Problem set 5

- 1. Show that $\sqrt{7}$, $e^{2\pi i/17}$, $\sqrt{2} + \sqrt[3]{5}$ are algebraic integers over \mathbb{Q} . Show that all complex numbers are algebraic over \mathbb{R} .
- 2. Let d, d' be square-free integers.
 - (a) Show that $\operatorname{Aut}(\mathbb{Q}[\sqrt{d}])$ is a group of order two, that consists of the identity and the map $\sigma(a+b\sqrt{d})=a-b\sqrt{d}$.
 - (b) When are $\mathbb{Q}[\sqrt{d}]$ and $\mathbb{Q}[\sqrt{d'}]$ not isomorphic? Conclude that there are countably many distinct quadratic number fields $\mathbb{Q}[\sqrt{d}]$.
 - (c) Show that uncountably many transcendental numbers exist.
- 3. Determine the integer d for which the polynomials

$$f(x) = x^5 - 8x^3 + 9x - 3,$$
 $q(x) = x^4 - 5x^2 - 6x + 3$

have a common root in $\mathbb{Q}[\sqrt{d}]$.

4. For which negative integers $d \equiv 2 \mod 4$ is the ring of integers in $\mathbb{Q}[\sqrt{d}]$ a unique factorisation domain?