Serie 1

Quotient Rings, ADJOINING ELEMENTS AND PRODUCT RINGS

1. Consider the homomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Z}$ for which $x \mapsto 1$. Explain in this case what the Correspondence Theorem says about ideals of $\mathbb{Z}[x]$.
2. (a) Let $\mathfrak{I} \subset \mathbb{Z}[x]$ be the ideal generated by $x-3$ and 7 . Show that for every $f(x) \in \mathbb{Z}[x]$, there is an integer $0 \leqslant \alpha \leqslant 6$ such that $f(x)-\alpha \in \mathfrak{I}$. Conclude that the quotient ring $\mathbb{Z}[x] / \mathfrak{I}$ is isomorphic to $\mathbb{Z} /(7)$.
(b) Find α explicitly for $f(x)=x^{250}+15 x^{14}+x^{2}+5$. (Hint : you may want to use here Fermat's Little Theorem, see e.g. http://www.math.ethz.ch/ education/bachelor/lectures/hs2013/math/algebra1/Exercise6.pdf).
(c) Describe the ring obtained from $\mathbb{Z} /(12)$ by adjoining an inverse of 2 .
3. Let $R=K[t]$ be a polynomial ring over a field K and consider the ring $R^{\prime}=$ $R[x] /(t x-1)$ obtained by adjoining an inverse of t to R. Prove that R^{\prime} can be identified as the ring of Laurent polynomials.
4. Let \mathfrak{I} and \mathfrak{J} be ideals of a ring R such that $\mathfrak{I}+\mathfrak{J}=R$. Prove :
(a) $\mathfrak{I} \mathfrak{J}=\mathfrak{I} \cap \mathfrak{J}$.
(b) (the Chinese Remainder Theorem) For any $a, b \in R$, there is an element $x \in R$ such that $x \equiv a \bmod \mathfrak{I}$ and $x \equiv b \bmod \mathfrak{J}$.
(c) If $\mathfrak{I} \mathfrak{J}=0$, then R is isomorphic to the product ring $R / \mathfrak{I} \times R / \mathfrak{J}$.
(d) Describe the idempotent elements corresponding to the above product decomposition.
5. Andy, Esther and Nick are flatmates in a WOKO and want to have pizza all together one night. However, they all have their quirks : Andy eats pizza every fifth day, Esther every 7th and Nick every 11th. Given that in 2014, Nick and Andy had their first pizza together on January 3 and Esther had pizza on January 4, on what day(s) of 2014 will they all manage to have pizza together ?
6. Is $\mathbb{Z} /(6)$ isomorphic as a ring to the product $\mathbb{Z} /(2) \times \mathbb{Z} /(3)$? What about $\mathbb{Z} /(8)$ and $\mathbb{Z} /(2) \times \mathbb{Z} /(4)$?
