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Solutions 5

1. Show that
√

7, e2πi/17,
√

2+ 3
√

5 are algebraic integers over Q. Show that all complex
numbers are algebraic over R.

Solution : We have (
√

7)2 − 7 = 0, (e2πi/17)17 − 1 = 0. Set α =
√

2 + 3
√

5. Then
(α−

√
2)3 = 5 and

α3 + 6α− 5 =
√

2(2 + 3α2)

so that
(α3 + 6α− 5)2 − 2(2 + 3α2)2 = 0.

Finally, for z = x + iy ∈ C, (z − x)2 + y2 = 0.

2. Let d, d′ be square-free integers.

(a) Show that Aut(Q[
√

d]) is a group of order two, that consists of the identity
and the map σ(a + b

√
d) = a− b

√
d.

Solution : We know that Q[
√

d]) has basis (1,
√

d). If we take f to be an
automorphism of Q[

√
d], it needs to preserve 1. Hence f(n) = n for every

integer n, and
f(
√

d)2 = f(d) = d

implies that f(
√

d) is either +
√

d or −
√

d.

(b) When are Q[
√

d] and Q[
√

d′] not isomorphic ? Conclude that there are coun-
tably many distinct quadratic number fields Q[

√
d].

Solution : Assume that
√

d′ ∈ Q[
√

d]. This means that there exists an ele-
ment x = a + b

√
d ∈ Q[

√
d] such that x2 = d′. More precisely,

a2 + b2d + 2ab
√

d = d′,

so that either a or b needs to be 0. If b = 0, this would mean that d′ = a2 is
the square of an integer and this can not happen by assumption. So a = 0
and d′/d = b2. In fact, there exists x as above if and only if d′/d = b2. It
follows that if we take d′ = p, d = q prime numbers, the quadratic number
fields they define are not isomorphic, since primes can not be squares. We
conclude with the fact that there are countably many primes.
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(c) Show that uncountably many transcendental numbers exist.

Solution : By definition, the set of all algebraic numbers is a subset of⋃
f(x)∈Q[x]

{α ∈ C : f(α) = 0} =
⋃
n>0

⋃
f(x)∈Q[x]
degf(x)=n

{α ∈ C : f(α) = 0},

i.e. countable unions over countable sets (the second union is taken over
a subset of Qn+1) of finite sets. Hence there are countably many algebraic
numbers, and since the complex numbers are uncountable, there must be
uncountably many transcendental numbers.

3. Determine the integer d for which the polynomials

f(x) = x5 − 8x3 + 9x− 3, g(x) = x4 − 5x2 − 6x + 3

have a common root in Q[
√

d].

Solution : Consider the ideal I = (f(x), g(x)). Since Q[x] is a principal ideal
domain, I is generated by a single polynomial h(x). Note that α is a root of h if
and only if it is a common root of f(x) and g(x). By the Euclidean algorithm, we
establish that

h(x) = x2 − 3x + 1.

Hence f and g have exactly two common roots

3

2
± 1

2

√
5.

4. For which negative integers d ≡ 2 mod 4 is the ring if integers in Q[
√

d] a unique
factorisation domain ?

Solution : Let K = Q[
√

d] for d < 0 such that d ≡ 2 mod 4 and let OK denote
the ring of integers in K. We know that OK is the ring of all elements of the
form a + b

√
d with a, b ∈ Z. We also know that the units of OK are ±1 and that

factoring terminates in OK . If d ≡ 2 mod 4 and is negative, then 4− d is an even,
positive integer, and factors in two ways in OK :

4− d = 2

(
4− d

2

)
=

(
2−

√
d
) (

2 +
√

d
)

.

For OK to be a unique factorisation domain, we would need 2, as a prime, to divide
either 2 −

√
d or 2 +

√
d in OK . We can check using the size function that 2 is

irreducible for d < −2. For d = −2, the ring OK is a Euclidean domain. The proof
of this is similar to Exercise 1, problem set 3. Hence, for d ≡ 2 mod 4 negative,
Q[
√

d] is a unique factorization domain only for d = −2.
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