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Solutions 4
Factoring integer polynomials

1. (Lagrange interpolation) Let a0, . . . , ad and b0, . . . , bd be elements of a field F . and
suppose that the ai are distinct. Exhibit a polynomial g(x) ∈ F [x] of degree 6 d
that satisfies g(ai) = bi for each 0 6 i 6 d. Then prove that a polynomial with
these properties is unique.

Solution : Consider the Lagrange basis polynomials

fi(x) =
∏

06j6d
j 6=i

x− aj
ai − aj

for 0 6 i 6 d. These basis polynomials all have degree d and verify fi(ai) = 1 and
fi(aj) = 0 when j 6= i. It follows that the polynomial

g(x) =
d∑

i=0

bi
∏

06j6d
j 6=i

x− aj
ai − aj

is what we are looking for. Assume there were a distinct polynomial h(x) ∈ F [x],
of degree 6 d satisfying the same property. Then the difference g(x)− h(x) would
define a polynomial in F [x], of degree d, that vanishes at a0, . . . , ad. This is impos-
sible since a polynomial of degree d with coefficients in a field can have at most d
roots.

2. (Eisenstein criterion) Let R be a unique factorisation domain with field of fractions
F . Let f(x) = anx

n + · · ·+ a0 be a polynomial in R[x] and let P be a prime ideal
in R. If

an 6∈ p, ai ∈ p for every 0 6 i 6 n− 1, a0 6∈ p2,

then f(x) is irreducible in F [x].

(a) When is a principal ideal prime ? When is a maximal ideal prime ?

Solution : Consider the principal ideal (p) ( R. By definition, requiring (p)
to be prime is equivalent to p being a prime element of R. In the unique
factorization domain R, a principal ideal (p) is prime if and only if p is
irreducible.

Let m be a maximal ideal in R. Then the quotient R/m is a field, hence an
integral domain and we have shown that m must thus be a prime ideal (Serie
2).
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(b) Prove the statement for R = Z.

Proof : This is Proposition 12.4.6 in Artin.

(c) Find, for every n ∈ N, an irreducible integer polynomial of degree n.

Solution : Fix n ∈ N and consider

xn + 2nxn−1 + . . . + 22x + 2.

This polynomial satisfies the Eisenstein criterion, and is thus irreducible in
Z[x].

3. Factor the following polynomials into irreducible factors.

(a) x3 + x + 1 in Fp[x], for p = 2, 3, 5.

Solution : If the polynomial factorizes, it must do so in a product of a
linear with a quadratic polynomial. In particular, there must be a root of the
polynomial in Fp, for p = 2, 3, 5. Let f(x) = x3 + x + 1 ∈ Z[x]. Then

f(0) = 1, f(1) = 3, f(2) = 11, f(3) = 31, f(4) = 69.

Hence, the polynomial is irreducible over F2 and F5. In F3 it has root 1 and

x3 + x + 1 = (x− 1)(x2 + x + 2)

in F3[x].

(b) x4 + x + 1 in Q[x].

Solution : We show that x4 + x + 1 can not be factorized over Z. First we
note that there can be no linear factor : a linear factor for x4 + x + 1 would
necessarily be of the form ±x ± 1 but neither +1 nor −1 are roots of the
polynomial. Hence, if there is a factorisation, it has to be in quadratic terms.
There are only two possible cases,

x4 + x + 1 = (x2 + ax + c)(x2 + bx + c)

with either c = 1 or c = −1. In either case, the above factorisation would
yield the simultaneous equations (a + b)x3 = 0 and c(a + b)x = x. We can
conclude that the polynomial is irreducible over Q.

(c) x3 + 2x2 − 3x− 3 in Q[x].

Solution : Via reduction mod 2, we obtain the polynomial x3 + x + 1 mod
2. We have already shown in (a) that this polynomial is irreducible in F2[x].
Then x3 + 2x2 − 3x− 3 is irreducible over Q.
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(d) xp−1 + xp−2 + · · · + 1 in Q[x] where p is a prime. (Hint : Consider the sub-
stitution x = y + 1.)

Solution : If we substitute x = y + 1,

p−1∑
k=0

(y + 1)k =
(y + 1)p − 1

y
=

1

y

(
p∑

k=0

(
p

k

)
yk − 1

)
=

p∑
k=1

(
p

k

)
yk−1.

Then, with the Eisenstein criterion for the prime p, the polynomial in y is
irreducible over Q. It follows that the given polynomial in x is also irreducible.
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