Solutions 8

Constructions with Ruler and Compass

1. Express $\cos 15^{\circ}$ in terms of real square roots.

Solution : We have $\alpha:=\cos 15^{\circ}=\cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}$. Then $\alpha^{2}=\frac{2+\sqrt{3}}{4}=\frac{1+\sqrt{3} / 2}{2}$, and we can write

$$
\alpha=\sqrt{\frac{1+\sqrt{3} / 2}{2}} .
$$

2. Prove that the regular pentagon can be constructed by ruler and compass, by field theory, and by finding an explicit construction.

Solution : Set $\alpha=\frac{2 \pi}{5}$ and $z=e^{i \alpha}=\cos (\alpha)+i \sin (\alpha)=: x+i y$. Then developing

$$
z^{5}=(x+i y)^{5}=1
$$

into

$$
x^{5}+5 x y^{4}-10 x^{3} y^{2}=1
$$

and using $y^{2}=1-x^{2}$, one gets that $\cos \alpha$ is a root of the polynomial

$$
16 x^{5}-20 x^{3}+5 x-1 .
$$

Clearly 1 is another root and we can further factorize

$$
\begin{aligned}
16 x^{5}-20 x^{3}+5 x-1 & =(x-1)\left(16 x^{4}+16 x^{3}-4 x^{2}-4 x+1\right) \\
& =(x-1)\left(4 x^{2}+2 x-1\right)^{2}
\end{aligned}
$$

so that, by the quadratic equation and the fact that $\alpha=\cos (2 \pi / 5)>0$, we get

$$
\alpha=\frac{-1+\sqrt{5}}{4} .
$$

Hence α is constructible over \mathbb{Q}.
Now to explicitly construct the regular pentagon, start from the points $(0,0)$ and $(0,1)$, and build successively $2 \pi / 5$ angles, every time constructing the points $p_{n}=$ $(\cos (2 \pi n / 5), \sin (2 \pi n / 5)), n=1, \ldots, 4$, and taking the half-lines through the origin and each p_{n} (in blue in the figure below).

Take the circle of radius 1 centred at the origin and construct the points at the intersection of the circle and the half-lines. Connecting these yield the regular pentagon.
3. Is the regular 9-gon constructible by ruler and compass ?

Solution : You have seen in class that $\cos (\pi / 9)$ is not constructible. Applying $\cos ^{2}(\alpha)=\frac{1+\cos (2 \alpha)}{2}$, we get

$$
\cos (2 \pi / 9)=2(\cos (\pi / 9))^{2}-1
$$

It follows that $\cos (2 \pi / 9)$ is not constructible.
4. Is it possible to construct a square whose area is that of a given triangle ?

Solution : Let Δ denote the given triangle. As area $(\Delta)=\frac{1}{2} b h$, where b refers to the base of Δ and h to its height, we construct a length s such that $s^{2}=\frac{1}{2} b h$. We know how to mark off lengths, here $b / 2$ and h, onto a constructed line so that the two segments are adjacent. Then take the circle passing through the endpoints of diameter $b / 2+h$. and then the triangle inscribed in this circle with edges the endpoints.

We can now check that the height s of this triangle is exactly the length we are looking for by checking

$$
\frac{s}{h}=\frac{b / 2}{s} .
$$

Denote the angles α, β, γ, where $\beta=\pi / 2$ breaks down in $\beta=\beta_{1}+\beta_{2}$ for the triangle on the left and the triangle on the right. We then observe

$$
\frac{s}{h}=\tan \gamma=\tan \left(\pi / 2-\beta_{2}\right)=\tan \left(\beta_{1}\right)=\frac{b / 2}{s} .
$$

5. Thinking of the plane as the complex plane, describe the set of constructible points as complex numbers.

Solution : Thinking of the plane as the complex plane means that a complex number $z=x+i y$ is constructible if the coordinate point (x, y) is constructible in the plane. Recall that a real number x is constructible if the point $(0, x)$ is constructible. If z is constructible, then taking the line passing through (x, y) that is parallel to the vertical axis allows to construct ($x, 0$), and by taking the parallel to the x-axis passing through (x, y) gives $(0, y)$. Conversely, if x and y are constructible reals, then taking the perpendicular at $(x, 0)$ to the x-axis, the perpendicular at $(0, y)$ to the y-axis, their intersection point is constructible, hence z is constructible. Hence $z=x+i y$ is constructible if and only if both x and y are constructible.

