Exercise sheet 11

Galois groups

1. Show that the polynomials $\left(x^{2}-2 x-2\right)\left(x^{2}+1\right)$ and $x^{5}-3 x^{3}+x^{2}-3$ have the same splitting field over \mathbb{Q}. What is the degree of the field extension?
Solution : The polynomial

$$
\left(x^{2}-2 x-2\right)\left(x^{2}+1\right)=(x-(1+\sqrt{3}))(x-(1-\sqrt{3}))(x-i)(x+i)
$$

has splitting field $\mathbb{Q}(\sqrt{3}, i)$, while

$$
\begin{aligned}
x^{5}-3 x^{3}+x^{2}-3 & =\left(x^{3}+1\right)\left(x^{2}-3\right) \\
& =(x+1)\left(x-\frac{1}{2}(-1+\sqrt{3} i)\right)\left(x-\frac{1}{2}(-1-\sqrt{3} i)\right)(x-\sqrt{3})(x+\sqrt{3})
\end{aligned}
$$

has splitting field $\mathbb{Q}\left(\sqrt{3}, \frac{1}{2}(-1+\sqrt{3} i)\right)$. We show that the two splitting fields coincide. In fact, one can write

$$
i=\frac{\sqrt{3}}{3}\left(2\left(\frac{1}{2}(-1+\sqrt{3} i)\right)+1\right) .
$$

Because $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}(\sqrt{3})]=2$, by the multiplicative property of the degree,

$$
[\mathbb{Q}(\sqrt{3}, i): \mathbb{Q}]=4
$$

2. Let F be a field. Show that the field extension $F(x) / F$ admits a F-endomorphism of $F(x)$ that is not an automorphism.

Solution : Let φ be the endomorphism of $F(x)$ that is constant on elements of F and sends x to x^{2}. Then φ is not an automorphism. In fact, we show that x is not contained in the image of φ. Introduce the degree map

$$
d: F(x) \rightarrow \mathbb{Z}, \quad d\left(\frac{g(x)}{h(x)}\right)=(\operatorname{deg}(g)-\operatorname{deg}(h))
$$

Then by direct computation, one can see that for any $f(x) \in F(x)$,

$$
d(\varphi(f))=2 d(f) .
$$

In particular, x is not in the image of φ.
3. Let $f(x)$ be an irreducible polynomial over a field F and denote by K its splitting field. Prove that if the Galois group $G=\operatorname{Gal}(K / F)$ is abelian, then $K=F(\alpha)$ for any root α of $f(x)$.
Solution : Let α and β be two roots of f. We will show that $F(\alpha)=F(\beta)$ and hence $F(\alpha)$ contains all roots of f and is the splitting field K.
Consider the subgroups $G_{\alpha}=\operatorname{Gal}(K / F(\alpha))$ and $G_{\beta}=\operatorname{Gal}(K / F(\beta))$ of G. There exists $\sigma \in G$ such that $\sigma(\alpha)=\beta$, hence $\sigma(F(\alpha))=F(\beta)$. Therefore $\sigma G_{\alpha} \sigma^{-1}=G_{\beta}$. By assumption, G is abelian. Hence, because $\sigma G_{\alpha} \sigma^{-1}=G_{\beta}$, we can conclude that $G_{\alpha}=G_{\beta}$ and $F(\alpha)=F(\beta)$.
4. Exhibit a polynomial $f(x) \in \mathbb{Q}[x]$ of even degree $n \geqslant 2$ with Galois group $\mathbb{Z} /(2)$.

Solution : Consider $\prod_{k \leqslant n}\left(x^{2}+k^{2}\right)$. Its splitting field is $\mathbb{Q}(i)$. There are only two \mathbb{Q}-automorphisms of $\mathbb{Q}(i)$, namely the identity and complex conjugation. Hence the Galois group is $\mathbb{Z} /(2)$.
5. Consider the group

$$
H=\left\{\sigma_{a}: a \in \mathbb{C}, \sigma_{a}\left(\frac{g(x)}{h(x)}\right)=\frac{g(x+a)}{h(x+a)}\right\}
$$

of \mathbb{C}-automorphisms of the field $\mathbb{C}(t)$ of rational functions. Show that $\mathbb{C}(t)^{H}=\mathbb{C}$.
Solution : Let us assume that g and h are relatively prime. Setting

$$
\frac{g(x)}{h(x)}=\frac{g(x+a)}{h(x+a)}
$$

it follows $g(x)$ divides $g(x+a)$. Comparing the term of highest degree in $g(x+a)=$ $\lambda g(x)$, we conclude that $\lambda=1$. If $a \neq 0$ and g is not a constant polynomial, this is not possible.

