling (8.2.10) it holds that

$$
\begin{equation*}
\max _{k \in\{0,1, \ldots, n\}}\left\|y\left(t_{k}\right)-Y_{k}\right\| \leq C\left[\max _{k \in\{0,1, \ldots, n-1\}}\left|t_{k+1}-t_{k}\right|\right]^{p} \tag{8.3.2}
\end{equation*}
$$

Be aware of the differences between the notion "convergence with order p " (Chapter 1) and

Theorem 8.3.2 (Determination of the convergence speed of a numerical one-step method for IVPs). Let $T \in(0, \infty), d, p \in \mathbb{N}, y_{0} \in \mathbb{R}^{d}$, let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $\Psi:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be smooth functions satisfying

$$
\forall k \in\{0,1, \ldots, p\}: \quad\left(\frac{\partial^{k}}{\partial t^{k}} \Psi\right)(0, x)= \begin{cases}x & : k=0 \\ f(x) & : k=1 \\ f^{\prime}(x) f(x) & : k=2 \\ f^{\prime \prime}(x)(f(x), f(x))+f^{\prime}(x) f^{\prime}(x) f(x) & : k=3 \\ \vdots & \vdots\end{cases}
$$

and let $y:[0, T] \rightarrow \mathbb{R}^{d}$ be a solution of the IVP (8.3.1). Then the numerical one-step scheme described by Ψ converges with algebraic order p to y.

An idea in the proof of Theorem 8.3.2: Note in the setting of Theorem 8.3 .2 that a Taylor expansion of $y(t), t \in[0, T]$, in $t_{0} \in[0, T]$ gives

$$
\begin{align*}
& y\left(t_{0}+h\right) \\
& =y\left(t_{0}\right)+h y^{\prime}\left(t_{0}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(t_{0}\right)+\frac{h^{3}}{3!} y^{(3)}\left(t_{0}\right)+\ldots+\frac{h^{n}}{n!} y^{(n)}\left(t_{0}\right)+O\left(h^{(n+1)}\right) \\
& =y\left(t_{0}\right)+f\left(y\left(t_{0}\right)\right) h+\frac{h^{2}}{2!} f^{\prime}\left(y\left(t_{0}\right)\right) f\left(y\left(t_{0}\right)\right) \tag{8.3.3}\\
& \quad+\frac{h^{3}}{3!}\left[f^{\prime \prime}\left(y\left(t_{0}\right)\right)\left(f\left(y\left(t_{0}\right)\right), f\left(y\left(t_{0}\right)\right)\right)+f^{\prime}\left(y\left(t_{0}\right)\right) f^{\prime}\left(y\left(t_{0}\right)\right) f\left(y\left(t_{0}\right)\right)\right]+\ldots+\frac{h^{n}}{n!} y^{(n)}\left(t_{0}\right) \\
& \quad+O\left(h^{(n+1)}\right)
\end{align*}
$$

and that a Taylor expansion of $\Psi\left(t, y\left(t_{0}\right)\right), t \in[0, T]$, in 0 gives

$$
\begin{align*}
& \Psi\left(h, y\left(t_{0}\right)\right) \\
& =\Psi\left(0, y\left(t_{0}\right)\right)+h\left(\frac{\partial}{\partial t} \Psi\right)\left(0, y\left(t_{0}\right)\right)+\frac{h^{2}}{2!}\left(\frac{\partial^{2}}{\partial t^{2}} \Psi\right)\left(0, y\left(t_{0}\right)\right)+\ldots+\frac{h^{n}}{n!}\left(\frac{\partial^{n}}{\partial t^{n}} \Psi\right)\left(0, y\left(t_{0}\right)\right)+O\left(h^{(n+1)}\right)
\end{align*}
$$

Comparing (8.3.3) and (8.3.4) sketches the proof and illustrates the assumptions of Theorem 8.3.2.

Example 8.3.1 (Speed of convergence of the explicit Euler method). Let $T \in(0, \infty), d \in \mathbb{N}$, $y_{0} \in \mathbb{R}^{d}$, let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a smooth function and let $y:[0, T] \rightarrow \mathbb{R}^{d}$ be a solution of the IVP (8.3.1). Then the explicit Euler method for the IVP (8.3.1) converges with algebraic order 1 to y. Indeed, note that $\Psi:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ given by

$$
\begin{equation*}
\forall(t, x) \in[0, T] \times \mathbb{R}^{d}: \quad \Psi(t, x)=x+t \cdot f(x) \quad(\text { Explicit Euler method }) \tag{8.3.5}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\forall x \in \mathbb{R}^{d}: \quad \Psi(0, x)=x, \quad\left(\frac{\partial}{\partial t} \Psi\right)(0, x)=f(x), \quad\left(\frac{\partial^{2}}{\partial t^{2}} \Psi\right)(0, x)=0 \tag{8.3.6}
\end{equation*}
$$

and Theorem 8.3.2 hence shows that the numerical one-step scheme described by Ψ, i.e., the explicit Euler method, converges with algebraic order 1 to y.

8.4 Runge-Kutta methods

In this section assume that $T \in(0, \infty), d \in \mathbb{N}, y_{0} \in \mathbb{R}^{d}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and consider the IVP

$$
\begin{align*}
& \dot{y}(t)=f(y(t)), \quad t \in[0, T] \tag{8.4.1}\\
& y(0)=y_{0} .
\end{align*}
$$

Let $0 \leq t_{0}<t_{0}+h \leq T$ and let $y: I \rightarrow \mathbb{R}^{d}$ be a solution of the IVP (8.4.1). Then

$$
\begin{equation*}
y\left(t_{0}+h\right)=y\left(t_{0}\right)+\int_{t_{0}}^{t_{0}+h} f(y(s)) d s=y\left(t_{0}\right)+h \int_{0}^{1} f\left(y\left(t_{0}+s h\right)\right) d s . \tag{8.4.2}
\end{equation*}
$$

Idea of Runge-Kutta methods: approximate integral in (8.4.2) by means of m-point quadrature formula $(\rightarrow$ Sect. 7.1, defined on reference interval $[0,1]$) with quadrature nodes $c_{1}, \ldots, c_{m} \in[0,1]$ and quadrature weights $b_{1}, \ldots, b_{m} \in \mathbb{R}$ to obtain

$$
y\left(t_{0}+h\right)=y\left(t_{0}\right)+h \int_{0}^{1} f\left(y\left(t_{0}+s h\right)\right) d s \approx y\left(t_{0}\right)+h[\sum_{i=1}^{m} b_{i} f(\underbrace{y\left(t_{0}+c_{i} h\right)}_{\begin{array}{c}
\text { approximate } \tag{8.4.3}\\
\text { theses ectors via } \\
\text { bottstraping or } \\
\text { implicitness }
\end{array}})] .
$$

Example 8.4.1 (Explicit Euler method). If $m=1, c_{1}=0, b_{1}=1$ in (8.4.3) (Left rectangle rule), then (8.4.3) reduces to

$$
\begin{equation*}
y\left(t_{0}+h\right) \approx y\left(t_{0}\right)+h \cdot f\left(y\left(t_{0}\right)\right) \tag{8.4.4}
\end{equation*}
$$

and this approximation defines the explicit Euler scheme.

Example 8.4.2 (Heun method). If $m=2, c_{1}=0, c_{2}=1, b_{1}=b_{2}=\frac{1}{2}$ in (8.4.3) (Trapezoidal rule), then (8.4.3) reduces to

$$
\begin{equation*}
y\left(t_{0}+h\right) \approx y\left(t_{0}\right)+\frac{h}{2}\left[f\left(y\left(t_{0}\right)\right)+f\left(y\left(t_{0}+h\right)\right)\right] \tag{8.4.5}
\end{equation*}
$$

and using Example 8.4.1 results in

$$
\begin{equation*}
y\left(t_{0}+h\right) \approx y\left(t_{0}\right)+\frac{h}{2}\left[f\left(y\left(t_{0}\right)\right)+f\left(y\left(t_{0}\right)+h \cdot f\left(y\left(t_{0}\right)\right)\right)\right] . \tag{8.4.6}
\end{equation*}
$$

This approximation defines the Heun scheme (a Runge-Kutta method). If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ in (8.4.1) is smooth, then the Heun scheme for the IVP (8.4.1) converges with algebraic order 2 to the solution y of (8.4.1). Indeed, $\Psi:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ given by

$$
\begin{equation*}
\forall(t, x) \in[0, T] \times \mathbb{R}^{d}: \quad \Psi(t, x)=x+\frac{t}{2}[f(x)+f(x+t f(x))] \tag{8.4.7}
\end{equation*}
$$

satisfies

$$
\begin{align*}
\Psi(0, x) & =x, & \left(\frac{\partial}{\partial t} \Psi\right)(0, x) & =f(x), \\
\left(\frac{\partial^{2}}{\partial t^{2}} \Psi\right)(0, x) & =f^{\prime}(x) f(x), & \left(\frac{\partial^{3}}{\partial t^{3}} \Psi\right)(0, x) & =\frac{3}{2} f^{\prime \prime}(x)(f(x), f(x))
\end{align*}
$$

and Theorem 8.3.2 hence shows that the numerical one-step scheme described by Ψ, i.e., the Heun method, converges with algebraic order 2 to y.

Definition 8.4.1 (Heun method). Let $T \in(0, \infty), d, n \in \mathbb{N}, 0=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=$ $T, y_{0} \in \mathbb{R}^{d}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and let $Y_{l} \in \mathbb{R}^{d}, l \in\{0,1, \ldots, n\}$, satisfy $Y_{0}=y_{0}, \forall l \in\{0,1, \ldots, n-1\}: Y_{l+1}=Y_{l}+\frac{\left(t_{l+1}-t_{l}\right)}{2}\left[f\left(Y_{l}\right)+f\left(Y_{l}+\left(t_{l+1}-t_{l}\right) f\left(Y_{l}\right)\right)\right]$.

Then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called the Heun approximation for the IVP (8.4.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{l+1}-t_{l}$ for all $l \in\{0,1, \ldots, n-1\}$, then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called the Heun approximation for the IVP (8.4.1) with step size h.

Definition 8.4.2 (Runge-Kutta scheme (RK scheme). Let $T \in(0, \infty), d, n, m \in \mathbb{N}, 0=t_{0}<$ $t_{1}<\ldots<t_{n-1}<t_{n}=T, y_{0} \in \mathbb{R}^{d}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), b=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{R}^{m}, A=$ $\left(a_{i, j}\right)_{i, j \in\{1, \ldots, m\}} \in \mathbb{R}^{m, m}$ and let $Y_{l} \in \mathbb{R}^{d}, l \in\{0,1, \ldots, n\}$, and $\mathbf{K}_{l, 1}, \ldots, \mathbf{K}_{l, m} \in \mathbb{R}^{d}$, $l \in\{0,1, \ldots, n\}$, satisfy

$$
\begin{align*}
Y_{0}=y_{0} \quad \text { and } \quad \forall l \in\{0,1, \ldots, n-1\}: & Y_{l+1}=Y_{l}+\sum_{i=1}^{m} b_{i} \mathbf{K}_{l, i} \quad \text { and } \\
\forall l \in\{0,1, \ldots, n-1\}, i \in\{1,2, \ldots, m\}: & \mathbf{K}_{l, i}=\left(t_{l+1}-t_{l}\right) \cdot f\left(Y_{l}+\sum_{j=1}^{m} a_{i, j} \mathbf{K}_{l, j}\right) . \tag{8.4.10}
\end{align*}
$$

Then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called an (A, b)-Runge-Kutta approximation for the IVP (8.4.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{l+1}-t_{l}$ for all $l \in\{0,1, \ldots, n-1\}$, then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called an (A, b)-Runge-Kutta approximation for the IVP (8.4.1) with step size h.

If $a_{i, j}=0$ for all $1 \leq i \leq j \leq m$ in Definition 8.4.2 (A is a lower triangle matrix with zeros on the diagonal), then the RK scheme is explicit (otherwise implicit) and it holds for every

$$
\begin{align*}
\mathbf{K}_{l, 1} & =\left(t_{l+1}-t_{l}\right) \cdot f\left(Y_{l}\right) \\
\mathbf{K}_{l, 2} & =\left(t_{l+1}-t_{l}\right) \cdot f\left(Y_{l}+a_{2,1} \mathbf{K}_{l, 1}\right) \\
\mathbf{K}_{l, 3} & =\left(t_{l+1}-t_{l}\right) \cdot f\left(Y_{l}+a_{3,1} \mathbf{K}_{l, 1}+a_{3,2} \mathbf{K}_{l, 2}\right) \tag{8.4.11}\\
\quad & \vdots \\
\mathbf{K}_{l, m} & =\left(t_{l+1}-t_{l}\right) \cdot f\left(Y_{l}+a_{m, 1} \mathbf{K}_{l, 1}+\ldots+a_{m, m-1} \mathbf{K}_{l, m-1}\right) \\
Y_{l+1} & =Y_{l}+b_{1} \mathbf{K}_{l, 1}+\ldots+b_{m} \mathbf{K}_{l, m} .
\end{align*}
$$

$$
\text { The table } \left\lvert\, \begin{array}{ccccc}
a_{1,1} & & & \cdots & \tag{8.4.12}\\
a_{2,1} & \ddots & & & \\
\vdots & & & & a_{1, m} \\
a_{m, 1} & & \cdots & & a_{m, m-1}
\end{array} a_{m, m} \begin{aligned}
& \vdots \\
& \cline { 2 - 6 }
\end{aligned}\right.
$$

describing the RK scheme is called Butcher tableau (RK tableau) and m is called the number of stages of the RK scheme. For instance,
the RK scheme with 2 stages described through $\left\lvert\, \begin{array}{ll}0 & 0 \\ 1 & 0 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right.$ is the Heun method,
the Runge-Kutta scheme with 1 stage described through $\quad \frac{0}{1}$ is the explicit Euler method,
the Runge-Kutta scheme with 1 stage described through $\left\lvert\, \frac{1}{1} \quad\right.$ is the implicit Euler method.

Definition 8.4.3 ((Explicit) Midpoint method). Let $T \in(0, \infty), d, n \in \mathbb{N}, 0=t_{0}<t_{1}<\ldots<$ $t_{n-1}<t_{n}=T, y_{0} \in \mathbb{R}^{d}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and let $Y_{l} \in \mathbb{R}^{d}, l \in\{0,1, \ldots, n\}$, satisfy

$$
\begin{equation*}
Y_{0}=y_{0} \quad \text { and } \quad \forall l \in\{0,1, \ldots, n-1\}: \quad Y_{l+1}=Y_{l}+\left(t_{l+1}-t_{l}\right) f\left(Y_{l}+\frac{\left(t_{l+1}-t_{l}\right)}{2} f\left(Y_{l}\right)\right) \tag{8.4.16}
\end{equation*}
$$

Then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called the (explicit) midpoint approximation for the IVP (8.4.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{l+1}-t_{l}$ for all $l \in\{0,1, \ldots, n-1\}$, then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called the (explicit) midpoint approximation for the IVP (8.4.1) with step size h.

Definition 8.4.4 (Implicit midpoint method). Let $T \in(0, \infty), d, n \in \mathbb{N}, 0=t_{0}<t_{1}<\ldots<$ $t_{n-1}<t_{n}=T, y_{0} \in \mathbb{R}^{d}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and let $Y_{l} \in \mathbb{R}^{d}, l \in\{0,1, \ldots, n\}$, satisfy

$$
\begin{equation*}
Y_{0}=y_{0} \quad \text { and } \quad \forall l \in\{0,1, \ldots, n-1\}: \quad Y_{l+1}=Y_{l}+\left(t_{l+1}-t_{l}\right) f\left(\frac{Y_{l}+Y_{l+1}}{2}\right) . \tag{8.4.17}
\end{equation*}
$$

Then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called an implicit midpoint approximation for the IVP (8.4.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{l+1}-t_{l}$ for all $l \in\{0,1, \ldots, n-1\}$, then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called an implicit midpoint approximation for the IVP (8.4.1) with step size h.

Definition 8.4.5 (Implicit trapezoidal method). Let $T \in(0, \infty), d, n \in \mathbb{N}, 0=t_{0}<t_{1}<\ldots<$ $t_{n-1}<t_{n}=T, y_{0} \in \mathbb{R}^{d}, f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and let $Y_{l} \in \mathbb{R}^{d}, l \in\{0,1, \ldots, n\}$, satisfy

$$
\begin{equation*}
Y_{0}=y_{0} \quad \text { and } \quad \forall l \in\{0,1, \ldots, n-1\}: \quad Y_{l+1}=Y_{l}+\frac{\left(t_{l+1}-t_{l}\right)}{2}\left[f\left(Y_{l}\right)+f\left(Y_{l+1}\right)\right] . \tag{8.4.18}
\end{equation*}
$$

Then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called an implicit trapezoidal approximation for the IVP (8.4.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{l+1}-t_{l}$ for all $l \in\{0,1, \ldots, n-1\}$, then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called an implicit trapezoidal approximation for the IVP (8.4.1) with step size h.

Remark 8.4.3 (Explicit ODE integrator in MATLAB).
Syntax:

$$
[t, Y]=\text { ode } 45(\text { odefun,tspan, } \mathrm{y} 0) \text {; }
$$

odefun : Handle to a function of type $@(t, y) \leftrightarrow r$ r.h.s. $f(t, \mathbf{y}),(t, y) \in\left[t_{0}, T\right] \times \mathbb{R}^{d}$, tspan : vector $\left(t_{0}, T\right)$ specifyings initial t_{0} and final time $T>t_{0}$ for numerical integration y0 : (vector) passing initial value y_{0}

Return values:
$\mathrm{t}:$ vector $\left(t_{0}, t_{1}, \ldots, t_{n}\right)$ temporal grid with $t_{0}<t_{1}<t_{2}<\cdots<t_{n-1}=t_{n}=T$
$\mathrm{Y}: \operatorname{vector}\left(Y_{0}, Y_{1}, \ldots, Y_{n}\right)$ with $Y_{0}, Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{d}$ approximating under suitable assumptions the solution $y:\left[t_{0}, T\right] \rightarrow \mathbb{R}^{d}$ of corresponding IVP in the sense that $Y_{0} \approx y\left(t_{0}\right), Y_{1} \approx y\left(t_{1}\right), \ldots, Y_{n} \approx y\left(t_{n}\right)=y(T)$ for further details.

8.5 Stiff problems

8.5.1 Scalar linear model problem

Let $T, \alpha, y_{0} \in(0, \infty)$ and let $y:[0, T] \rightarrow \mathbb{R}$ be the solution of the IVP

$$
\begin{align*}
& \dot{y}(t)=-\alpha \cdot y(t), \quad t \in[0, T], \\
& y(0)=y_{0} . \tag{8.5.1}
\end{align*}
$$

It holds that $y(t)=e^{-\alpha t}$ for all $t \in[0, T]$ (cf. Example 8.1.1).
Thus $y(t) \geq 0$ decreases as t becomes larger.

Next for every $n \in \mathbb{N}$ let $\left(Y_{l}^{n}\right)_{l \in\{0,1, \ldots, n\}}$ be the explicit Euler approximation for the IVP (8.5.1) with step size $\frac{T}{n}$. Let $n \in \mathbb{N}$ and note that

$$
\begin{align*}
Y_{l+1}^{n} & =Y_{l}^{n}-\frac{T}{n} \cdot \alpha \cdot Y_{l}^{n}=\left[1-\frac{T \alpha}{n}\right] Y_{l}^{n}=\left[1-\frac{T \alpha}{n}\right]^{2} Y_{l-1}^{n} \\
& =\ldots=\left[1-\frac{T \alpha}{n}\right]^{(l+1)} Y_{0}^{n}=\left[1-\frac{T \alpha}{n}\right]^{(l+1)} y_{0} \tag{8.5.2}
\end{align*}
$$

for all $l \in\{0,1, \ldots, n-1\}$. If $\alpha \in(0, \infty)$ is large so that $\frac{T \alpha}{n}>2$, then $\left|Y_{l}^{n}\right| \geq 0$ increases as l
becomes larger. Thus, if $\alpha \in(0, \infty)$ is large, then the explicit Euler method applied to (8.5.1) does
not produces good approximation results unless the step size $\frac{T}{n}$ is extremly small (see http://en.wikipedia.org/wiki/Stiff_equation).

One way to overcome this lack of approximation is appropriate implicitness in the numerical scheme. For instance, for every $n \in \mathbb{N}$ let $\left(Z_{l}^{n}\right)_{l \in\{0,1, \ldots, n\}}$ be an (the!) implicit Euler approximation for the IVP (8.5.1) with step size $\frac{T}{n}$. Then note that

$$
\begin{aligned}
& \forall n \in \mathbb{N}: \quad \forall l \in\{0,1, \ldots, n-1\}: \quad Z_{l+1}^{n}=Z_{l}^{n}-\frac{T}{n} \cdot \alpha \cdot Z_{l+1}^{n} \quad \text { implies that } \\
& \forall n \in \mathbb{N}: \quad \forall l \in\{0,1, \ldots, n-1\}: \quad Z_{l+1}^{n}=\frac{Z_{l}^{n}}{\left[1+\frac{T \alpha}{n}\right]} \quad \text { and this shows that } \\
& \forall n \in \mathbb{N}: \quad \forall l \in\{0,1, \ldots, n\}: \quad Z_{l}^{n}=\frac{y_{0}}{\left[1+\frac{T \alpha}{n}\right]^{l}}
\end{aligned}
$$

Thus, for every $\alpha \in(0, \infty)$ and every $n \in \mathbb{N}$ it holds that $Z_{l}^{n} \geq 0$ decreases as l becomes larger.
The implicit Euler method thus preserves this behavior of the exact solution of the IVP (8.5.1).

8.5.2 Semi-implicit Runge-Kutta methods

Let $T \in(0, \infty), d, n \in \mathbb{N}, y_{0} \in \mathbb{R}^{d}, A \in \mathbb{R}^{d, d}, g \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$,
let $f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ satisfy $f(x)=A x+g(x)$ for all $x \in \mathbb{R}^{d}$ and consider the IVP

$$
\begin{align*}
\dot{y}(t) & =f(y(t)), \quad t \in[0, T] \tag{8.5.3}\\
y(0) & =y_{0}
\end{align*}
$$

which can also be written as

$$
\begin{align*}
\dot{y}(t) & =A y(t)+g(y(t)), \quad t \in[0, T] \tag{8.5.4}\\
y(0) & =y_{0}
\end{align*}
$$

Definition 8.5.1 (Linear implicit Euler method). Let $T \in(0, \infty), d, n \in \mathbb{N}, 0=t_{0}<t_{1}<\ldots<$ $t_{n-1}<t_{n}=T, y_{0} \in \mathbb{R}^{d}, g \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), A \in \mathbb{R}^{d, d}$ and let $Y_{l} \in \mathbb{R}^{d}, l \in\{0,1, \ldots, n\}$, satisfy
$Y_{0}=y_{0} \quad$ and $\quad \forall l \in\{0,1, \ldots, n-1\}: Y_{l+1}=Y_{l}+\left(t_{l+1}-t_{l}\right) A Y_{l+1}+\left(t_{l+1}-t_{l}\right) g\left(Y_{l}\right)$.

Then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called an linear implicit Euler method for the IVP (8.4.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{l+1}-t_{l}$ for all $l \in\{0,1, \ldots, n-1\}$, then $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called an linear implicit Euler method for the IVP (8.4.1) with step size h.
\qquad

Definition 8.5.2 (Linear implicit trapezoidal (linear implicit Crank-Nicolson) combined with Heun method). Let $T \in(0, \infty), d, n \in \mathbb{N}, 0=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=T, y_{0} \in \mathbb{R}^{d}$, $g \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), A \in \mathbb{R}^{d, d}$ and let $Y_{l} \in \mathbb{R}^{d}, l \in\{0,1, \ldots, n\}$, satisfy

$$
\begin{array}{r}
Y_{0}=y_{0} \quad \text { and } \quad \forall l \in\{0,1, \ldots, n-1\}: \\
Y_{l+1}=Y_{l}+\frac{\left(t_{l+1}-t_{l}\right)}{2}\left[A\left[Y_{l}+Y_{l+1}\right]+g\left(Y_{l}\right)+g\left(Y_{l}+\left(t_{l+1}-t_{l}\right) g\left(Y_{l}\right)\right)\right] . \tag{8.5.6}
\end{array}
$$

Then we call $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ an linear implicit trapezoidal-Heun approximation for the IVP (8.4.1) on (the grid) $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Moreover, if $h=t_{l+1}-t_{l}$ for all $l \in\{0,1, \ldots, n-1\}$, then we call $\left(Y_{l}\right)_{l \in\{0,1, \ldots, n\}}$ an linear implicit trapezoidal-Heun approximation for the IVP (8.4.1) with step size h.

A standard monograph for the numerical integration of stiff ODEs is [E. Hairer and G. Wanner, Solving ordinary differential equations. II. Stiff and differential-algebraic problems. Springer Series in Computational Mathematics, 14. Springer-Verlag, Berlin, 1991 [9]].

8.6 Structure preserving numerical integration

Example 8.6.1 (Explicit and implicit Euler method for long-time evolution for a specific idealized frictionless spring pendulum without mass). Let $T \in(0, \infty)$, $y_{0} \in \mathbb{R}^{2}$, let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f\left(x_{1}, x_{2}\right)=\left(x_{2},-x_{1}\right)$ for all $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and let $y=\left(y_{1}, y_{2}\right):[0, T] \rightarrow \mathbb{R}^{2}$ be the solution of the IVP

$$
\begin{align*}
& \dot{y}(t)=f(y(t)), \quad t \in[0, T] \tag{8.6.1}\\
& y(0)=y_{0} \tag{F}
\end{align*}
$$

Then note that the identity

$$
\begin{equation*}
\forall x \in \mathbb{R}^{2}: \quad\langle x, f(x)\rangle=0 \tag{8.6.2}
\end{equation*}
$$

implies that $\forall t \in[0, T]:\|y(t)\|_{2}^{2}=\|y(0)\|_{2}^{2}$ (Enegery $\frac{1}{2}\|\cdot\|_{2}^{2}$ remains constant).

40 timesteps on $[0,10.000000]$

explicit Euler: numerical solution flyes away implicit Euler: numerical solution falls off into the center

Can we avoid the energy drift?

Yes: by using other suitable numerical methods instead of the explicit/implicit Euler method.

8.6.1 Implicit midpoint method

Consider the setting of Example 8.6.1, let $n \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{n}=T$ and let $Y_{l} \in \mathbb{R}^{2}, l \in\{0,1, \ldots, n\}$, be an implicit midpoint approximation for the IVP (8.6.1) on the grid $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$. Then note that the identity (8.6.2) implies that for every $l \in\{0,1, \ldots, n\}$ it holds that

$$
\begin{align*}
\left\|Y_{l+1}\right\|_{2}^{2} & =\left\langle Y_{l+1}, Y_{l+1}\right\rangle=\left\langle Y_{l}+Y_{l+1}, Y_{l+1}\right\rangle-\left\langle Y_{l}, Y_{l+1}\right\rangle=2\left\langle\frac{Y_{l}+Y_{l+1}}{2}, Y_{l+1}\right\rangle-\left\langle Y_{l}, Y_{l+1}\right\rangle \\
& =2\left\langle\frac{Y_{l}+Y_{l+1}}{2}, Y_{l}+\left(t_{l+1}-t_{l}\right) f\left(\frac{Y_{l}+Y_{l+1}}{2}\right)\right\rangle-\left\langle Y_{l}, Y_{l+1}\right\rangle \\
& =2\left\langle\frac{Y_{l}+Y_{l+1}}{2}, Y_{l}\right\rangle+2\left(t_{l+1}-t_{l}\right)\left\langle\frac{Y_{l}+Y_{l+1}}{2}, f\left(\frac{Y_{l}+Y_{l+1}}{2}\right)\right\rangle-\left\langle Y_{l}, Y_{l+1}\right\rangle \\
& =2\left\langle\frac{Y_{l}+Y_{l+1}}{2}, Y_{l}\right\rangle-\left\langle Y_{l}, Y_{l+1}\right\rangle=\left\langle Y_{l}+Y_{l+1}, Y_{l}\right\rangle-\left\langle Y_{l}, Y_{l+1}\right\rangle \\
& =\left\|Y_{l}\right\|_{2}^{2} . \quad \quad \quad \text { Energy remains constant!) } \tag{8.6.3}
\end{align*}
$$

Example 8.6.2 (Implicit midpoint method for long-time evolution for a specific idealized frictionless spring pendulum without mass).

Implicit midpoint rule: perfect conservation of energy !

8.6.2 Störmer-Verlet method [8]

E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the

Let $T \in(0, \infty), d \in \mathbb{N}, q_{0}, p_{0} \in \mathbb{R}^{d}, g \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$,
let $f \in C\left(\mathbb{R}^{2 d}, \mathbb{R}^{2 d}\right)$ satisfy $f(q, p)=(p, g(q))$ for all $q, p \in \mathbb{R}^{d}$ and consider the IVP

$$
\begin{align*}
\dot{y}(t) & =f(y(t)), \quad t \in[0, T] \tag{8.6.4}\\
y(0) & =\left(q_{0}, p_{0}\right)
\end{align*}
$$

According to Remark 8.1.3, the IVP (8.6.4) can be reformulated as the second-order IVP

$$
\begin{align*}
\ddot{q}(t) & =g(q(t)), \quad t \in[0, T] \\
q(0) & =q_{0} \tag{8.6.5}\\
\dot{q}(0) & =p_{0}
\end{align*}
$$

If $t \in(0, T)$ and if $h \in(0, \infty)$ is sufficiently small, then
$g(q(t))=\ddot{q}(t) \approx \frac{\dot{q}(t+h)-\dot{q}(t)}{h} \approx \frac{\left[\frac{q(t+h)-q(t)}{h}\right]-\left[\frac{q(t)-q(t-h)}{h}\right]}{h}=\frac{q(t+h)-2 q(t)+q(t-h)}{h^{2}}$ - D-ITET
(Second order central difference approximation). This motivates the next definition.

Definition 8.6.1 (Störmer-Verlet method for second-order IVPs). Let $T \in(0, \infty), d, n \in \mathbb{N}$, $h=\frac{T}{n}, q_{0}, p_{0} \in \mathbb{R}^{d}, g \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and let $Q_{l} \in \mathbb{R}^{d}, l \in\{0,1, \ldots, n\}$, satisfy

$$
\begin{align*}
Q_{0}=q_{0} & , \quad Q_{1}=q_{0}+h p_{0}+h^{2} g\left(q_{0}\right) \quad \text { and } \\
\forall l \in\{1, \ldots, n-1\}: & Q_{l+1}=-Q_{l-1}+2 Q_{l}+h^{2} g\left(Q_{l}\right) . \tag{8.6.6}
\end{align*}
$$

Then $\left(Q_{l}\right)_{l \in\{0,1, \ldots, n\}}$ is called the Störmer-Verlet approximation for the IVP (8.6.5) with step size h.

8.7 Splitting methods

See, e.g., [P. Imkeller and C. Lederer, On the cohomology of flows of stochastic and random differential equations. Probab. Theory Related Fields 120 (2001), no. 2, 209-235 [11]] for the notion of completeness for vector fields.

Definition 8.7.1 (Forward completeness). Let $d \in \mathbb{N}$. A function $f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is called forward complete if it holds for every $y_{0} \in \mathbb{R}^{d}$ that the IVP

$$
\begin{align*}
\dot{y}(t) & =f(y(t)), \quad t \in[0, \infty), \tag{8.7.1}\\
y(0) & =y_{0}
\end{align*}
$$

has a unique solution $y:[0, \infty) \rightarrow \mathbb{R}^{d}$.

Definition 8.7.2 (Solution flows of forward complete vector fields). Let $d \in \mathbb{N}$ and let $f \in$ $C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be forward complete. Then we denote by $\Phi^{f}:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ the unique function with the property that for every $y_{0} \in \mathbb{R}^{d}$ it holds that the function $[0, \infty) \ni t \mapsto \Psi_{t}^{f}\left(y_{0}\right) \in \mathbb{R}^{d}$ is the solution of the IVP

$$
\begin{align*}
\dot{y}(t) & =f(y(t)), \quad t \in[0, \infty), \tag{8.7.2}\\
y(0) & =y_{0} .
\end{align*}
$$

The function Ψ^{f} is called forward solution flow associated to (the vector field) f.

Idea of splitting methods: Let $d \in \mathbb{N}, T \in(0, \infty), y_{0} \in \mathbb{R}^{d}$ let $f \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be forward complete and suppose we want to derive a one-step numerical scheme to approximate
the solution $y:[0, T] \rightarrow \mathbb{R}^{d}$ of the IVP

$$
\begin{align*}
\dot{y}(t) & =f(y(t)), \quad t \in[0, T] \tag{8.7.3}\\
y(0) & =y_{0}
\end{align*}
$$

We are thus interested in an approximation of Φ_{h}^{f} for small $h \in(0, T]$. For instance, the explicit Euler method uses the approximation

$$
\begin{equation*}
\Phi_{h}^{f}(x) \approx x+h \cdot f(x) \tag{8.7.4}
\end{equation*}
$$

for small $h \in(0, T]$. Splitting-approach: Assume that there are $a, b \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
f=a+b . \tag{8.7.5}
\end{equation*}
$$

Then the so-called Lie-Trotter splitting suggests the approximation

$$
\begin{equation*}
\Phi_{h}^{f}(x) \approx \Phi_{h}^{a}\left(\Phi_{h}^{b}(x)\right) \quad \text { (i.e., } \Phi_{h}^{f} \approx \Phi_{h}^{a} \circ \Phi_{h}^{b} \text { Lie-Trotter splitting; H. F. Trotter 1959) } \tag{8.7.6}
\end{equation*}
$$

for $x \in \mathbb{R}^{d}$ and small $h \in(0, T]$ and the so-called Strang splitting suggests the approximation
$\Phi_{h}^{f}(x) \approx \Phi_{h / 2}^{a}\left(\Phi_{h}^{b}\left(\Phi_{h / 2}^{a}(x)\right)\right) \quad$ (i.e., $\Phi_{h}^{f} \approx \Phi_{h / 2}^{a} \circ \Phi_{h}^{b} \circ \Phi_{h / 2}^{a}$ Strang splitting; G. Strang 1968)
for $x \in \mathbb{R}^{d}$ and small $h \in(0, T]$. For example, let $A \in \mathbb{R}^{d \times d}$ and suppose that $a(x)=A x$ for all $x \in \mathbb{R}^{d}$. Combining the approximation (8.7.6) with the explicit Euler method then results in the numerical one-step scheme

$$
\begin{equation*}
\Phi_{h}^{f}(x) \approx e^{A h}(x+h \cdot b(x)) \tag{8.7.8}
\end{equation*}
$$

for $x \in \mathbb{R}^{d}$ and $h \in(0, T]$. Moreover, combining the approximation (8.7.7) with the explicit midpoint method results in the numerical one-step scheme

$$
\begin{equation*}
\Phi^{f}(x) \approx e^{A_{2}}\left(e^{A \frac{h}{2}} x+h \cdot b\left(e^{A_{2}} x+\frac{h}{2} \cdot b\left(e^{A \frac{h}{2}} x\right)\right)\right) \quad \text { for } x \in \mathbb{R}^{d} \text { and } h \in(0, T] . \tag{8.7.9}
\end{equation*}
$$

See, e.g., Section II. 5 in [E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2002. [7]] for a more elaborate and appropriate treatment of splitting methods.

