D-MATH
Prof. Brent Doran

## Solutions 4

## FACTORING INTEGER POLYNOMIALS

1. (Lagrange interpolation) Let $a_{0}, \ldots, a_{d}$ and $b_{0}, \ldots, b_{d}$ be elements of a field $F$. and suppose that the $a_{i}$ are distinct. Exhibit a polynomial $g(x) \in F[x]$ of degree $\leqslant d$ that satisfies $g\left(a_{i}\right)=b_{i}$ for each $0 \leqslant i \leqslant d$. Then prove that a polynomial with these properties is unique.

Solution : Consider the Lagrange basis polynomials

$$
f_{i}(x)=\prod_{\substack{0 \leq j \leqslant d \\ j \neq i}} \frac{x-a_{j}}{a_{i}-a_{j}}
$$

for $0 \leqslant i \leqslant d$. These basis polynomials all have degree $d$ and verify $f_{i}\left(a_{i}\right)=1$ and $f_{i}\left(a_{j}\right)=0$ when $j \neq i$. It follows that the polynomial

$$
g(x)=\sum_{i=0}^{d} b_{i} \prod_{\substack{0 \leqslant j \leqslant d \\ j \neq i}} \frac{x-a_{j}}{a_{i}-a_{j}}
$$

is what we are looking for. Assume there were a distinct polynomial $h(x) \in F[x]$, of degree $\leqslant d$ satisfying the same property. Then the difference $g(x)-h(x)$ would define a polynomial in $F[x]$, of degree $d$, that vanishes at $a_{0}, \ldots, a_{d}$. This is impossible since a polynomial of degree $d$ with coefficients in a field can have at most $d$ roots.
2. (Eisenstein criterion) Let $R$ be a unique factorisation domain with field of fractions $\mathcal{F}$. Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$ be a polynomial in $R[x]$ and let $\mathfrak{P}$ be a prime ideal in $R$. If

$$
a_{n} \notin \mathfrak{p}, \quad a_{i} \in \mathfrak{p} \text { for every } 0 \leqslant i \leqslant n-1, \quad a_{0} \notin \mathfrak{p}^{2},
$$

then $f(x)$ is irreducible in $\mathcal{F}[x]$.
(a) When is a principal ideal prime ? When is a maximal ideal prime ?

Solution : Consider the principal ideal $(p) \subsetneq R$. By definition, requiring $(p)$ to be prime is equivalent to $p$ being a prime element of $R$. In the unique factorization domain $R$, a principal ideal $(p)$ is prime if and only if $p$ is irreducible.
Let $\mathfrak{m}$ be a maximal ideal in $R$. Then the quotient $R / \mathfrak{m}$ is a field, hence an integral domain and we have shown that $\mathfrak{m}$ must thus be a prime ideal (Serie $2)$.
(b) Prove the statement for $R=\mathbb{Z}$.

Proof : This is Proposition 12.4.6 in Artin.
(c) Find, for every $n \in \mathbb{N}$, an irreducible integer polynomial of degree $n$.

Solution : Fix $n \in \mathbb{N}$ and consider

$$
x^{n}+2^{n} x^{n-1}+\ldots+2^{2} x+2
$$

This polynomial satisfies the Eisenstein criterion, and is thus irreducible in $\mathbb{Z}[x]$.
3. Factor the following polynomials into irreducible factors.
(a) $x^{3}+x+1$ in $\mathbb{F}_{p}[x]$, for $p=2,3,5$.

Solution : If the polynomial factorizes, it must do so in a product of a linear with a quadratic polynomial. In particular, there must be a root of the polynomial in $\mathbb{F}_{p}$, for $p=2,3,5$. Let $f(x)=x^{3}+x+1 \in \mathbb{Z}[x]$. Then

$$
f(0)=1, f(1)=3, f(2)=11, f(3)=31, f(4)=69
$$

Hence, the polynomial is irreducible over $\mathbb{F}_{2}$ and $\mathbb{F}_{5}$. In $\mathbb{F}_{3}$ it has root 1 and

$$
x^{3}+x+1=(x-1)\left(x^{2}+x+2\right)
$$

in $\mathbb{F}_{3}[x]$.
(b) $x^{4}+x+1$ in $\mathbb{Q}[x]$.

Solution : We show that $x^{4}+x+1$ can not be factorized over $\mathbb{Z}$. First we note that there can be no linear factor : a linear factor for $x^{4}+x+1$ would necessarily be of the form $\pm x \pm 1$ but neither +1 nor -1 are roots of the polynomial. Hence, if there is a factorisation, it has to be in quadratic terms. There are only two possible cases,

$$
x^{4}+x+1=\left(x^{2}+a x+c\right)\left(x^{2}+b x+c\right)
$$

with either $c=1$ or $c=-1$. In either case, the above factorisation would yield the simultaneous equations $(a+b) x^{3}=0$ and $c(a+b) x=x$. We can conclude that the polynomial is irreducible over $\mathbb{Q}$.
(c) $x^{3}+2 x^{2}-3 x-3$ in $\mathbb{Q}[x]$.

Solution : Via reduction mod 2, we obtain the polynomial $x^{3}+x+1 \bmod$ 2. We have already shown in (a) that this polynomial is irreducible in $\mathbb{F}_{2}[x]$. Then $x^{3}+2 x^{2}-3 x-3$ is irreducible over $\mathbb{Q}$.
(d) $x^{p-1}+x^{p-2}+\cdots+1$ in $\mathbb{Q}[x]$ where $p$ is a prime. (Hint: Consider the substitution $x=y+1$.)

Solution : If we substitute $x=y+1$,

$$
\sum_{k=0}^{p-1}(y+1)^{k}=\frac{(y+1)^{p}-1}{y}=\frac{1}{y}\left(\sum_{k=0}^{p}\binom{p}{k} y^{k}-1\right)=\sum_{k=1}^{p}\binom{p}{k} y^{k-1} .
$$

Then, with the Eisenstein criterion for the prime $p$, the polynomial in $y$ is irreducible over $\mathbb{Q}$. It follows that the given polynomial in $x$ is also irreducible.

