Serie 2

Integral domains, FRACTION FIELDS AND MAXIMAL IDEALS

1. (a) Is there an integral domain that contains exactly 15 elements?
(b) Let $\mathfrak{I} \subset R$ be an ideal. Prove that the quotient R / \mathfrak{I} is an integral domain if and only if \mathfrak{I} is a prime ideal. (An ideal $\mathfrak{I} \subsetneq R$ is prime if, for any two elements $a, b \in R, a b \in \mathfrak{I}$ then either $a \in \mathfrak{I}$ or $b \in \mathfrak{I}$.)
2. (a) Show that the quotient $R=\mathbb{Q}[x, y] /\left(x^{2}+y^{2}-1\right)$ is an integral domain.
(b) Write down the stereographic projection of the circle $x^{2}+y^{2}=1$. Use it to show that the fraction field of R is isomorphic to the field of rational functions $\mathbb{Q}(t)$.
3. (a) Let $F[x]$ be a polynomial ring over a field F. Prove that the maximal ideals of $F[x]$ are the principal ideals generated by monic irreducible polynomials.
(b) Which principal ideals of $\mathbb{Z}[x]$ are maximal ?
(c) Find the maximal ideals of the following rings :

$$
R_{1}=\mathbb{R} \times \mathbb{R}, \quad R_{2}=\mathbb{R}[x] /\left(x^{2}-3 x+2\right), \quad R_{3}=\mathbb{R}[x] /\left(x^{2}+x+1\right)
$$

