Exercise set 9

SPLITTING FIELDS, FINITE FIELDS

- 1. Let F be a field of characteristic zero, and let g be an irreducible polynomial that is a common divisor of f and f'. Prove that g^2 divides f.
- 2. Let \mathbb{F} denote a finite field. Prove that \mathbb{F} has p^r elements, for some prime p > 1 and positive integer r.
- 3. Let K denote the splitting field of a polynomial $f(x) \in F[x]$ of degree d. Prove that [K:F] divides d!.
- 4. Factor $x^9 x$ and $x^{27} x$ in \mathbb{F}_3 .
- 5. Let \mathbb{F} be a field of characteristic $p \neq 0, 3$. Show that, if α is a zero of $f(x) = x^p x + 3$ in an extension field of \mathbb{F} , then f(x) has p distinct zeroes in $\mathbb{F}(\alpha)$.
- 6. Let F denote a field, p a prime and take $a \in F$ such that a is not a pth power. Show that $x^p a$ is irreducible over F.