Solutions 9

Splitting fields, finite fields

1. Let F be a field of characteristic zero, and let g be an irreducible polynomial that is a common divisor of f and f'. Prove that g^2 divides f.

Solution : Since g divides f, we may use the decomposition f = gh, and as g also divides f', it must divide g'h + gh' hence in particular g'h. Since g is irreducible, it cannot divide g', which is of lower degree, hence must divide h. Hence g^2 divides gh = f.

2. Let \mathbb{F} denote a finite field. Prove that \mathbb{F} has p^r elements, for some prime p > 1 and positive integer r.

Solution : Since \mathbb{F} is a finite field, it has characteristic p for some prime p > 1, and is a vector space over $\mathbb{Z}/(p)$ of finite dimension. Let r be this dimension. Then it has p^r elements.

3. Let K denote the splitting field of a polynomial $f(x) \in F[x]$ of degree d. Prove that [K : F] divides d!.

Solution : This exercise amounts to adapting the proof of Proposition 15.6.3 with a little care. As there, we proceed by induction over d.

Assume first that f has a root α in F, i.e. $f(x) = (x - \alpha)q(x)$. (*) Let K be the splitting field of q over F. By induction hypothesis, [K : F] then divides $\deg(q) = (d-1)!$, hence d!.

Otherwise, let g be an irreducible factor of f = gh with $\deg(g) = k$, $\deg(h) = d-k$. Let F_1 denote the extension field F[x]/(g). By construction, g has a root in F_1 and $[F_1:F] = k$. Therefore, this root is also a root of f over F_1 , and we may write

$$f(x) = (x - \alpha)g_1(x)h(x).$$

Now we repeat (*) as follows : Let G_1 to be the splitting field of g_1 over F_1 . By induction hypothesis, $[G_1 : F_1]$ divides $\deg(g_1) = (k - 1)!$. Let K be the splitting field of h over G_1 . Then again by induction hypothesis, $[K : G_1]$ divides (d - k)!. We can now conclude since K is also a splitting field of f over F and $[K : F] = [K : G_1][G_1 : F_1][F_1 : F]$ divides (d - k)!k!, hence

$$\binom{d}{k}(d-k)!k! = d!.$$

4. Factor $x^9 - x$ and $x^{27} - x$ in \mathbb{F}_3 .

Solution : The monic irreducible polynomials of degree at most 3 over \mathbb{F}_3 are

$$\begin{array}{l} x, \ x+1, \ x-1, \ x^2+1, \ x^2+x-1, \ x^2-x-1, \\ x^3-x+1, \ x^3-x-1, \ x^3+x^2-1, \ x^3-x^2+1, \\ x^3+x^2+x+1, \ x^3+x^2+x-1, \ x^3+x^2-x+1, \\ x^3-x^2+x+1, \ x^3-x^2+x-1, \ x^3-x^2-x-1. \end{array}$$

Because the irreducible factors of a polynomial $x^{3^r} - x$ over \mathbb{F}_3 are the irreducible polynomials over \mathbb{F}_3 whose degrees divide r,

$$x^{9} - x = x(x+1)(x-1)(x^{2}+1)(x^{2}+x-1)(x^{2}-x-1)$$

and

$$x^{27} - x = x(x+1)(x-1)(x^3 + x^2 + x + 1)(x^3 + x^2 + x - 1)\cdots$$

$$\cdots (x^3 + x^2 - x + 1)(x^3 - x^2 + x + 1)(x^3 - x^2 + x - 1)(x^3 - x^2 - x - 1).$$

5. Let \mathbb{F} be a field of characteristic $p \neq 0, 3$. Show that, if α is a zero of $f(x) = x^p - x + 3$ in an extension field of \mathbb{F} , then f(x) has p distinct zeroes in $\mathbb{F}(\alpha)$.

Solution : The field \mathbb{F} contains $\mathbb{Z}/(p)$ as subfield, since it has characteristic p. For each $n \in \mathbb{Z}/(p)$, consider

$$f(\alpha + n) = (\alpha + n)^{p} - (\alpha + n) + 3 = \alpha^{p} - \alpha + 3 = 0,$$

where we used in the second equation $n^p \equiv n \mod p$. This shows that f has p distinct zeroes in $\mathbb{F}(\alpha)$.

6. Let F denote a field, p a prime and take $a \in F$ such that a is not a p^{th} power. Show that $x^p - a$ is irreducible over F.

Solution : Let K be the splitting field of $x^p - a$. Assume by contradiction that $x^p - a$ decomposes into two non-trivial factors g and h over F. Over K, we may assume that

$$x^{p} - a = \underbrace{(x - a_{1})\cdots(x - a_{n})}_{=g(x)}\underbrace{(x - a_{n+1})\cdots(x - a_{p})}_{=h(x)}$$

To get a contradiction, we must show that a is then a p^{th} power in F. By assumption, both g(0) and h(0) are elements of F, hence $A = a_1 \cdots a_n$ and $B = a_{n+1} \cdots a_p$ are both elements of F. Note that $A^p = a_1^p \cdots a_n^p = a^n$ and $B^p = a^{p-n}$. Using a Bézout identity kn + lp = 1, we can write

$$a = a^{kn}a^{lp} = A^{kp}a^{l(p-n)}a^{ln} = A^{(k+l)p}B^{lp} = (A^{k+l}B^l)^p$$