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FACTORING INTEGER POLYNOMIALS

1. (Lagrange interpolation) Let ay,...,aq and by, ..., by be elements of a field F. and
suppose that the a; are distinct. Exhibit a polynomial g(z) € F[z] of degree < d
that satisfies g(a;) = b; for each 0 < i < d. Then prove that a polynomial with
these properties is unique.

Solution : Consider the Lagrange basis polynomials

fite)= 11 * %

o<j<d J
J#i

for 0 < i < d. These basis polynomials all have degree d and verify f;(a;) = 1 and
fi(a;) = 0 when j # i. It follows that the polynomial

g(:L‘):Zbl H .T—(Zj

i=0  0<j<d * J
J#i

is what we are looking for. Assume there were a distinct polynomial h(x) € Flz],
of degree < d satisfying the same property. Then the difference g(z) — h(z) would

define a polynomial in F'[z], of degree d, that vanishes at ay, . . ., aq. This is impos-
sible since a polynomial of degree d with coefficients in a field can have at most d
roots.

2. (Eisenstein criterion) Let R be a unique factorisation domain with field of fractions
F. Let f(z) = a,a™ + - - -+ ao be a polynomial in R[z] and let 3 be a prime ideal
in R.If

an €9, a; €p forevery 0<i<n—1, ag¢p>

then f(z) is irreducible in F[z].
(a) When is a principal ideal prime ? When is a maximal ideal prime ?

Solution : Consider the principal ideal (p) C R. By definition, requiring (p)
to be prime is equivalent to p being a prime element of R. In the unique
factorization domain R, a principal ideal (p) is prime if and only if p is
irreducible.

Let m be a maximal ideal in R. Then the quotient R/m is a field, hence an

integral domain and we have shown that m must thus be a prime ideal (Serie
2).



(b) Prove the statement for R = Z.

Proof : This is Proposition 12.4.6 in Artin.

(¢) Find, for every n € N, an irreducible integer polynomial of degree n.

Solution : Fix n € N and consider
" 4+ 2" 4 4 2% 4 2.

This polynomial satisfies the Eisenstein criterion, and is thus irreducible in
Z|x).

3. Factor the following polynomials into irreducible factors.

(a) 23+ 2+ 1 in Fy[z], for p = 2,3,5.

Solution : If the polynomial factorizes, it must do so in a product of a
linear with a quadratic polynomial. In particular, there must be a root of the
polynomial in F,, for p = 2,3,5. Let f(z) = 2*> + 2+ 1 € Z[z]. Then

Hence, the polynomial is irreducible over Fy and F5. In 5 it has root 1 and
P rr+l=(@-1)(2"+z2+2)

in Fs[z].
'+ 2+ 1 in Q[z].

Solution : We show that z* + x + 1 can not be factorized over Z. First we
note that there can be no linear factor : a linear factor for z* 4+ = + 1 would
necessarily be of the form 4z + 1 but neither +1 nor —1 are roots of the
polynomial. Hence, if there is a factorisation, it has to be in quadratic terms.
There are only two possible cases,

o'+ +1=(2*+ar+c)(2®+ bz +c)

with either ¢ = 1 or ¢ = —1. In either case, the above factorisation would
yield the simultaneous equations (a + b)z® = 0 and c(a + b)x = z. We can
conclude that the polynomial is irreducible over Q.

3+ 22% — 3z — 3 in Q[x].
Solution : Via reduction mod 2, we obtain the polynomial 23 + z + 1 mod

2. We have already shown in (a) that this polynomial is irreducible in Fy[z].
Then 2® 4 222 — 3z — 3 is irreducible over Q.



(d) 2Pt + 272 + .- + 1 in Q[x] where p is a prime. (Hint : Consider the sub-
stitution x = y + 1.)

Solution : If we substitute z =y + 1,
p—1 p p
(y+1)r—-1 1 D\ & D\ k-1
(y+1)F=——e=={> -1 =) Yl
=0 Yy y \i= \k —~ \k

Then, with the Eisenstein criterion for the prime p, the polynomial in y is
irreducible over Q. It follows that the given polynomial in x is also irreducible.



