
D-MATH Algebra II FS 2014
Prof. Brent Doran

Solutions
Rings & Fields

1. A review of the semester. Motivate your answers with either a proof or a counter-
example.

(a) Is the quotient of an integral domain necessarily an integral domain ?

Solution : No. The ring of integers Z is an integral domain, but its quotient
Z/6Z is not.

(b) Is the ring R = Z[x]/(x3 + 1, 2) actually a field ?

Solution : This ring is isomorphic to F2[x]/(x3 + 1) (cf. exercise sheet 1).
Since x3 + 1 factors over F2 into (x+ 1)(x2 − x+ 1), the ideal it generates is
not maximal and the quotient ring is not a field.

(c) Find all the ideals of R.

Solution : By the previous subquestion, the problem reduces to finding all
ideals of F2[x] containing (x3+1). Since F2 is a field, its polynomial ring must
be a principal ideal domain and therefore a unique factorization domain. This
means that the only proper non-trivial ideals are (x+ 1) and (x2 − x+ 1).

(d) Is x5 + 867x4 + 153x+ 351 irreducible over Z ?

Note : This exercise has been dropped from the exam. There was unfor-
tunately a mix-up in the coefficients : The idea would have been to have a
decomposition x5 + (3 · 172)x4 + (32 · 17)x + 3 · 107 and to apply Eisenstein
criterion for p = 3. However this doesn’t work with 3 · 117 = 351 as 117 is a
power of 3. You might also have lost some time by checking whether reducti-
on modulo primes would work and noted that this doesn’t for small primes.
Sorry for that.

(e) Can you find algebraic elements of any degree over Q ?

Solution : Yes : Take your solution to exercise 2(c) of problem set 4 !

(f) Give an example of a field extension of degree 10.

Solution : Take the irreducible polynomial x10−2. Then Q( 10
√

2) has degree
10 over Q.

(g) Is the regular 7-gon constructible ? What about the regular 8-gon ?

Solution : You know from the lecture that if a regular p-gon is constructible
then p − 1 must be a power of 2 (Corollary 15.5.9 in Artin). Therefore, the
regular 7-gon can not be constructed. On the other hand, it is easy to give
an explicit ruler-and-compass construction of the angle π/4.

1



(h) What is the degree of the splitting field of x4 + 4 over Q ?

Solution : Obviously

x4 + 4 = (x2 + 2i)(x2 − 2i)

and the polynomial splits further when one notes that

(±1± i)2 = 2i and (±1∓ i)2 = −2i.

Hence the splitting field is Q(
√
−1) and since the polynomial does not split

over Q, this extension has degree 2 over Q.

(i) Consider the rings

Z/(5)× Z/(5), Z/(25), F25.

Say which one are fields and which ones are isomorphic to each other.

Solution : By definition, F25 is the finite field of 25 elements. The ring Z/(25)
is not a field since e.g. 5 has no multiplicative inverse. Although Z/(5)×Z/(5)
is a product of fields, it is itself not a field as (1,0) has no multiplicative
inverse. The first two rings are not isomorphic to each other since e.g. the
product ring contains no elements of order 25.

2. In this exercise, we compare

Rp = Fp[x]/(x2 − 2) and Sp = Fp[x]/(x2 − 3).

(a) Exhibit an explicit isomorphism between R2 and S2.

Solution : Consider the automorphism of F2[x] sending 1 to 1 and x to x+1.
By direct computation in F2[x], one can check that

ϕ(x2 − 2) = x2 + 1 = x2 − 3.

Hence ϕ descends to an isomorphism between R2 and S2.

(b) Prove that R5 is a field, and that it has 25 elements.

Solution : Equivalently, we want to show that x2 − 2 generates a maximal
ideal. Since F5 is a field, it suffices to show that x2− 2 is irreducible over F5.
This is clear as one can check directly that x2 − 2 has no root in F5.

Any polynomial f(x) ∈ R5 is a polynomial over F5 of degree 6 1. It follows
that there are exactly 5 · 5 = 25 possibilities.

(In fact, let f(x) ∈ F5[x]. By division with remainder, one can find polyno-
mials q(x) and r(x) over F5 such that

f(x) = q(x)(x2 − 2) + r(x),

where the degree of r(x) is at most 1. Quotienting by the ideal (x2 − 2) in
F5[x] yields the claim.)
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(c) Are R5 and S5 isomorphic ? What about R11 and S11 ?

Solution : One can quickly check that x2−3 is also irreducible over F5, hence
S5 is also a field, and by the same line of argument as in (b), also contains
25 elements. Because all fields of same order are isomorphic, R5 and S5 are
isomorphic.

On the other hand, one can check directly that x2− 2 is irreducible over F11,
but

(5)2 − 3 = 0,

and thus S11 is not a field.

3. We give here a direct proof that Z[
√

5] is not a unique factorization domain.

(a) Exhibit a factorization of x2 + x− 1 into two linear polynomials over Q(
√

5).

Solution :

x2 + x− 1 =

(
x+

1 +
√

5

2

)(
1 +

1−
√

5

2

)
.

(b) Prove that x2 + x− 1 is irreducible over Z[
√

5].

Solution : From the factorization above, we know that x2 + x − 1 has two
distinct roots in Q(

√
5). Since a polynomial of degree 2 over a field can have

no more than two roots and Z[
√

5] ⊂ Q(
√

5), there are no possible roots in
Z[
√

5]. Hence the polynomial must be irreducible.

(c) Conclude that Z[
√

5] is not a unique factorization domain.

Solution : Assume by contradiction that Z[
√

5] is a unique factorization
domain. Then, by Gauss lemma, x2 + x − 1 is reducible in Z[

√
5], which is

false by (b).

4. Let p be a prime. We show that xp − 2 is irreducible over Q[ζp], where ζp denotes
the p-th root of unity.

(a) Why is [Q[ζp,
p
√

2] : Q] 6 p(p− 1) true ?

Solution : Recall that ζp has irreducible polynomial xp−1 + · · · + x + 1, so
[Q[ζp] : Q] = p− 1. The polynomial xp − 2 is well defined over Q[ζp] and has
root p

√
2, so [Q[ζp,

p
√

2] : Q[ζp]] 6 p. Since both Q[ p
√

2] and Q[ζp] are subfields
of Q[ζp,

p
√

2], we can conclude with the multiplicative property of the degree.

(b) Show that [Q[ζp,
p
√

2] : Q] = p(p− 1).

Solution : Furthermore, still by the multiplicative property of the degree,
both p and p − 1 must divide [Q[ζp,

p
√

2] : Q]. Together with (a), this yields
the statement.
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(c) Conclude that xp − 2 is irreducible over Q[ζp].

Solution : The statement now follows from

p(p− 1) =
[
Q[ζp,

p
√

2] : Q
]

=
[
Q[ζp,

p
√

2] : Q[ζp]
]

[Q[ζp] : Q]

=
[
Q[ζp,

p
√

2] : Q[ζp]
]

(p− 1).

5. On square roots in finite fields. Let F be a finite field of q = pr elements. We
say that a ∈ F has a square root if the congruence equation x2 ≡ a mod q has a
solution.

(a) Show that F× → F×, x 7→ x2 is a group homomorphism.

Solution : Since F× is a cyclic group, it is abelian, and the map above is a
homomorphism.

(b) Show that if p = 2 then every element has a square root in F .

Solution : If p = 2, F× has odd order 2r − 1 and the kernel of the above
homomorphism is trivial.

(c) Show that, if p > 2, the non-zero square roots of F are exactly the solutions

to x
q−1
2 ≡ 1 mod q. Deduce that −1 is a square root in F if and only if q ≡ 1

mod 4.

Solution : Since p is an odd prime, q − 1 must be even and

x2 ≡ a mod q ⇐⇒ xq−1 ≡ a
q−1
2 mod q.

Now recall that every non-zero element of F is a root of the polynomial
xq−1 − 1.

For the second statement, observe that (−1)
q−1
2 = 1 if and only if 2 divides

(q − 1)/2, therefore if and only if q ≡ 1 mod 4.

(d) Consider the subfield K generated by {x3 : x ∈ F}. Show that if K is not
the whole of F , then F must be isomorphic to F4.

Solution : The map F× → K× has in (a) has range of order > q−1
3

. Moreover,
by assumption, #F = (#K)n, for some n > 2. Combining these two facts,
we have

#K >
1

3
(#F − 1) + 1

>
1

3

(
(#K)2 − 1

)
+ 1

=
1

3
(#K − 1) (#K + 1) + 1

=⇒ #K 6 2.

Equality holds if and only if n = 2, and in this case #F = 4.
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