Algebra II

Serie 1

QUOTIENT RINGS, ADJOINING ELEMENTS AND PRODUCT RINGS

- 1. Consider the homomorphism $\mathbb{Z}[x] \to \mathbb{Z}$ for which $x \mapsto 1$. Explain in this case what the Correspondence Theorem says about ideals of $\mathbb{Z}[x]$.
- 2. (a) Let $\mathfrak{I} \subset \mathbb{Z}[x]$ be the ideal generated by x 3 and 7. Show that for every $f(x) \in \mathbb{Z}[x]$, there is an integer $0 \leq \alpha \leq 6$ such that $f(x) \alpha \in \mathfrak{I}$. Conclude that the quotient ring $\mathbb{Z}[x]/\mathfrak{I}$ is isomorphic to $\mathbb{Z}/(7)$.
 - (b) Find α explicitly for $f(x) = x^{250} + 15x^{14} + x^2 + 5$. (Hint : you may want to use here Fermat's Little Theorem, see e.g. http://www.math.ethz.ch/education/bachelor/lectures/hs2013/math/algebra1/Exercise6.pdf).
 - (c) Describe the ring obtained from $\mathbb{Z}/(12)$ by adjoining an inverse of 2.
- 3. Let R = K[t] be a polynomial ring over a field K and consider the ring R' = R[x]/(tx-1) obtained by adjoining an inverse of t to R. Prove that R' can be identified as the ring of Laurent polynomials.
- 4. Let \mathfrak{I} and \mathfrak{J} be ideals of a ring R such that $\mathfrak{I} + \mathfrak{J} = R$. Prove :
 - (a) $\Im \mathfrak{J} = \Im \cap \mathfrak{J}$.
 - (b) (the Chinese Remainder Theorem) For any $a, b \in R$, there is an element $x \in R$ such that $x \equiv a \mod \mathfrak{I}$ and $x \equiv b \mod \mathfrak{J}$.
 - (c) If $\Im \mathfrak{J} = 0$, then R is isomorphic to the product ring $R/\mathfrak{I} \times R/\mathfrak{J}$.
 - (d) Describe the idempotent elements corresponding to the above product decomposition.
- 5. Andy, Esther and Nick are flatmates in a WOKO and want to have pizza all together one night. However, they all have their quirks : Andy eats pizza every fifth day, Esther every 7th and Nick every 11th. Given that in 2014, Nick and Andy had their first pizza together on January 3 and Esther had pizza on January 4, on what day(s) of 2014 will they all manage to have pizza together ?
- 6. Is $\mathbb{Z}/(6)$ isomorphic as a ring to the product $\mathbb{Z}/(2) \times \mathbb{Z}/(3)$? What about $\mathbb{Z}/(8)$ and $\mathbb{Z}/(2) \times \mathbb{Z}/(4)$?