Algebra II

Serie 4

FACTORING INTEGER POLYNOMIALS

- 1. (Lagrange interpolation) Let a_0, \ldots, a_d and b_0, \ldots, b_d be elements of a field F. and suppose that the a_i are distinct. Exhibit a polynomial $g(x) \in F[x]$ of degree $\leq d$ that satisfies $g(a_i) = b_i$ for each $0 \leq i \leq d$. Then prove that a polynomial with these properties is unique.
- 2. (Eisenstein criterion) Let R be a unique factorisation domain with field of fractions \mathcal{F} . Let $f(x) = a_n x^n + \cdots + a_0$ be a polynomial in R[x] and let \mathfrak{P} be a prime ideal in R. If

 $a_n \notin \mathfrak{p}, \quad a_i \in \mathfrak{p} \text{ for every } 0 \leqslant i \leqslant n-1, \quad a_0 \notin \mathfrak{p}^2,$

then f(x) is irreducible in $\mathcal{F}[x]$.

- (a) When is a principal ideal prime ? When is a maximal ideal prime ?
- (b) Prove the statement for $R = \mathbb{Z}$.
- (c) Find, for every $n \in \mathbb{N}$, an irreducible integer polynomial of degree n.
- 3. Factor the following polynomials into irreducible factors.
 - (a) $x^3 + x + 1$ in $\mathbb{F}_p[x]$, for p = 2, 3, 5.
 - (b) $x^4 + x + 1$ in $\mathbb{Q}[x]$.
 - (c) $x^3 + 2x^2 3x + 3$ in $\mathbb{Q}[x]$.
 - (d) $x^{p-1} + x^{p-2} + \cdots + 1$ in $\mathbb{Q}[x]$ where p is a prime. (**Hint** : Consider the substitution x = y + 1.)