D-MATH
Prof. Brent Doran

Algebra II
Exercise sheet 10

Relating roots and coefficients of a polynomial : ELEMENTARY SYMMETRIC POLYNOMIALS AND DISCRIMINANT

1. Solve the following system in \mathbb{C}

$$
\begin{cases}z_{1}+z_{2}+z_{3} & =1 \\ z_{1} z_{2} z_{3} & =1 \\ \left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right| & =1 .\end{cases}
$$

2. Consider $f(x)=x^{3}-2 x+5$ and denote $\alpha_{1}, \alpha_{2}, \alpha_{3}$ its complex roots.
(a) Compute $\alpha_{1}^{4}+\alpha_{2}^{4}+\alpha_{3}^{4}$.
(b) Exhibit a polynomial $p(x) \in \mathbb{Z}[x]$ of degree 3 and roots $\alpha_{1}^{2}, \alpha_{2}^{2}, \alpha_{3}^{2}$.
3. Let $w_{k}=u_{1}^{k}+\cdots+u_{n}^{k}$.
(a) Prove Newton identities:

$$
w_{k}-s_{1} w_{k-1}+\cdots \pm s_{k-1} w_{1} \mp k s_{k}=0 .
$$

(b) Do w_{1}, \ldots, w_{n} generate the ring of symmetric functions?
4. Let $f(x) \in \mathbb{R}[x]$ be a monic polynomial of degree n, with roots $\alpha_{1}, \ldots, \alpha_{n}$.
(a) Let N be the number of real roots of f. Show that

$$
\begin{cases}N \equiv n \bmod 4 & \text { if } D(f)>0 \\ N \equiv n-2 \bmod 4 & \text { if } D(f)<0\end{cases}
$$

(b) How many real roots can $x^{3}+p x+q$ have ?

