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Introduction. All the problems are devoted to study some general concepts of partial differential
equations considering the one-dimensional Poisson equation as model problem.

Problem 1.1 Green’s function for Poisson equation
We consider the 1d Poisson equation with homogeneous Dirichlet boundary conditions:

−u′′(x) = f(x), ∀x ∈ Ω = (0, 1) (1.1.1)
u(0) = u(1) = 0.

In the lecture, we learned that the solution u to this equation can be obtained using the Green’s
function:

u(x) =

∫
Ω

G(x, y)f(y) dy, x ∈ Ω

(in case of nonhomogeneous boundary conditions, we would have also bounday terms).
The Green’s function for this problem is defined as:

Gx(y) := G(x, y) =

{
y(1− x) for 0 ≤ y ≤ x

x(1− y) for x ≤ y ≤ 1.
(1.1.2)

Its expression was obtained by simple integration by parts of (1.1.1).

However, Green’s function can be introduced in a more general way for any PDE.
Before this, we need to recall the concept of Dirac delta distribution.
The delta distribution δx(y) := δ(x − y) centered at the point y can be thought, at first glance
(rigorous definition goes beyond the scope of this course), as a function

δ(x− y) =

{
0 for y ̸= x

∞ for y = x.
(1.1.3)

Physically, it describes an impulse (e.g. the force excited when you hit strongly a table with an
hammer).
The delta distribution has the property of “selecting” function values:∫

Ω

δ(x− y)f(y) dy = f(x) for any f ∈ C([0, 1]) (1.1.4)

(from which
∫
Ω
δ(x− y) dy = 1 follows).

Then the Green’s function G(x, y) := Gx(y) for a PDE is defined as the impulse response, i.e.
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as the solution to the PDE when at the right-handside we have f(x) = δx(y). For the Poisson’s
equation, this means:

−G′′
x(y) = δx(y), ∀y ∈ Ω = (0, 1) (1.1.5)

Gx(0) = Gx(1) = 0.

(1.1a) Show that the Green’s function as given by (1.1.2) solves (1.1.5).

HINT: When a function g(y) has a jump at a point x, then, it is not differentiable in that point.
However, a generalized derivative can be defined, so that g′(y)|y=x = δx(y)|y=x.
Consequently, the derivative of a piecewise constant function g(y) with jump at x is g′(y) = δx(y).

(1.1b) Show that the function u defined as

u(x) =

∫ 1

0

G(x, y)f(y) dy, x ∈ (0, 1), (1.1.6)

satisfies (1.1.1).

HINT: Formula (1.1.4) may be useful.

(1.1c) Implement a function

function val = Green(x,y)

which accepts in input two column arrays x and y of grid points, and returns in the matrix val the
Green’s function (1.1.2) evaluated at those grid points, with the convention that
val(i,j)=Green(x(i),y(j)).

(1.1d) Use the routine of subproblem (1.1c) to plot the Green’s function for
x = 1

4
, 1
2
, 3
4

(y ∈ [0, 1]).

(1.1e) Implement a function

function u = PoissonGreen(x,FHandle)

which accepts as input a column vector x of equispaced grid points {x0 = 0, x1, . . . , xN , xN+1 = 1};
and a function handle FHandle to the right-handside f of (1.1.1); in output it returns a column
vector u containing the value of the solution u to (1.1.1) computed at the points x. The solution
is computed using the formula (1.1.2).
To compute the integral, use the composite trapezoidal quadrature rule:∫ 1

0

g(x) dx ≈ g(0)h

2
+ h

N∑
i=1

g(xi) +
g(1)h

2
, (1.1.7)

where h = |x1 − x0|.
Use the array x itself as quadrature points.

HINT: Use the implementation from subproblem (1.1c) for the Green’s function.
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We are now going to discretize (1.1.1) using the Finite Differences method, namely the centered
finite differences.
To this aim, we subdivide the interval [0, 1] in N + 1 subintervals using equispaced grid points
{x0 = 0, x1, . . . , xN , xN+1 = 1}.
The discretized problem can be written as a linear system

Au = L, (1.1.8)

where A is a N ×N matrix, L a N × 1 vector and u the N × 1 vector containing of unknowns
u(xj), j = 1, . . . , N , the value of the function u at the grid points.
Let us denote by h = |x1 − x0| the meshsize.

(1.1f) Refresh your mind on what we saw in class on the Finite Difference scheme and in par-
ticular on the central finite differences.
Write the matrix A and the right-handside L. For the right-handside, write it in terms of a generic
force term f(x) in (1.1.1) when the composite trapezoidal quadrature rule (1.1.7) is applied.

(1.1g) Implement a function

function A = PoissonMatrix(N)

which computes the matrix A for (1.1.8). Here the input parameter N denotes the number of
internal grid points.

(1.1h) Implement a function

function L = PoissonRHS(FHandle,N)

to compute the right-handside L for (1.1.8). The input parameter FHandle is the function handle
for the right-handside f(x) and N is again the number of interior grid points.

(1.1i) Implement the function

function uh = PoissonSolve(FHandle,N)

to solve the Poisson problem (1.1.1).
The input parameters are as in subproblem (1.1h). The output uh is the array {uh(xj)}Nj=1 con-
taining the approximate value of the solution u at the interior grid points {xj}Nj=1.

HINT: Use the routines from subproblems (1.1g) and (1.1h).

(1.1j) Run the routine PoissonSolve for f(x) = sin(2πx) and N = 50 and plot the solu-
tion.

We saw in the lecture that the centered finite difference schemes satisfies is stable and consistent,
and thus it converges to the exact solution u to (1.1.1) when the mesh is refined.
Here we are going to test the convergence of our scheme through a convergence study.
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(1.1k) Write a function

function [h err] = Poissoncvg(FHandle)

to perform the convergence study. The input argument is a function handle to the right-hanside
f(x). As output the routine returns the array h=[h1, . . . , h6] of meshsizes and the array
err=[e1, . . . , e6] of computed errors.
As error between the discrete solution uh and the exact solution u, we consider the maximum
norm error ∥u − uhi

∥∞ = maxx∈[0,1] |u − uh|, i = 1, . . . , 6; we can compute this error just in
an approximate way: we consider a very fine grid with meshsize href = 1

210
and grid points

x0 = 0, x1 = href , . . . , xN+1 = 1 and approximate the maximum norm by

∥u− uh∥∞ ≈ max
x0...xN+1

|u(xi)− uh(xi)| (1.1.9)

The standard steps for a convergence study then:

1. compute the reference solution: compute the exact solution u to (1.1.1) that you can obtain
by call to the routine PoissonGreen from subproblem (1.1e) on the grid with meshsize
href ;

2. start from a meshsize h1 =
1
4
, corresponding to N1 = 3 interior grid points;

3. compute the discrete solution uh1 to (1.1.1);

4. compute the error e1 ≈ ∥u − uh1∥∞; inside each mesh interval, consider the linear inter-
polant for uh;

5. refine the grid, considering h2 =
h1

2
= 1

8
and repeat the algorithm from step 3;

6. repeat the previous step till h6 =
h1

25
.

(1.1l) Run the routine Poissoncvg for f(x) = sin(2πx).
Make a double logarithmic plot of the errors e1, . . . , e6 versus the meshsizes h1, . . . , h6. What do
you observe? Which is the order of convergence?

Problem 1.2 The Poisson equation with Neumann boundary conditions
We consider the Poisson equation with homogeneous Neumann boundary conditions:

−u′′(x) = f(x), ∀x ∈ Ω = (0, 1) (1.2.1)
u′(0) = u′(1) = 0,

f ∈ C0([0, 1]).

(1.2a) Show that ∫ 1

0

f(x) dx = 0 (1.2.2)

is a necessary condition to have a solution.
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(1.2b) Show that (1.2.1) does not have a unique solution.

HINT: Suppose that a function u(x) is a solution and consider v(x) = u(x) + c, c > 0.

(1.2c) Show that, if (1.2.2) is fulfilled, then (1.2.1) has always a solution u ∈ C2([0, 1]).
Moreover, show that the solution is unique if we require∫ 1

0

u(x) dx = 0 (1.2.3)

We are now going to analyse the discretization (1.2.1) through centered differences.
Consider a partition {x0 = 0, x1, . . . , xN , xN+1 = 1} of the interval [0, 1], with equispaced points
and meshsize h. The discretized equation can be written as

Au = L, (1.2.4)

where A is a (N + 2) × (N + 2) matrix, L is a vector of length N + 2 and u is the vector of
unknowns {uh(x0), . . . uh(xN+1)}, where uh denotes the discrete solution.

(1.2d) Compute the matrix A and the right-handside L.

(1.2e) Show that the matrix A is singular. This is because the nonunicity of the solution that
we have seen in subproblem (1.2b) is reflected on the discrete case.

(1.2f) We have seen in subproblem (1.2c) that under the constraint (1.2.3) the solution to (1.2.1)
is unique.
Apply the composite trapezoidal quadrature rule to (1.2.3) to get an equation in terms of the
entries of u, i.e. a constraint on the discrete level.

HINT: The composite trapezoidal quadrature rule for a generic function g is:∫ 1

0

g(x) dx ≈ g(0)h

2
+ h

N∑
i=1

g(xi) +
g(1)h

2
, (1.2.5)

(1.2g) Combining the equation we have got from subproblem (1.2f) with the system of equa-
tions (1.2.4), we have a linear system of N + 3 equations for N + 2 unknowns.
However, these equations are not linearly independent since the rows of A are not. It can be
shown (and actually it is expected from subproblem (1.2c)) that the equation we get from sub-
problem (1.2f) is linearly independent from the rows of A. Then, summing up this equation with
the first equation in (1.2.4), we get a system

Ãu = L̃ (1.2.6)

of N + 2 linearly independent equations for N + 2 unknowns.
Write the matrix Ã and the vector L̃ (the latter in terms of a generic right-handside f(x)).

(1.2h) Write a routine

function A = PoissonNeuMatrix(N)

to implement the matrix Ã. Here N is the number of interior grid points.
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(1.2i) Write a routine

function L = PoissonNeuRHS(FHandle,N)

to implement the right-handside L̃. Here FHandle is a function handle to a generic right-
handside f(x) and N is the number of interior grid points.

(1.2j) Write a routine

function uh = PoissonNeuSolve(FHandle,N)

to solve the system (1.2.6) and store the solution in the vector uh.

(1.2k) Consider f(x) = sin(2πx).
Verify that this right-handside satisfies the condition (1.2.2).
Compute the analytic solution for this right-handside.

(1.2l) Use the routine PoissonNeuSolve to compute the solution to (1.2.1) with
f(x) = sin(2πx). Use N = 50 and make a plot of the solution.
You can compare then this plot with a plot of the exact solution computed in (1.2k) to have a first
check of your routines (although an exhaustive check would require a convergence study).

Problem 1.3 Stability property for the Poisson equation
The aim of this problem is to better understand what does the stability mean for a differential
equation. We will do it consider the Poisson equation with homogeneous Dirichlet boundary
conditions:

−u′′(x) = f(x), ∀x ∈ Ω = (0, 1) (1.3.1)
u(0) = u(1) = 0.

for f ∈ C([0, 1]).

In applications the exact source term f(x) is not available. What is available is some perturbation
of it

f̃(x) = f(x) + η(x), (1.3.2)

where η(x) is some noise introduced, for example, by some measurement error.
Then, what can be actually computed is the solution ũ to the perturbed system

−ũ′′(x) = f̃(x), ∀x ∈ Ω = (0, 1) (1.3.3)
ũ(0) = ũ(1) = 0.

(1.3a) Show that

∥u− ũ∥∞ ≤ 1

8
∥f − f̃∥∞ (1.3.4)
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Figure 1.1: Plots for subproblem (1.3c).

(1.3b) Consider now that we want to compute the solution to (1.3.3) numerically and denote
by ũh the discrete solution. We are interested in estimating how well ũh approximates the exact
solution u to the unperturbed problem (1.3.3).
Show that the following estimate holds:

∥u− ũh∥∞ ≤ 1

8
∥η∥∞ + ∥ũ− ũh∥∞. (1.3.5)

Note that here we are not making any assumption on the discretization scheme.

(1.3c) Suppose that η(x) = δ sin(2πx), for some δ > 0, so that

f̃ = f + δ sin(20πx). (1.3.6)

Let us consider δ = 10−1, 10−2, 10−3 and suppose that for each of this values we made a conver-
gence study for ũh considering the error ∥u− ũh∥∞. The convergence plots are shown in Fig. 1.1
Observe and compare the plots and comment on them:

• Why, for meshsize h small there is a plateau?

• How does the plateau change with δ? Why?
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