Solutions 1

Quotient Rings, ADJOINING ELEMENTS AND PRODUCT RINGS

1. Consider the homomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Z}$ for which $x \mapsto 1$. Explain in this case what the Correspondence Theorem says about ideals of $\mathbb{Z}[x]$.

Solution : We are considering the evaluation homomorphism

$$
\mathbb{Z}[x] \rightarrow \mathbb{Z}, \quad f(x) \mapsto f(1)
$$

This homomorphism is obviously surjective (for any $n \in \mathbb{Z}$, take f to be the constant polynomial n). Division with remainder yields two polynomials $q(x), r(x)$ such that

$$
f(x)=q(x)(x-1)+r(x)
$$

and $\operatorname{deg} r(x)<\operatorname{deg}(x-1)=1$, hence $r(x)$ is a constant integer and is given by $f(1)=r(1)$. In particular, the kernel of the evaluation homomorphism above consists of all polynomials $f(x) \in \mathbb{Z}[x]$ such that

$$
f(x)=q(x)(x-1),
$$

i.e. it is exactly the ideal $(x-1)$ in $\mathbb{Z}[x]$.

The ideals of \mathbb{Z} are of the form $(n)=n \mathbb{Z}$ for $n \in \mathbb{N}$ (see your notes from the lecture or Chapter 11.3 in Artin). We consider the inverse image of (n) under the evaluation homomorphism above. This is the set of all polynomials $f(x) \in \mathbb{Z}[x]$ such that

$$
f(x)-q(x)(x-1) \in(n)
$$

and thus contained in the ideal $(n, x-1)$. We can conclude with the Correspondence Theorem that the ideals of $\mathbb{Z}[x]$ containing the ideal $(x-1)$ are the ideals of the form ($n, x-1$), for $n \in \mathbb{N}$. Moreover, we have isomorphisms

$$
\mathbb{Z}[x] /(n, x-1) \rightarrow \mathbb{Z} /(n) .
$$

2. (a) Let $\mathfrak{I} \subset \mathbb{Z}[x]$ be the ideal generated by $x-3$ and 7 . Show that for every $f(x) \in \mathbb{Z}[x]$, there is an integer $0 \leqslant \alpha \leqslant 6$ such that $f(x)-\alpha \in \mathfrak{I}$. Conclude that the quotient ring $\mathbb{Z}[x] / \mathfrak{I}$ is isomorphic to $\mathbb{Z} /(7)$.

Solution : Division with remainder gives two polynomials $q(x), r(x) \in \mathbb{Z}[x]$ satisfying $f(x)=q(x)(x-3)+r(x)$ and $\operatorname{deg} r(x)<\operatorname{deg}(x-3)$. We set $r_{f}:=$ $r(x)=f(3) \in \mathbb{Z}$. Under the quotient map $\mathbb{Z}[x] \rightarrow \mathbb{Z}[x] / \mathfrak{I}$, the polynomial $f(x)$ is then mapped onto

$$
f(x)+\mathfrak{I}=\alpha+\mathfrak{I},
$$

where $0 \leqslant \alpha \leqslant 6$ satisfies $r_{f} \equiv \alpha \bmod 7$.
Alternatively, we can replace the evaluation map in Exercise 1 by $f(x) \mapsto f(3)$ and repeat the Correspondance Theorem discussion here to conclude that $\mathbb{Z}[x] / \mathfrak{I}$ and $\mathbb{Z} /(7)$ are isomorphic.
(b) Find α explicitly for $f(x)=x^{250}+15 x^{14}+x^{2}+5$ (Hint : you may want to use here Fermat's Little Theorem, see e.g. http://www.math.ethz.ch/ education/bachelor/lectures/hs2013/math/algebra1/Exercise6.pdf).

Solution : We must determine $f(3) \bmod 7$. Using Fermat's Little Theorem, we reduce the computation to

$$
\begin{aligned}
f(3) & =3^{7 \cdot 35} 3^{5}+15 \cdot 3^{2 \cdot 7}+3^{2}+5 \\
& \equiv 3^{35} 3^{5}+16 \cdot 3^{2}+5 \bmod 7 \\
& \equiv 3^{4}+16 \cdot 9+5 \equiv 6 \bmod 7
\end{aligned}
$$

(c) Describe the ring obtained from $\mathbb{Z} /(12)$ by adjoining an inverse of 2 .

Solution : Let α be an inverse of 2 , that is, α satisfies $2 \alpha-1=0$. The ring we consider is $\mathbb{Z}_{12}[\alpha]=\mathbb{Z}_{12}[x] /(2 x-1)$, and this is isomorphic as a ring to $\mathbb{Z}[x] / \mathfrak{I}$, where \mathfrak{I} is the ideal generated by 12 and $2 x-1$ (compare to (a) above or Exercise 1).
We show that $\mathfrak{I}=(3, x-2)$. The inclusion ' \subseteq ' is immediate since

$$
2 x-1=2(x-2)+3
$$

and 12 is a multiple of 3 . We deduce the converse inclusion from :

$$
2 x-1=0 \Longrightarrow 12 x-6=0 \text { and together with } 12=0 \Longrightarrow 6=0
$$

Going through the same procedure once again yields $3=0$. Finally, we can write

$$
x-2=4 x-3 x-2=2(2 x-1)
$$

Hence, $\mathbb{Z}_{12}[\alpha]$ is isomorphic to $\mathbb{Z}_{3}[x] /(x-2)$ and thus to \mathbb{Z}_{3}.
3. Let $R=K[t]$ be a polynomial ring over a field K and consider the ring $R^{\prime}=$ $R[x] /(t x-1)$ obtained by adjoining an inverse of t to R. Prove that R^{\prime} can be identified as the ring of Laurent polynomials.

Solution : We define the ring of Laurent polynomials over a field K to be the set of all finite linear combinations of the form

$$
\sum_{k=-m}^{n} a_{k} t^{k}
$$

for $m, n \geqslant 0$ and $a_{k} \in K$. Addition and multiplication are defined as for polynomials.
Let t^{-1} be a solution to the equation

$$
t x-1=0,
$$

and then consider the evaluation homomorphism

$$
R[x] \rightarrow R\left[t^{-1}\right], \quad f(x) \mapsto f\left(t^{-1}\right) .
$$

The usual arguments (see e.g. Exercise 1) allow us to show that this is a surjective map with kernel the ideal $(t x-1)$ and conclude with the first Isomorphism Theorem for rings that R^{\prime} and $R\left[t^{-1}\right]$ are isomorphic. It is immediate that the elements of $R\left[t^{-1}\right]$ are exactly the Laurent polynomials described above.
Recall moreover that $R[x]$ and $R\left[t^{-1}\right]$ are isomorphic to, respectively, $K[t, x]$ and $K\left[t, t^{-1}\right]$.
4. Let \mathfrak{I} and \mathfrak{J} be ideals of a ring R such that $\mathfrak{I}+\mathfrak{J}=R$. Prove :
(a) $\mathfrak{I} \mathfrak{J}=\mathfrak{I} \cap \mathfrak{J}$.

Solution : First, we note that $\mathfrak{I J}=\left\{\sum_{k=1}^{n} a_{k} b_{k}: n>0, a_{k} \in \mathfrak{I}, b_{k} \in \mathfrak{J}\right\}$ is an ideal.
The inclusion $\mathfrak{I J} \subseteq \mathfrak{I} \cap \mathfrak{J}$ the follows from the definition of ideals. For the converse implication, we use that $\mathfrak{I}+\mathfrak{J}=R$. In particular, we can find two elements $a \in \mathfrak{I}$ and $b \in \mathfrak{J}$ such that $a+b=1$. Then for any element x in the ideal $\mathfrak{I} \cap \mathfrak{J}$,

$$
x=a x+b x \in \mathfrak{I} \mathfrak{J}+\mathfrak{I} \mathfrak{J}=\mathfrak{I} \mathfrak{J}
$$

(b) (the Chinese Remainder Theorem) For any $a, b \in R$, there is an element $x \in R$ such that $x \equiv a \bmod \mathfrak{I}$ and $x \equiv b \bmod \mathfrak{J}$.

Solution : Let $u \in \mathfrak{I}$ and $v \in \mathfrak{J}$ be such that $u+v=1$. Then

$$
x:=a v+b u \in R
$$

satisfies the Chinese Remainder Theorem. In fact, $x-a=(b-a) u \in \mathfrak{I}$ and $x-b=(a-b) v \in \mathfrak{J}$.
(c) If $\mathfrak{I} \mathfrak{J}=0$, then R is isomorphic to the product $\operatorname{ring} R / \mathfrak{I} \times R / \mathfrak{J}$.

Solution : Consider the map $R \rightarrow R / \mathfrak{I} \times R / \mathfrak{J}$ that sends each $x=a+b \in$ $R=\mathfrak{I}+\mathfrak{J}$ to (b, a). This is a ring homomorphism with kernel $\mathfrak{I} \cap \mathfrak{J}$. We conclude with the first Isomomorphism Theorem for rings.
(d) Describe the idempotent elements corresponding to the above product decomposition.

Solution : Let $e \in \mathfrak{I}$ and $e^{\prime} \in \mathfrak{J}$ be such that $e+e^{\prime}=1$. We show that these are idempotent elements that correspond to the product decomposition in (c).
In fact,

$$
e^{2}=e\left(1-e^{\prime}\right)=e-e e^{\prime}
$$

and by assumption $e e^{\prime} \in \mathfrak{I} \mathfrak{J}=0$. Consider next the surjective homomorpshim $R \rightarrow(e)$ given by multiplication $r \mapsto e r$, for every $r \in R$. By the mapping property of quotient rings, there exists then a ring homomorphism $R / \mathfrak{J} \rightarrow(e)$. It is easily seen that the multiplication map $R \rightarrow(e)$ is onto. Its kernel consists of all R-elements r such that

$$
e r=\left(1-e^{\prime}\right) r=r-e^{\prime} r=0
$$

so that any element r in the kernel is in fact element of the ideal \mathfrak{J}, as $r=e^{\prime} r \in \mathfrak{J}$. Conversely, we show that any element $a \in \mathfrak{J}$ is in that kernel, thus yielding an isomorphism between R / \mathfrak{J} and (e). In fact, for any $a \in R$, $e a \in \mathfrak{I} \mathfrak{J}=0$ by assumption, and we are done. Hence, in the setting of (c),

$$
R=R / \mathfrak{I} \times R / \mathfrak{J}=\left(e^{\prime}\right) \times(e) .
$$

5. Andy, Esther and Nick are flatmates in a WOKO and want to have pizza all together one night. However, they all have their quirks : Andy eats pizza every fifth day, Esther every 7th and Nick every 11th. Given that in 2014, Nick and Andy had their first pizza together on January 3 and Esther had pizza on January 4 , on what day(s) of 2014 will they all manage to have pizza together ?

Solution : Let's set x to count the number of days after January 3 . We want to
solve the congruence equation system

$$
\left\{\begin{array}{l}
x \equiv 0 \bmod 5 \\
x \equiv 1 \bmod 7 \\
x \equiv 0 \bmod 11 .
\end{array}\right.
$$

As a straightforward application of the Chinese Remainder Theorem, this system reduces to

$$
\left\{\begin{array}{l}
x \equiv 0 \bmod 55 \\
x \equiv 1 \bmod 7
\end{array}\right.
$$

Then, by inspection, the only possible solution is $x=330$. Hence Andy, Esther and Nick will all have pizza on the $333^{\text {rd }}$ day of 2014, Saturday, November 29.
Note that exercise 4 holds more generally for a finite family of ideals $\mathfrak{I}_{1}, \ldots, \mathfrak{I}_{n}$ with the property that $\mathfrak{I}_{k}+\mathfrak{I}_{l}=R$ for any two distinct ideals (i.e. $k \neq l$). Then (a) translates to $\mathfrak{I}_{1} \cdots \cdots \mathfrak{I}_{n}=\mathfrak{I}_{1} \cap \cdots \cap \mathfrak{I}_{n}$ and (b) $+(\mathrm{c})$ to the fact that $R / \mathfrak{I}_{1} \cdots \cdots \mathfrak{I}_{n}$ is isomorphic to the finite product $R / \mathfrak{I}_{1} \times \cdots \times R / \Im_{n}$.
6. Is $\mathbb{Z} /(6)$ isomorphic to $\mathbb{Z} /(2) \times \mathbb{Z} /(3)$? What about $\mathbb{Z} /(8)$ and $\mathbb{Z} /(2) \times \mathbb{Z} /(4)$?

Solution : In the first case, $\mathbb{Z} /(6)$ is isomorphic to $\mathbb{Z} /(2) \times \mathbb{Z} /(3)$; this is a direct application of the Chinese Remainder Theorem. In the second case, the two rings are not isomorphic. In fact, the additive group $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ has no element of order 8, and hence can not be isomorphic to the cyclic group \mathbb{Z}_{8}.
This translates the more general fact that the 'coprimality condition' expressed by $\mathfrak{I}+\mathfrak{J}=R$ is necessary for the Chinese Remainder Theorem to hold.

