D-MATH
Prof. Brent Doran

Relating roots and coefficients of a polynomial : ELEMENTARY SYMMETRIC POLYNOMIALS AND DISCRIMINANT

1. Solve the following system in \mathbb{C}

$$
\begin{cases}z_{1}+z_{2}+z_{3} & =1 \\ z_{1} z_{2} z_{3} & =1 \\ \left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right| & =1 .\end{cases}
$$

Solution : Let z_{1}, z_{2}, z_{3} be solutions of the system above. We determine the coefficients of the polynomial

$$
f(x)=\left(x-z_{1}\right)\left(x-z_{2}\right)\left(x-z_{3}\right) .
$$

The associated elementary symmetric functions are

$$
\begin{gathered}
s_{1}=z_{1}+z_{2}+z_{3}=1 \\
s_{2}=z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}=\frac{1}{z_{3}}+\frac{1}{z_{2}}+\frac{1}{z_{1}}=\overline{z_{1}}+\overline{z_{2}}+\overline{z_{3}}=1 \\
s_{3}=z_{1} z_{2} z_{3}=1
\end{gathered}
$$

so we can express

$$
\begin{aligned}
f(x) & =x^{3}-x^{2}+x-1 \\
& =(x-1)\left(x^{2}+1\right)=(x-1)(x+i)(x-i)
\end{aligned}
$$

2. Consider $f(x)=x^{3}-2 x+5$ and denote $\alpha_{1}, \alpha_{2}, \alpha_{3}$ its complex roots.
(a) Compute $\alpha_{1}^{4}+\alpha_{2}^{4}+\alpha_{3}^{4}$.

Solution : We can read off the elementary symmetric functions from $f(x)$:

$$
s_{1}=0, \quad s_{2}=-2, \quad s_{3}=-5 .
$$

For each $\alpha_{i}, \alpha_{i}^{4}=2 \alpha_{i}^{2}-5 \alpha_{i}$ holds, hence

$$
\sum \alpha_{i}^{4}=2 \sum \alpha_{i}^{2}-5 \sum \alpha_{i}=2\left(s_{1}^{2}-2 s_{2}\right)-5 s_{1}=8
$$

(b) Exhibit a polynomial $p(x) \in \mathbb{Z}[x]$ of degree 3 and roots $\alpha_{1}^{2}, \alpha_{2}^{2}, \alpha_{3}^{2}$.

Solution : The elementary symmetric functions associated to the roots α_{i}^{2} are

$$
\begin{gathered}
\sigma_{1}=\sum \alpha_{i}^{2}=4+\frac{5}{2} s_{1}=4 \\
\sigma_{2}=\alpha_{1}^{2} \alpha_{2}^{2}+\alpha_{1}^{2} \alpha_{3}^{2}+\alpha_{2}^{2} \alpha_{3}^{2}=\frac{1}{2}\left(\sigma_{1}^{2}-\sum \alpha_{i}^{4}\right)=4 \\
\sigma_{3}=s_{3}^{2}=25 .
\end{gathered}
$$

Set $p(x)=x^{3}-4 x^{2}+4 x-25$.
3. Let $w_{k}=u_{1}^{k}+\cdots+u_{n}^{k}$.
(a) Prove Newton identities:

$$
w_{k}-s_{1} w_{k-1}+\cdots \pm s_{k-1} w_{1} \mp k s_{k}=0 .
$$

Solution : Consider the polynomial

$$
\begin{equation*}
f(x)=\prod_{i=1}^{n}\left(x-u_{i}\right)=\sum_{j=0}^{n}(-1)^{j} s_{j} x^{n-j} . \tag{1}
\end{equation*}
$$

Then

$$
\begin{aligned}
& f^{\prime}(x)=\sum_{i=1}^{n} \frac{f(x)}{x-u_{i}}=f(x) \sum_{i=1}^{n}\left(\sum_{k \geqslant 0} \frac{u_{i}^{k}}{x^{k+1}}\right)=f(x) \sum_{k \geqslant 0} \frac{1}{x^{k+1}} \sum_{i=1}^{n} u_{i}^{k}= \\
& =\left(\sum_{j=0}^{n}(-1)^{j} s_{j} x^{n-j}\right)\left(\sum_{k \geqslant 0} \frac{w_{k}}{x^{k+1}}\right)=\left(\sum_{j \geqslant 0}(-1)^{j} s_{j} x^{n-j}\right)\left(\sum_{k \geqslant 0} \frac{w_{k}}{x^{k+1}}\right)
\end{aligned}
$$

[whereby $s_{j}=0$ whenever $j>n$]

$$
=\sum_{j+k=l}(-1)^{j} s_{j} w_{k} x^{n-(j+k)-1}=\sum_{l \geqslant 0}\left(\sum_{j \geqslant 0}(-1)^{j} s_{j} w_{l-j}\right) x^{n-l-1}
$$

[whereby $w_{l-j}=0$ whenever $j>l$]

$$
=\sum_{l \geqslant 0}(-1)^{l} s_{l}(n-l) x^{n-l-1}
$$

as derived from the right-hand side of (1). Hence, for each $l \geqslant 0$,

$$
\sum_{j=0}^{l}(-1)^{j} s_{j} w_{l-j}=(-1)^{l} s_{l}(n-l)
$$

If $l \geqslant n$, the right hand side is zero and

$$
\sum_{j=0}^{l}(-1)^{j} s_{j} w_{l-j}=0
$$

If $l<n$, then

$$
\sum_{j=0}^{l}(-1)^{j} s_{j} w_{l-j}-(-1)^{l} s_{l}(n-l)=0
$$

This proves all Newton identities.
(b) Do w_{1}, \ldots, w_{n} generate the ring of symmetric functions?

Solution : From the Newton identities established in part (a), we observe that the symmetric polynomials

$$
s_{n}=\frac{1}{n}\left(\sum_{j=0}^{n-1}(-1)^{n+j} s_{j} w_{n-j}\right)
$$

may be defined recursively via solely the Newton sums w_{k}. Because of the presence of the integer denominator in the recursion formula, this definition is valid in the ring of symmetric functions.
4. Let $f(x) \in \mathbb{R}[x]$ be a monic polynomial of degree n, with roots $\alpha_{1}, \ldots, \alpha_{n}$.
(a) Let N be the number of real roots of f. Show that

$$
\begin{cases}N \equiv n \bmod 4 & \text { if } D(f)>0 \\ N \equiv n-2 \bmod 4 & \text { if } D(f)<0\end{cases}
$$

Solution : We identify the determining factors of the discriminant

$$
D(f)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

as those of the form $\alpha_{i}-\overline{\alpha_{i}}$, for $\alpha_{i} \in \mathbb{C} \backslash \mathbb{R}$. If there are no such factors, then all roots are real and $N=n$. For every $\alpha \in \mathbb{C} \backslash \mathbb{R}$, then

$$
\begin{aligned}
D(f) & =(\alpha-\bar{\alpha})^{2} \prod\left(\alpha-\alpha_{i}\right)^{2} \prod\left(\bar{\alpha}-\alpha_{i}\right)^{2} \prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \\
& =(\alpha-\bar{\alpha})^{2} \prod\left|\alpha-\alpha_{i}\right|^{4} \prod\left(\alpha_{i}-\alpha_{j}\right)^{2}
\end{aligned}
$$

where the the first factor is negative.
Let T denotes the number of roots in $\mathbb{C} \backslash \mathbb{R}$ among α_{i} 's. That is, $T+N=n$. This is always an even number, since for every complex root, its complex conjugate is also root of f. Hence there are $T / 2$ factors of the form $\alpha-\bar{\alpha}$ in $D(f)$ and each contributes a minus sign. In particular, if $D<0$, then $T / 2$ must be odd, and $T \equiv 2 \bmod 4$. If $D>0$, then $T / 2$ is even and $T \equiv 0 \bmod$ 4.
(b) How many real roots can $x^{3}+p x+q$ have ?

Solution : The discriminant of this polynomial is $-4 p^{3}-27 q^{2}$. Depending on the values of p and q, the polynomial has either 1 or 3 real roots by part (a).

