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Solutions 9
Splitting fields, finite fields

1. Let F be a field of characteristic zero, and let g be an irreducible polynomial that
is a common divisor of f and f ′. Prove that g2 divides f .

Solution : Since g divides f , we may use the decomposition f = gh, and as g also
divides f ′, it must divide g′h+gh′ hence in particular g′h. Since g is irreducible, it
cannot divide g′, which is of lower degree, hence must divide h. Hence g2 divides
gh = f .

2. Let F denote a finite field. Prove that F has pr elements, for some prime p > 1
and positive integer r.

Solution : Since F is a finite field, it has characteristic p for some prime p > 1,
and is a vector space over Z/(p) of finite dimension. Let r be this dimension. Then
it has pr elements.

3. Let K denote the splitting field of a polynomial f(x) ∈ F [x] of degree d. Prove
that [K : F ] divides d!.

Solution : This exercise amounts to adapting the proof of Proposition 15.6.3 with
a little care. As there, we proceed by induction over d.

Assume first that f has a root α in F , i.e. f(x) = (x − α)q(x). (∗) Let K be
the splitting field of q over F . By induction hypothesis, [K : F ] then divides
deg(q) = (d− 1)!, hence d!.

Otherwise, let g be an irreducible factor of f = gh with deg(g) = k, deg(h) = d−k.
Let F1 denote the extension field F [x]/(g). By construction, g has a root in F1 and
[F1 : F ] = k. Therefore, this root is also a root of f over F1, and we may write

f(x) = (x− α)g1(x)h(x).

Now we repeat (∗) as follows : Let G1 to be the splitting field of g1 over F1. By
induction hypothesis, [G1 : F1] divides deg(g1) = (k − 1)!. Let K be the splitting
field of h over G1. Then again by induction hypothesis, [K : G1] divides (d− k)!.

We can now conclude since K is also a splitting field of f over F and [K : F ] =
[K : G1][G1 : F1][F1 : F ] divides (d− k)!k!, hence(

d

k

)
(d− k)!k! = d!.
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4. Factor x9 − x and x27 − x in F3.

Solution : The monic irreducible polynomials of degree at most 3 over F3 are

x, x+ 1, x− 1, x2 + 1, x2 + x− 1, x2 − x− 1,

x3 − x+ 1, x3 − x− 1, x3 + x2 − 1, x3 − x2 + 1,

x3 + x2 + x+ 1, x3 + x2 + x− 1, x3 + x2 − x+ 1,

x3 − x2 + x+ 1, x3 − x2 + x− 1, x3 − x2 − x− 1.

Because the irreducible factors of a polynomial x3
r − x over F3 are the irreducible

polynomials over F3 whose degrees divide r,

x9 − x = x(x+ 1)(x− 1)(x2 + 1)(x2 + x− 1)(x2 − x− 1)

and

x27 − x = x(x+ 1)(x− 1)(x3 + x2 + x+ 1)(x3 + x2 + x− 1) · · ·

· · · (x3 + x2 − x+ 1)(x3 − x2 + x+ 1)(x3 − x2 + x− 1)(x3 − x2 − x− 1).

5. Let F be a field of characteristic p 6= 0, 3. Show that, if α is a zero of f(x) = xp−x+3
in an extension field of F, then f(x) has p distinct zeroes in F(α).

Solution : The field F contains Z/(p) as subfield, since it has characteristic p. For
each n ∈ Z/(p), consider

f(α + n) = (α + n)p − (α + n) + 3 = αp − α + 3 = 0,

where we used in the second equation np ≡ n mod p. This shows that f has p
distinct zeroes in F(α).

6. Let F denote a field, p a prime and take a ∈ F such that a is not a pth power.
Show that xp − a is irreducible over F .

Solution : Let K be the splitting field of xp − a. Assume by contradiction that
xp − a decomposes into two non-trivial factors g and h over F . Over K, we may
assume that

xp − a = (x− a1) · · · (x− an)︸ ︷︷ ︸
=g(x)

(x− an+1) · · · (x− ap)︸ ︷︷ ︸
=h(x)

.

To get a contradiction, we must show that a is then a pth power in F . By assumpti-
on, both g(0) and h(0) are elements of F , hence A = a1 · · · an and B = an+1 · · · ap
are both elements of F . Note that Ap = ap1 · · · apn = an and Bp = ap−n. Using a
Bézout identity kn+ lp = 1, we can write

a = aknalp = Akpal(p−n)aln = A(k+l)pBlp =
(
Ak+lBl

)p
.
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