D-MATH
Prof. Brent Doran

Algebra II

FS 2014

Serie 4

FACTORING INTEGER POLYNOMIALS

1. (Lagrange interpolation) Let a_{0}, \ldots, a_{d} and b_{0}, \ldots, b_{d} be elements of a field F. and suppose that the a_{i} are distinct. Exhibit a polynomial $g(x) \in F[x]$ of degree $\leqslant d$ that satisfies $g\left(a_{i}\right)=b_{i}$ for each $0 \leqslant i \leqslant d$. Then prove that a polynomial with these properties is unique.
2. (Eisenstein criterion) Let R be a unique factorisation domain with field of fractions \mathcal{F}. Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial in $R[x]$ and let \mathfrak{P} be a prime ideal in R. If

$$
a_{n} \notin \mathfrak{p}, \quad a_{i} \in \mathfrak{p} \text { for every } 0 \leqslant i \leqslant n-1, \quad a_{0} \notin \mathfrak{p}^{2},
$$

then $f(x)$ is irreducible in $\mathcal{F}[x]$.
(a) When is a principal ideal prime ? When is a maximal ideal prime ?
(b) Prove the statement for $R=\mathbb{Z}$.
(c) Find, for every $n \in \mathbb{N}$, an irreducible integer polynomial of degree n.
3. Factor the following polynomials into irreducible factors.
(a) $x^{3}+x+1$ in $\mathbb{F}_{p}[x]$, for $p=2,3,5$.
(b) $x^{4}+x+1$ in $\mathbb{Q}[x]$.
(c) $x^{3}+2 x^{2}-3 x+3$ in $\mathbb{Q}[x]$.
(d) $x^{p-1}+x^{p-2}+\cdots+1$ in $\mathbb{Q}[x]$ where p is a prime. (Hint : Consider the substitution $x=y+1$.)

