Algebra 2

FS 2014

Solutions 8

CONSTRUCTIONS WITH RULER AND COMPASS

1. Express cos 15° in terms of real square roots.

Solution : We have $\alpha := \cos 15^\circ = \cos \frac{\pi}{12} = \frac{\sqrt{6}+\sqrt{2}}{4}$. Then $\alpha^2 = \frac{2+\sqrt{3}}{4} = \frac{1+\sqrt{3}/2}{2}$, and we can write

$$\alpha = \sqrt{\frac{1 + \sqrt{3}/2}{2}}.$$

2. Prove that the regular pentagon can be constructed by ruler and compass, by field theory, and by finding an explicit construction.

Solution : Set $\alpha = \frac{2\pi}{5}$ and $z = e^{i\alpha} = \cos(\alpha) + i\sin(\alpha) =: x + iy$. Then developing $z^5 = (x + iy)^5 = 1$

into

$$x^5 + 5xy^4 - 10x^3y^2 = 1$$

and using $y^2 = 1 - x^2$, one gets that $\cos \alpha$ is a root of the polynomial

$$16x^5 - 20x^3 + 5x - 1.$$

Clearly 1 is another root and we can further factorize

$$16x^5 - 20x^3 + 5x - 1 = (x - 1)(16x^4 + 16x^3 - 4x^2 - 4x + 1)$$

= $(x - 1)(4x^2 + 2x - 1)^2$

so that, by the quadratic equation and the fact that $\alpha = \cos(2\pi/5) > 0$, we get

$$\alpha = \frac{-1 + \sqrt{5}}{4}.$$

Hence α is constructible over \mathbb{Q} .

Now to explicitly construct the regular pentagon, start from the points (0,0) and (0,1), and build successively $2\pi/5$ angles, every time constructing the points $p_n = (\cos(2\pi n/5), \sin(2\pi n/5)), n = 1, \ldots, 4$, and taking the half-lines through the origin and each p_n (in blue in the figure below).

Take the circle of radius 1 centred at the origin and construct the points at the intersection of the circle and the half-lines. Connecting these yield the regular pentagon.

3. Is the regular 9-gon constructible by ruler and compase ?

Solution : You have seen in class that $\cos(\pi/9)$ is not constructible. Applying $\cos^2(\alpha) = \frac{1+\cos(2\alpha)}{2}$, we get

$$\cos(2\pi/9) = 2(\cos(\pi/9))^2 - 1.$$

It follows that $\cos(2\pi/9)$ is not constructible.

4. Is it possible to construct a square whose area is that of a given triangle?

Solution : Let Δ denote the given triangle. As $\operatorname{area}(\Delta) = \frac{1}{2}bh$, where *b* refers to the base of Δ and *h* to its height, we construct a length *s* such that $s^2 = \frac{1}{2}bh$. We know how to mark off lengths, here b/2 and *h*, onto a constructed line so that the two segments are adjacent. Then take the circle passing through the endpoints of diameter b/2 + h. and then the triangle inscribed in this circle with edges the endpoints.

We can now check that the height s of this triangle is exactly the length we are looking for by checking

$$\frac{s}{h} = \frac{b/2}{s}$$

Denote the angles α , β , γ , where $\beta = \pi/2$ breaks down in $\beta = \beta_1 + \beta_2$ for the triangle on the left and the triangle on the right. We then observe

$$\frac{s}{h} = \tan \gamma = \tan(\pi/2 - \beta_2) = \tan(\beta_1) = \frac{b/2}{s}.$$

5. Thinking of the plane as the complex plane, describe the set of constructible points as complex numbers.

Solution : Thinking of the plane as the complex plane means that a complex number z = x + iy is constructible if the coordinate point (x, y) is constructible in the plane. Recall that a real number x is constructible if the point (0, x) is constructible. If z is constructible, then taking the line passing through (x, y) that is parallel to the vertical axis allows to construct (x, 0), and by taking the parallel to the x-axis passing through (x, y) gives (0, y). Conversely, if x and y are constructible reals, then taking the perpendicular at (x, 0) to the x-axis, the perpendicular at (0, y) to the y-axis, their intersection point is constructible, hence z is constructible. Hence z = x + iy is constructible if and only if both x and y are constructible.