Solutions Sheet 1

1./2. Any Algebraic Geometry textbook.
3. This can be found in a slightly different language in Hartshorne Proposition II.2.2.
4. Cover $\mathbb{C P}^{n}$ with the standard covering $U_{i}=\left\{x_{i} \neq 0\right\}$ and recall that U_{i} is isomorphic to \mathbb{C}^{n} with the coordinates $\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}$. Hence given an algebraic function f on $\mathbb{C P}^{n}$, we know that $f_{\mid U_{i}}$ is a polynomial f_{i} in $\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}$ (e.g. by problem 3).
Now consider two open subsets, lets say, U_{0} and U_{1}. On the intersection we must have

$$
f_{0}=\sum_{I} a_{I}\left(\frac{x_{1}}{x_{0}}\right)^{i_{1}} \ldots\left(\frac{x_{n}}{x_{0}}\right)^{i_{n}}=\sum_{J} b_{J}\left(\frac{x_{0}}{x_{1}}\right)^{j_{1}}\left(\frac{x_{2}}{x_{1}}\right)^{j_{2}} \ldots\left(\frac{x_{n}}{x_{1}}\right)^{i_{n}}=f_{1}
$$

The left hand side has only terms with positive x_{i} exponents, while the right hand side has only negative ones. This shows $a_{I}=0$ except for the constant term. Therefore $f_{0}=f_{\mid U_{0}}=$ const. But with the same argument also $f_{i}=$ const for all i. As they agree on the overlap, we are done.
5. Let x, y be the two coordinates of \mathbb{C}^{2}. Let $D(x)=\left\{p \in \mathbb{C}^{2} \mid x(p) \neq 0\right\}$, i.e. with nonvanishing first coordinate. Let us first calculate the regular functions on $D(x)$. As an variety $D(x)$ is isomorphic to $Y=V(x z-1) \subset \mathbb{C}^{3}$ and so the ring of regular function on $D(x)$ is given by $\mathbb{C}[x, y, z] /(x z-1)=\mathbb{C}\left[x, y, \frac{1}{x}\right]$. Similar statements apply for $D(y)$ and $D(x y)=D(x) \cap D(y)$.
Now consider $X=\mathbb{C}^{2} \backslash\{(0,0)\}$ and note that $X=D(x) \cup D(y)$. We can identify regular functions on X with regular functions on $D(x)$ and $D(y)$ that coincide on their common domain of definition, namely $D(x y)=D(x) \cap D(y)$. As the restriction map $\mathbb{C}\left[x, y, \frac{1}{x}\right] \longrightarrow \mathbb{C}\left[x, y, \frac{1}{x y}\right]=\mathbb{C}\left[x, y, \frac{1}{x}, \frac{1}{y}\right]$ is an injection, we have reduced the problem to calculating the intersection $\mathbb{C}\left[x, y, \frac{1}{x}\right] \cap \mathbb{C}\left[x, y, \frac{1}{y}\right]$ considered as subrings of $\mathbb{C}\left[x, y, \frac{1}{x}, \frac{1}{y}\right]$. Given such a g, we see that its denominator must be a constant and so the intersection is just $\mathbb{C}[x, y]$. Therefore we have found that the ring of regular functions on X is just $\mathbb{C}[x, y]$.

