Algebra II

FS 2014

Exercise sheet 11

GALOIS GROUPS

- 1. Show that the polynomials $(x^2 2x 2)(x^2 + 1)$ and $x^5 3x^3 + x^2 3$ have the same splitting field over \mathbb{Q} . What is the degree of the field extension ?
- 2. Let F be a field. Show that the field extension F(x)/F admits a F-endomorphism of F(x) that is not an automorphism.
- 3. Let f(x) be an irreducible polynomial over a field F and denote by K its splitting field. Prove that if the Galois group G = Gal(K/F) is abelian, then $K = F(\alpha)$ for any root α of f(x).
- 4. Exhibit a polynomial $f(x) \in \mathbb{Q}[x]$ of even degree $n \ge 2$ with Galois group $\mathbb{Z}/(2)$.
- 5. Consider the group

$$H = \left\{ \sigma_a : a \in \mathbb{C}, \ \sigma_a \left(\frac{g(x)}{h(x)} \right) = \ \frac{g(x+a)}{h(x+a)} \right\}$$

of \mathbb{C} -automorphisms of the field $\mathbb{C}(t)$ of rational functions. Show that $\mathbb{C}(t)^H = \mathbb{C}$.