Serie 6

- **1.** a) Zeige, dass die Menge $\{B \in \operatorname{Mat}_{nn}(\mathbb{K}) : AB = BA\}$ für ein gegebenes $A \in \operatorname{Mat}_{nn}(\mathbb{K})$ ein mindestens eindimensionaler Unterraum von $\operatorname{Mat}_{nn}(\mathbb{K})$ ist. Zeige ausserdem, dass die Dimension mindestens n ist, falls A diagonalisierbar ist.
 - **b**) Bestimme für

$$A = \begin{pmatrix} 0 & 0 & 4 \\ 2 & 2 & -4 \\ 1 & 0 & 0 \end{pmatrix} \in Mat_{33}(\mathbb{R})$$

eine Parameterdarstellung eines 3-dimensionalen Unterraumes von $\mathrm{Mat}_{33}(\mathbb{R})$, dessen Elemente alle mit A kommutieren.

2. Finde eine Matrix T in oberer Dreiecksform, welche ähnlich zur Matrix

$$A = \begin{pmatrix} 3 & 0 & -2 \\ -2 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$

ist.

- **3.** Seien W ein endlich-dimensionaler Vektorraum über einem Körper \mathbb{K} und $f \in \operatorname{End}(W)$.
 - a) Zeige: $\lambda \in \mathbb{K}$ ist genau dann ein Eigenwert von f, wenn λ ein Eigenwert der dualen Abbildung f^* ist.
 - **b**) Sei $p \in \mathbb{K}[X]$ ein Polynom. Zeige: Ist $\lambda \in \mathbb{K}$ ein Eigenwert von f, so ist $p(\lambda)$ ein Eigenwert von p(f).
 - c) Zeige: Wenn $f^2 = f$, dann ist $W = \ker(f) \oplus \operatorname{Im}(f)$.
- **4.** Welche der folgenden Abbildungen sind Bilinearformen?

a)
$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
, $(x,y) \mapsto \sqrt{x^2 + y^2}$

b)
$$\mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}, \ (p,q) \mapsto p(0) \cdot q'''(1)$$

$$\mathbf{c)} \ \ \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto A(x,y) \cdot \begin{cases} +1 & \text{falls } (x,y) \text{ positiv orientiert ist,} \\ -1 & \text{falls } (x,y) \text{ negativ orientiert ist,} \\ 0 & \text{falls } (x,y) \text{ linear abhängig ist.} \end{cases}$$
 Dabei ist $A(x,y)$ die Fläche des Parallelogramms mit Ecken $0,x,x+y,y$.

- 5. Sei V der Vektorraum der reellen Polynome vom Grad $\leq n$.
 - a) Zeige, dass durch

$$(p,q) := \int_0^\infty p(t)q(t)e^{-t} dt$$

ein Skalarprodukt auf V definiert wird.

b) Bestimme die Matrix des Skalarprodukts bezüglich der Basis $1, x, \dots, x^n$.

6. Online-Abgabe

- 1. Kreuze die richtigen Aussagen an.
- (a) Wenn für alle $x, y \in \mathbb{C}^n$: $x^T A y = x^T B y$, dann ist A = B.
- (b) Wenn für alle $x \in \mathbb{C}^n$: $x^T A x = x^T B x$, dann ist A = B.
- **2.** Für einen Vektor $v \in \mathbb{C}^n$ definieren wir $v^* := \overline{(v^T)}$. Betrachte $A = \begin{pmatrix} -1 & \sqrt{6} \\ -\sqrt{6} & 4 \end{pmatrix}$. Welche Aussagen sind korrekt?
- (a) Für $v = (i, 0)^T$ ist $v^*Av = 1$.
- (b) Die Eigenwerte von A sind strikt positiv.
- (c) $\forall v \in \mathbb{C}^n \setminus 0, v^*Av > 0.$
- **3.** Eine Matrix $P \in \operatorname{Mat}_{nn}(\mathbb{R})$ heisst *positiv definit*, falls für jeden Vektor $v \in \mathbb{R}^n \setminus \{0\}$ gilt, dass $v^T P v > 0$ ist. Seien nun $A, B \in \operatorname{Mat}_{nn}(\mathbb{R})$ positiv definite Matrizen. Welche Aussagen sind im Allgemeinen korrekt?
- (a) A + B ist positiv definit.
- (b) A B ist positiv definit.
- (c) λA ist positiv definit, für $\lambda \in \mathbb{R}$ mit $\lambda > 0$.

Abgabe der schriftlichen Aufgaben: Montag, den 31. März 2014 am Anfang der Übungsstunde oder vor 10:00 Uhr im Fächlein im HG J 68.