Prof. Brent Doran

Solutions 9

Splitting fields, finite fields

1. Let F be a field of characteristic zero, and let g be an irreducible polynomial that is a common divisor of f and f^{\prime}. Prove that g^{2} divides f.

Solution : Since g divides f, we may use the decomposition $f=g h$, and as g also divides f^{\prime}, it must divide $g^{\prime} h+g h^{\prime}$ hence in particular $g^{\prime} h$. Since g is irreducible, it cannot divide g^{\prime}, which is of lower degree, hence must divide h. Hence g^{2} divides $g h=f$.
2. Let \mathbb{F} denote a finite field. Prove that \mathbb{F} has p^{r} elements, for some prime $p>1$ and positive integer r.

Solution : Since \mathbb{F} is a finite field, it has characteristic p for some prime $p>1$, and is a vector space over $\mathbb{Z} /(p)$ of finite dimension. Let r be this dimension. Then it has p^{r} elements.
3. Let K denote the splitting field of a polynomial $f(x) \in F[x]$ of degree d. Prove that $[K: F]$ divides d !.

Solution : This exercise amounts to adapting the proof of Proposition 15.6.3 with a little care. As there, we proceed by induction over d.
Assume first that f has a root α in F, i.e. $f(x)=(x-\alpha) q(x)$. (*) Let K be the splitting field of q over F. By induction hypothesis, $[K: F]$ then divides $\operatorname{deg}(q)=(d-1)!$, hence $d!$.
Otherwise, let g be an irreducible factor of $f=g h$ with $\operatorname{deg}(g)=k, \operatorname{deg}(h)=d-k$. Let F_{1} denote the extension field $F[x] /(g)$. By construction, g has a root in F_{1} and $\left[F_{1}: F\right]=k$. Therefore, this root is also a root of f over F_{1}, and we may write

$$
f(x)=(x-\alpha) g_{1}(x) h(x) .
$$

Now we repeat $(*)$ as follows : Let G_{1} to be the splitting field of g_{1} over F_{1}. By induction hypothesis, $\left[G_{1}: F_{1}\right.$] divides $\operatorname{deg}\left(g_{1}\right)=(k-1)$!. Let K be the splitting field of h over G_{1}. Then again by induction hypothesis, $\left[K: G_{1}\right]$ divides $(d-k)$!.

We can now conclude since K is also a splitting field of f over F and $[K: F]=$ $\left[K: G_{1}\right]\left[G_{1}: F_{1}\right]\left[F_{1}: F\right]$ divides $(d-k)!k!$, hence

$$
\binom{d}{k}(d-k)!k!=d!
$$

4. Factor $x^{9}-x$ and $x^{27}-x$ in \mathbb{F}_{3}.

Solution : The monic irreducible polynomials of degree at most 3 over \mathbb{F}_{3} are

$$
\begin{gathered}
x, x+1, x-1, x^{2}+1, x^{2}+x-1, x^{2}-x-1 \\
x^{3}-x+1, x^{3}-x-1, x^{3}+x^{2}-1, x^{3}-x^{2}+1 \\
x^{3}+x^{2}+x+1, x^{3}+x^{2}+x-1, x^{3}+x^{2}-x+1 \\
x^{3}-x^{2}+x+1, x^{3}-x^{2}+x-1, x^{3}-x^{2}-x-1
\end{gathered}
$$

Because the irreducible factors of a polynomial $x^{3^{r}}-x$ over \mathbb{F}_{3} are the irreducible polynomials over \mathbb{F}_{3} whose degrees divide r,

$$
x^{9}-x=x(x+1)(x-1)\left(x^{2}+1\right)\left(x^{2}+x-1\right)\left(x^{2}-x-1\right)
$$

and

$$
\begin{gathered}
x^{27}-x=x(x+1)(x-1)\left(x^{3}+x^{2}+x+1\right)\left(x^{3}+x^{2}+x-1\right) \cdots \\
\cdots\left(x^{3}+x^{2}-x+1\right)\left(x^{3}-x^{2}+x+1\right)\left(x^{3}-x^{2}+x-1\right)\left(x^{3}-x^{2}-x-1\right)
\end{gathered}
$$

5. Let \mathbb{F} be a field of characteristic $p \neq 0,3$. Show that, if α is a zero of $f(x)=x^{p}-x+3$ in an extension field of \mathbb{F}, then $f(x)$ has p distinct zeroes in $\mathbb{F}(\alpha)$.

Solution : The field \mathbb{F} contains $\mathbb{Z} /(p)$ as subfield, since it has characteristic p. For each $n \in \mathbb{Z} /(p)$, consider

$$
f(\alpha+n)=(\alpha+n)^{p}-(\alpha+n)+3=\alpha^{p}-\alpha+3=0
$$

where we used in the second equation $n^{p} \equiv n \bmod p$. This shows that f has p distinct zeroes in $\mathbb{F}(\alpha)$.
6. Let F denote a field, p a prime and take $a \in F$ such that a is not a $p^{\text {th }}$ power. Show that $x^{p}-a$ is irreducible over F.

Solution : Let K be the splitting field of $x^{p}-a$. Assume by contradiction that $x^{p}-a$ decomposes into two non-trivial factors g and h over F. Over K, we may assume that

$$
x^{p}-a=\underbrace{\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)}_{=g(x)} \underbrace{\left(x-a_{n+1}\right) \cdots\left(x-a_{p}\right)}_{=h(x)} .
$$

To get a contradiction, we must show that a is then a $p^{\text {th }}$ power in F. By assumption, both $g(0)$ and $h(0)$ are elements of F, hence $A=a_{1} \cdots a_{n}$ and $B=a_{n+1} \cdots a_{p}$ are both elements of F. Note that $A^{p}=a_{1}^{p} \cdots a_{n}^{p}=a^{n}$ and $B^{p}=a^{p-n}$. Using a Bézout identity $k n+l p=1$, we can write

$$
a=a^{k n} a^{l p}=A^{k p} a^{l(p-n)} a^{l n}=A^{(k+l) p} B^{l p}=\left(A^{k+l} B^{l}\right)^{p} .
$$

