D-MATH
Prof. Brent Doran

Algebra II

FS 2014

Exercise sheet 11

Galois groups

1. Show that the polynomials $\left(x^{2}-2 x-2\right)\left(x^{2}+1\right)$ and $x^{5}-3 x^{3}+x^{2}-3$ have the same splitting field over \mathbb{Q}. What is the degree of the field extension?
2. Let F be a field. Show that the field extension $F(x) / F$ admits a F-endomorphism of $F(x)$ that is not an automorphism.
3. Let $f(x)$ be an irreducible polynomial over a field F and denote by K its splitting field. Prove that if the Galois group $G=\operatorname{Gal}(K / F)$ is abelian, then $K=F(\alpha)$ for any root α of $f(x)$.
4. Exhibit a polynomial $f(x) \in \mathbb{Q}[x]$ of even degree $n \geqslant 2$ with Galois group $\mathbb{Z} /(2)$.
5. Consider the group

$$
H=\left\{\sigma_{a}: a \in \mathbb{C}, \sigma_{a}\left(\frac{g(x)}{h(x)}\right)=\frac{g(x+a)}{h(x+a)}\right\}
$$

of \mathbb{C}-automorphisms of the field $\mathbb{C}(t)$ of rational functions. Show that $\mathbb{C}(t)^{H}=\mathbb{C}$.

