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Solutions b

1. Show that /7, €2™/17 \/2++/5 are algebraic integers over Q. Show that all complex
numbers are algebraic over R.

Solution : We have (v/7)2 — 7 = 0, (2™/')17 —1 = 0. Set a = /2 + /5. Then
(. —v/2)? =5 and

o + 60— 5= V2(2 + 3a?)

so that

(@® 4+ 6a —5)% —2(2+3a%)* = 0.

Finally, for z =z +iy € C, (2 — x)? + y*> = 0.

2. Let d,d' be square-free integers.

()

Show that Aut(Q[v/d]) is a group of order two, that consists of the identity
and the map o(a + bvV/d) = a — bV/d.

Solution : We know that Q[v/d]) has basis (1,V/d). If we take f to be an
automorphism of Q[v/d], it needs to preserve 1. Hence f(n) = n for every
integer n, and

f(Va)? = f(d) =d
implies that f(v/d) is either +v/d or —V/d.

When are Q[v/d] and Q[v/d] not isomorphic ? Conclude that there are coun-
tably many distinct quadratic number fields Q[v/d).

Solution : Assume that v/d' € Q[v/d]. This means that there exists an cle-
ment = = a + bv/d € Q[v/d] such that x> = d’. More precisely,

a? + b2d + 2abVd = d,

so that either a or b needs to be 0. If b = 0, this would mean that d’ = a? is
the square of an integer and this can not happen by assumption. So a = 0
and d'/d = b*. In fact, there exists z as above if and only if d'/d = V*. Tt
follows that if we take d' = p, d = ¢ prime numbers, the quadratic number
fields they define are not isomorphic, since primes can not be squares. We
conclude with the fact that there are countably many primes.



(c) Show that uncountably many transcendental numbers exist.

Solution : By definition, the set of all algebraic numbers is a subset of

U {aEC:f(a):O}:U U {a € C: f(a) =0},
f(@)eQlz] n20 f(z)€Q[z]
degf(z)=n
i.e. countable unions over countable sets (the second union is taken over
a subset of Q") of finite sets. Hence there are countably many algebraic
numbers, and since the complex numbers are uncountable, there must be
uncountably many transcendental numbers.

3. Determine the integer d for which the polynomials
f(z) =2° — 82° + 9z — 3, g(x) = 2* —52x* — 61 +3
have a common root in Q[v/d].

Solution : Consider the ideal J = (f(x),¢g(x)). Since Q[z] is a principal ideal
domain, J is generated by a single polynomial h(z). Note that « is a root of h if
and only if it is a common root of f(z) and g(x). By the Euclidean algorithm, we
establish that

h(z) = 2* — 3z + 1.

Hence f and g have exactly two common roots
3 1
—+ —Vbh.
2 2\/_

4. For which negative integers d = 2 mod 4 is the ring if integers in Q[v/d] a unique
factorisation domain ?

Solution : Let K = Q[v/d] for d < 0 such that d = 2 mod 4 and let Ok denote
the ring of integers in K. We know that Ok is the ring of all elements of the
form a + bv/d with a,b € Z. We also know that the units of O are +1 and that
factoring terminates in Q. If d = 2 mod 4 and is negative, then 4 — d is an even,
positive integer, and factors in two ways in Ok :

4—d=2(4%d> :(2—\/3) <2+\/E>.

For Ok to be a unique factorisation domain, we would need 2, as a prime, to divide
either 2 — v/d or 2+ v/d in Ok. We can check using the size function that 2 is
irreducible for d < —2. For d = —2, the ring Ok is a Euclidean domain. The proof
of this is similar to Exercise 1, problem set 3. Hence, for d = 2 mod 4 negative,
Q[v/d] is a unique factorization domain only for d = —2.



