D-MATH
Prof. Brent Doran

Algebra II

FS 2014

Problem set 5

1. Show that $\sqrt{7}, e^{2 \pi i / 17}, \sqrt{2}+\sqrt[3]{5}$ are algebraic integers over \mathbb{Q}. Show that all complex numbers are algebraic over \mathbb{R}.
2. Let d, d^{\prime} be square-free integers.
(a) Show that $\operatorname{Aut}(\mathbb{Q}[\sqrt{d}])$ is a group of order two, that consists of the identity and the map $\sigma(a+b \sqrt{d})=a-b \sqrt{d}$.
(b) When are $\mathbb{Q}[\sqrt{d}]$ and $\mathbb{Q}\left[\sqrt{d^{\prime}}\right]$ not isomorphic ? Conclude that there are countably many distinct quadratic number fields $\mathbb{Q}[\sqrt{d}]$.
(c) Show that uncountably many transcendental numbers exist.
3. Determine the integer d for which the polynomials

$$
f(x)=x^{5}-8 x^{3}+9 x-3, \quad g(x)=x^{4}-5 x^{2}-6 x+3
$$

have a common root in $\mathbb{Q}[\sqrt{d}]$.
4. For which negative integers $d \equiv 2 \bmod 4$ is the ring of integers in $\mathbb{Q}[\sqrt{d}]$ a unique factorisation domain?

