Solutions 4

FACTORING INTEGER POLYNOMIALS

1. (Lagrange interpolation) Let a_0, \ldots, a_d and b_0, \ldots, b_d be elements of a field F. and suppose that the a_i are distinct. Exhibit a polynomial $g(x) \in F[x]$ of degree $\leq d$ that satisfies $g(a_i) = b_i$ for each $0 \leq i \leq d$. Then prove that a polynomial with these properties is unique.

Solution : Consider the Lagrange basis polynomials

$$f_i(x) = \prod_{\substack{0 \le j \le d \\ j \ne i}} \frac{x - a_j}{a_i - a_j}$$

for $0 \leq i \leq d$. These basis polynomials all have degree d and verify $f_i(a_i) = 1$ and $f_i(a_j) = 0$ when $j \neq i$. It follows that the polynomial

$$g(x) = \sum_{i=0}^{d} b_i \prod_{\substack{0 \le j \le d \\ j \ne i}} \frac{x - a_j}{a_i - a_j}$$

is what we are looking for. Assume there were a distinct polynomial $h(x) \in F[x]$, of degree $\leq d$ satisfying the same property. Then the difference g(x) - h(x) would define a polynomial in F[x], of degree d, that vanishes at a_0, \ldots, a_d . This is impossible since a polynomial of degree d with coefficients in a field can have at most d roots.

2. (Eisenstein criterion) Let R be a unique factorisation domain with field of fractions \mathcal{F} . Let $f(x) = a_n x^n + \cdots + a_0$ be a polynomial in R[x] and let \mathfrak{P} be a prime ideal in R. If

 $a_n \notin \mathfrak{p}, \quad a_i \in \mathfrak{p} \text{ for every } 0 \leqslant i \leqslant n-1, \quad a_0 \notin \mathfrak{p}^2,$

then f(x) is irreducible in $\mathcal{F}[x]$.

(a) When is a principal ideal prime ? When is a maximal ideal prime ?

Solution : Consider the principal ideal $(p) \subsetneq R$. By definition, requiring (p) to be prime is equivalent to p being a prime element of R. In the unique factorization domain R, a principal ideal (p) is prime if and only if p is irreducible.

Let \mathfrak{m} be a maximal ideal in R. Then the quotient R/\mathfrak{m} is a field, hence an integral domain and we have shown that \mathfrak{m} must thus be a prime ideal (Serie 2).

FS 2014

(b) Prove the statement for $R = \mathbb{Z}$.

Proof : This is Proposition 12.4.6 in Artin.

(c) Find, for every $n \in \mathbb{N}$, an irreducible integer polynomial of degree n.

Solution : Fix $n \in \mathbb{N}$ and consider

$$x^{n} + 2^{n}x^{n-1} + \ldots + 2^{2}x + 2.$$

This polynomial satisfies the Eisenstein criterion, and is thus irreducible in $\mathbb{Z}[x]$.

- 3. Factor the following polynomials into irreducible factors.
 - (a) $x^3 + x + 1$ in $\mathbb{F}_p[x]$, for p = 2, 3, 5.

Solution : If the polynomial factorizes, it must do so in a product of a linear with a quadratic polynomial. In particular, there must be a root of the polynomial in \mathbb{F}_p , for p = 2, 3, 5. Let $f(x) = x^3 + x + 1 \in \mathbb{Z}[x]$. Then

$$f(0) = 1, f(1) = 3, f(2) = 11, f(3) = 31, f(4) = 69$$

Hence, the polynomial is irreducible over \mathbb{F}_2 and \mathbb{F}_5 . In \mathbb{F}_3 it has root 1 and

$$x^{3} + x + 1 = (x - 1)(x^{2} + x + 2)$$

in $\mathbb{F}_3[x]$.

(b) $x^4 + x + 1$ in $\mathbb{Q}[x]$.

Solution : We show that $x^4 + x + 1$ can not be factorized over \mathbb{Z} . First we note that there can be no linear factor : a linear factor for $x^4 + x + 1$ would necessarily be of the form $\pm x \pm 1$ but neither +1 nor -1 are roots of the polynomial. Hence, if there is a factorisation, it has to be in quadratic terms. There are only two possible cases,

$$x^{4} + x + 1 = (x^{2} + ax + c)(x^{2} + bx + c)$$

with either c = 1 or c = -1. In either case, the above factorisation would yield the simultaneous equations $(a + b)x^3 = 0$ and c(a + b)x = x. We can conclude that the polynomial is irreducible over \mathbb{Q} .

(c) $x^3 + 2x^2 - 3x - 3$ in $\mathbb{Q}[x]$.

Solution : Via reduction mod 2, we obtain the polynomial $x^3 + x + 1 \mod 2$. We have already shown in (a) that this polynomial is irreducible in $\mathbb{F}_2[x]$. Then $x^3 + 2x^2 - 3x - 3$ is irreducible over \mathbb{Q} .

(d) $x^{p-1} + x^{p-2} + \dots + 1$ in $\mathbb{Q}[x]$ where p is a prime. (**Hint** : Consider the substitution x = y + 1.)

Solution : If we substitute x = y + 1,

$$\sum_{k=0}^{p-1} (y+1)^k = \frac{(y+1)^p - 1}{y} = \frac{1}{y} \left(\sum_{k=0}^p \binom{p}{k} y^k - 1 \right) = \sum_{k=1}^p \binom{p}{k} y^{k-1}.$$

Then, with the Eisenstein criterion for the prime p, the polynomial in y is irreducible over \mathbb{Q} . It follows that the given polynomial in x is also irreducible.