Algebra II

Serie 2

INTEGRAL DOMAINS, FRACTION FIELDS AND MAXIMAL IDEALS

- 1. (a) Is there an integral domain that contains exactly 15 elements?
 - (b) Let $\mathfrak{I} \subset R$ be an ideal. Prove that the quotient R/\mathfrak{I} is an integral domain if and only if \mathfrak{I} is a **prime ideal**. (An ideal $\mathfrak{I} \subsetneq R$ is prime if, for any two elements $a, b \in R$, $ab \in \mathfrak{I}$ then either $a \in \mathfrak{I}$ or $b \in \mathfrak{I}$.)
- 2. (a) Show that the quotient $R = \mathbb{Q}[x, y]/(x^2 + y^2 1)$ is an integral domain.
 - (b) Write down the stereographic projection of the circle $x^2 + y^2 = 1$. Use it to show that the fraction field of R is isomorphic to the field of rational functions $\mathbb{Q}(t)$.
- 3. (a) Let F[x] be a polynomial ring over a field F. Prove that the maximal ideals of F[x] are the principal ideals generated by monic irreducible polynomials.
 - (b) Which principal ideals of $\mathbb{Z}[x]$ are maximal?
 - (c) Find the maximal ideals of the following rings :

$$R_1 = \mathbb{R} \times \mathbb{R}, \quad R_2 = \mathbb{R}[x]/(x^2 - 3x + 2), \quad R_3 = \mathbb{R}[x]/(x^2 + x + 1).$$