Solutions 6

1. Let α be a complex root of $x^{3}-3 x+4$. Find the inverse of $\alpha^{2}+\alpha+1$ in the form $a \alpha^{2}+b \alpha+c$, with $a, b, c \in \mathbb{Q}$.

Solution : Compute directly $\left(\alpha^{2}+\alpha+1\right)\left(a \alpha^{2}+b \alpha+c\right)=1$ using the relation $\alpha^{3}=3 \alpha-4$. You should get :

$$
(4 a+b+c) \alpha^{2}+(4 b+c-a) \alpha+(c-4 a-4 b)=1
$$

Solving the resulting linear system

$$
\begin{aligned}
4 a+b+c & =0 \\
4 b+c-a & =0 \\
c-4 a-4 b & =1
\end{aligned}
$$

yields $3 b=2 c-1=5 a$ and one should find $a=-\frac{1}{49}$.
2. (a) Show that $\sqrt{3} \notin \mathbb{Q}$, and $\sqrt{2} \notin \mathbb{Q}(\sqrt{3})$.

Solution : Assume that $\sqrt{3} \in \mathbb{Q}$, then the polynomial $x^{2}-3$ is well defined over \mathbb{Q}. Applying Eisenstein's criterion, this polynomial is irreducible. This is a contradiction to $\sqrt{3} \in \mathbb{Q}$.
Similarly, assume $\sqrt{2} \in \mathbb{Q}(\sqrt{3})$. Then $\sqrt{2}$ must have the form $a+b \sqrt{3}$, for some $a, b \in \mathbb{Q}$. It must follow that

$$
(a+b \sqrt{3})^{2}=2 \quad \text { and thus } \quad a^{2}+3 b^{2}-2+2 \sqrt{3} a b=0 .
$$

Since $(1, \sqrt{3})$ is a linear independent set (it is a basis for $\mathbb{Q}(\sqrt{3})$ as a vector field over \mathbb{Q}), either $a=0$ or $b=0$. Or, equivalently, either b is a root of $3 x^{2}-2$ or a is a root of $x^{2}-2$. However, both polynomials are irreducible (you can see this with Eisenstein for instance) over \mathbb{Q}. This is a contradiction to $a, b \in \mathbb{Q}$.
(b) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.

Solution : One inclusion is trivial : $\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$, as $\sqrt{2}+\sqrt{3}$ is contained in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. To show the converse inclusion, we need to establish that $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. We have

$$
(\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6}
$$

hence $\sqrt{6} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. One may then write

$$
\sqrt{2}=\sqrt{2}+\sqrt{3}-\frac{\sqrt{6}}{\sqrt{2}}
$$

which is equivalent to

$$
\sqrt{2}=\frac{2+\sqrt{6}}{\sqrt{2}+\sqrt{3}} \in \mathbb{Q}(\sqrt{2}+\sqrt{3}) .
$$

A similar computation works to show $\sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$.
(c) Determine the degrees of the extensions $\mathbb{Q}(\sqrt{3})$ over \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over $\mathbb{Q}(\sqrt{3})$.

Solution : Since $x^{2}-3$ is the irreducible polynomial for $\sqrt{3}$ over \mathbb{Q}, we have $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2$. Similarly, $x^{2}-2$ is the irreducible polynomial for $\sqrt{2}$ over $\mathbb{Q}(\sqrt{3})$. Irreducibility in both cases follows from (a).
3. Let $\beta=\sqrt[3]{2} e^{2 \pi i / 3}$. Prove that $x_{1}^{2}+\cdots+x_{k}^{2}=-1, k \geqslant 1$, has no solutions with all $x_{i} \in \mathbb{Q}(\beta)$.

Solution : Let $\alpha=\sqrt[3]{2}$. Observe that both α and β are roots of $f(x)=x^{3}-2$. In fact, $f(x)$ is the irreducible polynomial for both α and β over \mathbb{Q}. We know that in this case $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are isomorphic (Proposition 15.2.8, Artin). Now, since $\mathbb{Q}(\alpha)$ is a subfield of \mathbb{R}, and the polynomial $x_{1}^{2}+\cdots+x_{k}^{2}+1$ has no solution in \mathbb{R}, for whatever $k \geqslant 1$, the claim follows.
4. Let $K=F(\alpha)$ be a field extension generated by a transcendental element α, and let β be an element of K that is not in F. Prove that α is algebraic over the field $F(\beta)$.

Solution : We know that if α is transcendental over F, then $F(\alpha)$ is isomorphic to the field $F(x)$ of rational functions. Let $\beta=\frac{f(\alpha)}{g(\alpha)}$ be an element in $K=F(\alpha)$ but not in F. Then α is a root of t

$$
p(x)=f(x)-\beta g(x) \in K[x] .
$$

We need to check that p is not trivially zero. The function $g(x)$ can, by definition, not be identically zero, that is for $g(x)=b_{n} x^{n}+\cdots+b_{m} x^{m}+\ldots b_{0}$, there is a coefficient $b_{m} \neq 0$. Then

$$
p(x)=\cdots+\left(a_{m}-\beta b_{m}\right) x^{m}+\cdots+\left(a_{0}-\beta b_{0}\right)=0
$$

requires $\beta=a_{m} / b_{m}$ and this is not possible as we assume $\beta \notin F$.

