
S. Mishra
L. Scarabosio
J. Sukys

Spring Term 2014

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Homework Problem Sheet 1

Introduction. All the problems are devoted to study some general concepts of partial differential
equations considering the one-dimensional Poisson equation as model problem.

Problem 1.1 Green’s function for Poisson equation
We consider the 1d Poisson equation with homogeneous Dirichlet boundary conditions:

−u′′(x) = f(x), ∀x ∈ Ω = (0, 1) (1.1.1)
u(0) = u(1) = 0.

In the lecture, we learned that the solution u to this equation can be obtained using the Green’s
function:

u(x) =

∫
Ω

G(x, y)f(y) dy, x ∈ Ω

(in case of nonhomogeneous boundary conditions, we would have also bounday terms).
The Green’s function for this problem is defined as:

Gx(y) := G(x, y) =

{
y(1− x) for 0 ≤ y ≤ x

x(1− y) for x ≤ y ≤ 1.
(1.1.2)

Its expression was obtained by simple integration by parts of (1.1.1).

However, Green’s function can be introduced in a more general way for any PDE.
Before this, we need to recall the concept of Dirac delta distribution.
The delta distribution δx(y) := δ(x − y) centered at the point y can be thought, at first glance
(rigorous definition goes beyond the scope of this course), as a function

δ(x− y) =

{
0 for y ̸= x

∞ for y = x.
(1.1.3)

Physically, it describes an impulse (e.g. the force excited when you hit strongly a table with an
hammer).
The delta distribution has the property of “selecting” function values:∫

Ω

δ(x− y)f(y) dy = f(x) for any f ∈ C([0, 1]) (1.1.4)

(from which
∫
Ω
δ(x− y) dy = 1 follows).

Then the Green’s function G(x, y) := Gx(y) for a PDE is defined as the impulse response, i.e.

Problem Sheet 1 Page 1 Problem 1.1

as the solution to the PDE when at the right-handside we have f(y) = δx(y). For the Poisson’s
equation, this means:

−G′′
x(y) = δx(y), ∀y ∈ Ω = (0, 1) (1.1.5)

Gx(0) = Gx(1) = 0.

(1.1a) Show that the Green’s function as given by (1.1.2) solves (1.1.5).

HINT: When a function g(y) has a jump at a point x, then, it is not differentiable in that point.
However, a generalized derivative can be defined, so that g′(y)|y=x = δx(y)|y=x.
Consequently, the derivative of a piecewise constant function g(y) with jump at x is g′(y) = δx(y).

Solution: From (1.1.2), we get that

G′
x(y)

{
(1− x) for 0 ≤ y ≤ x

−x for x ≤ y ≤ 1.

and thus, using the hint:
G′′

x(y) = δx(y).

Moreover, it is clear from (1.1.2) that the boundary conditions are fulfilled.

(1.1b) Show that the function u defined as

u(x) =

∫ 1

0

G(x, y)f(y) dy, x ∈ (0, 1), (1.1.6)

satisfies (1.1.1).

HINT: Formula (1.1.4) may be useful.

Solution: Differentiating (1.1.2), we get:

u′′(x) =

∫ 1

0

∂2

∂x2
G(x, y)f(y) dy = −

∫ 1

0

δx(y)f(y) dy = −f(x),

where for the last equality we used (1.1.4).
Moreover, u given by (1.1.6) satisfies the homogeneous Dirichlet boundary conditions because,
from (1.1.5), the Green’s function does.

(1.1c) Implement a function

function val = Green(x,y)

which accepts in input two column arrays x and y of grid points, and returns in the matrix val the
Green’s function (1.1.2) evaluated at those grid points, with the convention that
val(i,j)=Green(x(i),y(j)).

Solution: See listing 1.1 for the code.

Listing 1.1: Implementation for Green
1 f u n c t i o n val = Green(x,y)

Problem Sheet 1 Page 2 Problem 1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

y

G
(x

,y
)

x = 1/4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

y

G
(x

,y
)

x = 1/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

y

G
(x

,y
)

x = 3/4

Figure 1.1: Plots for subproblem (1.1d).

2

3 f o r j=1: l e n g t h(y)
4 f o r i=1: l e n g t h(x)
5 i f y(j)<=x(i)
6 val(i,j) = y(j)*(1-x(i));
7 e l s e
8 val(i,j) = x(i)*(1-y(j));
9 end

10 end
11 end

(1.1d) Use the routine of subproblem (1.1c) to plot the Green’s function for
x = 1

4
, 1
2
, 3
4

(y ∈ [0, 1]).

Solution: See Figure 1.1.

(1.1e) Implement a function

function u = PoissonGreen(x,FHandle)

which accepts as input a column vector x of equispaced grid points {x0 = 0, x1, . . . , xN , xN+1 = 1};
and a function handle FHandle to the right-handside f of (1.1.1); in output it returns a column
vector u containing the value of the solution u to (1.1.1) computed at the points x. The solution
is computed using the formula (1.1.2).
To compute the integral, use the composite trapezoidal quadrature rule:∫ 1

0

g(x) dx ≈ g(0)h

2
+ h

N∑
i=1

g(xi) +
g(1)h

2
, (1.1.7)

where h = |x1 − x0|.
Use the array x itself as quadrature points.

HINT: Use the implementation from subproblem (1.1c) for the Green’s function.

Solution: See listing 1.2 for the code.

Listing 1.2: Implementation for PoissonGreen

Problem Sheet 1 Page 3 Problem 1.1

1 f u n c t i o n u = PoissonGreen(x,FHandle)
2

3 greenval = Green(x,x);
4 h = x(2)-x(1);
5 u = z e r o s(l e n g t h(x),1);
6

7 f o r i=1: l e n g t h(x)
8 u(i) = FHandle(x(1))*greenval(1,i)*h/2 +

sum(FHandle(x(2:end-1)).*...
9 greenval(2:end-1,i),1)*h+FHandle(x(end))*greenval(end,i)*h/2;

10 end

We are now going to discretize (1.1.1) using the Finite Differences method, namely the centered
finite differences.
To this aim, we subdivide the interval [0, 1] in N + 1 subintervals using equispaced grid points
{x0 = 0, x1, . . . , xN , xN+1 = 1}.
The discretized problem can be written as a linear system

Au = L, (1.1.8)

where A is a N ×N matrix, L a N × 1 vector and u the N × 1 vector containing of unknowns
u(xj), j = 1, . . . , N , the value of the function u at the grid points.
Let us denote by h = |x1 − x0| the meshsize.

(1.1f) Refresh your mind on what we saw in class on the Finite Difference scheme and in par-
ticular on the central finite differences.
Write the matrix A and the right-handside L. For the right-handside, write it in terms of a generic
force term f(x) in (1.1.1).

Solution: We have:

A =

2 −1 0 . . . 0
−1 2 −1 . . . 0

...
...

...
...

...
0 . . . −1 2 −1
0 −1 2

 L = h2

f(x1)
f(x2)

...
f(xN−1)
f(xN)

(1.1g) Implement a function

function A = PoissonMatrix(N)

which computes the matrix A for (1.1.8). Here the input parameter N denotes the number of
internal grid points.

Solution: See listing 1.3 for the code.

Problem Sheet 1 Page 4 Problem 1.1

Listing 1.3: Implementation for PoissonMatrix
1 f u n c t i o n A = PoissonMatrix(N)
2

3 e = ones(N,1);
4 A = s p d i a g s([-e 2*e -e], -1:1, N, N);

(1.1h) Implement a function

function L = PoissonRHS(FHandle,N)

to compute the right-handside L for (1.1.8). The input parameter FHandle is the function handle
for the right-handside f(x) and N is again the number of interior grid points.

Solution: See listing 1.4 for the code.

Listing 1.4: Implementation for PoissonRHS
1 f u n c t i o n L = PoissonRHS(FHandle,N)
2

3 h = 1/(N+1);
4

5 L = hˆ2*FHandle((h:h:1-h)’);

(1.1i) Implement the function

function uh = PoissonSolve(FHandle,N)

to solve the Poisson problem (1.1.1).
The input parameters are as in subproblem (1.1h). The output uh is the array {uh(xj)}Nj=1 con-
taining the approximate value of the solution u at the interior grid points {xj}Nj=1.

HINT: Use the routines from subproblems (1.1g) and (1.1h).

Solution: See listing 1.5 for the code.

Listing 1.5: Implementation for PoissonSolve
1 f u n c t i o n uh = PoissonSolve(FHandle,N)
2

3 A = PoissonMatrix(N);
4 L = PoissonRHS(FHandle,N);
5 uh = z e r o s(N+2,1);
6 uh(2:end-1) = A\L;

(1.1j) Run the routine PoissonSolve for f(x) = sin(2πx) and N = 50 and plot the solu-
tion.

Solution:

See Fig. 1.2 for the plot.

Problem Sheet 1 Page 5 Problem 1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x
u(

x)

Figure 1.2: Plot for subproblem (1.1j)

We saw in the lecture that the centered finite difference schemes satisfies is stable and consistent,
and thus it converges to the exact solution u to (1.1.1) when the mesh is refined.
Here we are going to test the convergence of our scheme through a convergence study.

(1.1k) Write a function

function [h err] = Poissoncvg(FHandle)

to perform the convergence study. The input argument is a function handle to the right-hanside
f(x). As output the routine returns the array h=[h1, . . . , h6] of meshsizes and the array
err=[e1, . . . , e6] of computed errors.
As error between the discrete solution uh and the exact solution u, we consider the maximum
norm error ∥u − uhi

∥∞ = maxx∈[0,1] |u − uh|, i = 1, . . . , 6; we can compute this error just in
an approximate way: we consider a very fine grid with meshsize href = 1

210
and grid points

x0 = 0, x1 = href , . . . , xN+1 = 1 and approximate the maximum norm by

∥u− uh∥∞ ≈ max
x0...xN+1

|u(xi)− uh(xi)| (1.1.9)

The standard steps for a convergence study then:

1. compute the reference solution: compute the exact solution u to (1.1.1) that you can obtain
by call to the routine PoissonGreen from subproblem (1.1e) on the grid with meshsize
href ;

2. start from a meshsize h1 =
1
4
, corresponding to N1 = 3 interior grid points;

3. compute the discrete solution uh1 to (1.1.1);

4. compute the error e1 ≈ ∥u − uh1∥∞; inside each mesh interval, consider the linear inter-
polant for uh;

5. refine the grid, considering h2 =
h1

2
= 1

8
and repeat the algorithm from step 3;

Problem Sheet 1 Page 6 Problem 1.1

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

log(h)
lo

g(
er

ro
r

in
 ∞

−
no

rm
)

Figure 1.3: Convergence plot for subproblem (1.1l)

6. repeat the previous step till h6 =
h1

25
.

Solution: See listing 1.6 for the code.

Listing 1.6: Implementation for Poissoncvg
1 f u n c t i o n [h,err] = Poissoncvg(FHandle)
2

3 xref = l i n s p a c e(0,1,2ˆ10+1);
4 u = PoissonGreen(xref’,FHandle);
5

6 h = [1/4];
7 err = [];
8

9 f o r i=1:6
10

11 uh = PoissonSolve(FHandle,1/h(i)-1);
12 x = l i n s p a c e(0,1,1/h(i)+1);
13 err = [err max(abs(linterp(x,uh,xref)’-u))];
14 h = [h h(i)/2];
15 end
16 h = h(1:end-1);

(1.1l) Run the routine Poissoncvg for f(x) = sin(2πx).
Make a double logarithmic plot of the errors e1, . . . , e6 versus the meshsizes h1, . . . , h6. What do
you observe? Which is the order of convergence? Solution:

See Fig. 1.3 for the plot. As expected, the error goes to zero as the mesh is refined. The curve in
the loglog plot is a line with slope 2. This means that ∥u − uh∥∞ ≈ Ch2, for a constant C > 0
and 2 is the convergence order, as we expected from the theory.

Problem 1.2 The Poisson equation with Neumann boundary conditions
We consider the Poisson equation with homogeneous Neumann boundary conditions:

Problem Sheet 1 Page 7 Problem 1.2

−u′′(x) = f(x), ∀x ∈ Ω = (0, 1) (1.2.1)
u′(0) = u′(1) = 0,

f ∈ C0([0, 1]).

(1.2a) Show that ∫ 1

0

f(x) dx = 0 (1.2.2)

is a necessary condition to have a solution.

Solution: From (1.2.2) we have:∫ 1

0

f(x) dx = −
∫ 1

0

u′′(x) dx = −u′(1) + u′(0) = 0.

(1.2b) Show that (1.2.1) does not have a unique solution.

HINT: Suppose that a function u(x) is a solution and consider v(x) = u(x) + c, c > 0.

Solution: We have that v solves the differential equation:

−v′′(x) = −u′′(x) = f(x)

and also the boundary conditions:

v′(0) = u′(0) = 0 v′(1) = u′(1) = 0.

Thus, if u is a solution, any other function v(x) = u(x) + c, c > 0 is.

(1.2c) Show that, if (1.2.2) is fulfilled, then (1.2.1) has always a solution u ∈ C2([0, 1]).
Moreover, show that the solution is unique if we require∫ 1

0

u(x) dx = 0 (1.2.3)

Solution: Integrating (1.2.1) once:

−
∫ y

0

u′′(z) dz = −u′(y) =

∫ y

0

f(z) dz,

where we used the boundary conditions. Futher integrating we get:

−
∫ x

0

u′(y) dy = −u(x) + u(0) =

∫ x

0

∫ y

0

f(z) dz dy.

This means that, under (1.2.2), there exists always a solution given by

u(x) = u(0)−
∫ x

0

∫ y

0

f(z) dz dy dx.

Problem Sheet 1 Page 8 Problem 1.2

If additionally we require (1.2.3), then∫ 1

0

u(x) dx = u(0)−
∫ 1

0

∫ x

0

∫ y

0

f(z) dz dy dx = 0

and thus

u(0) =

∫ 1

0

∫ x

0

∫ y

0

f(z) dz dy dx

and the solution is unique.

We are now going to analyse the discretization (1.2.1) through centered differences.
Consider a partition {x0 = 0, x1, . . . , xN , xN+1 = 1} of the interval [0, 1], with equispaced points
and meshsize h. The discretized equation can be written as

Au = L, (1.2.4)

where A is a (N + 2) × (N + 2) matrix, L is a vector of length N + 2 and u is the vector of
unknowns {uh(x0), . . . uh(xN+1)}, where uh denotes the discrete solution.

(1.2d) Compute the matrix A and the right-handside L.

Solution:

A =

1 −1 0 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

...
...

...
...

...
0 −1 2 −1
0 −1 1

L =

0
h2f(x1)

...

...
h2f(xN)

0

(1.2e) Show that the matrix A is singular. This is because the nonunicity of the solution that
we have seen in subproblem (1.2b) is reflected on the discrete case.

Solution: If we change the sign to the last row and then sum up the rows (or the columns), we
get the zero-vector, that is the rows/columns are linearly dependent.

(1.2f) We have seen in subproblem (1.2c) that under the constraint (1.2.3) the solution to (1.2.1)
is unique.
Apply the composite trapezoidal quadrature rule to (1.2.3) to get an equation in terms of the
entries of u, i.e. a constraint on the discrete level.

HINT: The composite trapezoidal quadrature rule for a generic function g is:∫ 1

0

g(x) dx ≈ g(0)h

2
+ h

N∑
i=1

g(xi) +
g(1)h

2
, (1.2.5)

Solution: Let us denote by {u0, . . . , uN+1} the entries of u.
The resulting equation is

u0h

2
+ h

N∑
i=1

ui +
uN+1h

2
= 0

Problem Sheet 1 Page 9 Problem 1.2

or equivalently, multiplying by 2
h

,

u0 + 2
N∑
i=1

ui + uN+1 = 0.

(1.2g) Combining the equation we have got from subproblem (1.2f) with the system of equa-
tions (1.2.4), we have a linear system of N + 3 equations for N + 2 unknowns.
However, these equations are not linearly independent since the rows of A are not. It can be
shown (and actually it is expected from subproblem (1.2c)) that the equation we get from sub-
problem (1.2f) is linearly independent from the rows of A. Then, summing up this equation with
the first equation in (1.2.4), we get a system

Ãu = L̃ (1.2.6)

of N + 2 linearly independent equations for N + 2 unknowns.
Write the matrix Ã and the vector L̃ (the latter in terms of a generic right-handside f(x)). Solu-
tion: They are given by

Ã =

2 1 2 . . . 2 1
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

...
...

...
...

...
0 −1 2 −1
0 1 −1

L̃ = L

(1.2h) Write a routine

function A = PoissonNeuMatrix(N)

to implement the matrix Ã. Here N is the number of interior grid points.

Solution: See listing 1.7 for the code.

Listing 1.7: Implementation for PoissonNeuMatrix
1 f u n c t i o n A = PoissonNeuMatrix(N)
2

3 e = ones(N+2,1);
4 A = s p d i a g s([-e 2*e -e],-1:1,N+2,N+2);
5

6 A(1,3:end-1)=2*ones(1,N-1);
7 A(1,2)=1;
8 A(1,end)=1;
9 A(end,end)=-1;

10 A(end,end-1)=1;

Problem Sheet 1 Page 10 Problem 1.2

(1.2i) Write a routine

function L = PoissonNeuRHS(FHandle,N)

to implement the right-handside L̃. Here FHandle is a function handle to a generic right-
handside f(x) and N is the number of interior grid points.

Solution: See listing 1.8 for the code.

Listing 1.8: Implementation for PoissonNeuRHS
1 f u n c t i o n L = PoissonNeuRHS(FHandle,N)
2

3 h = 1/(N+1);
4

5 L = hˆ2*FHandle((0:h:1)’);
6 L(1) = L(1)/h;
7 L(end) = L(end)/h;

(1.2j) Write a routine

function uh = PoissonNeuSolve(FHandle,N)

to solve the system (1.2.6) and store the solution in the vector uh.

Solution: See listing 1.9 for the code.

Listing 1.9: Implementation for PoissonNeuSolve
1 f u n c t i o n uh = PoissonNeuSolve(FHandle,N)
2

3 A = PoissonNeuMatrix(N);
4 L = PoissonNeuRHS(FHandle,N);
5 uh = A\L;

(1.2k) Consider f(x) = sin(2πx).
Verify that this right-handside satisfies the condition (1.2.2).
Compute the analytic solution for this right-handside.

Solution: The condition (1.2.2) is satisfied, because∫ 1

0

sin(2πx) dx = − 1

2π
cos(2πx)

∣∣∣∣ = 0.

Integrating (1.2.1) once we get:

−(u′(x)− u′(0)) = − 1

2π
cos(2πx) +

1

2π

and thus, using the boundary conditions:

u′(x) =
1

2π
cos(2πx)− 1

2π
.

Problem Sheet 1 Page 11 Problem 1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x
u(

x)

Figure 1.4: Plot for subproblem (1.2l)

Integrating on more time:

u(x)− u(0) =
1

4π2
sin(2πx)− 1

2π
x;

applying the constraint (1.2.3) to this last equation we get that u(0) = 1
4π

and thus the solution to
(1.2.1) is

u(x) =
1

4π2
sin(2πx)− 1

2π
x+

1

4π
.

(1.2l) Use the routine PoissonNeuSolve to compute the solution to (1.2.1) with
f(x) = sin(2πx). Use N = 50 and make a plot of the solution.
You can compare then this plot with a plot of the exact solution computed in (1.2k) to have a first
check of your routines (although an exhaustive check would require a convergence study).

Solution:

See Fig. 1.4 for the plot.

Problem 1.3 Stability property for the Poisson equation
The aim of this problem is to better understand what does the stability mean for a differential
equation. We will do it consider the Poisson equation with homogeneous Dirichlet boundary
conditions:

−u′′(x) = f(x), ∀x ∈ Ω = (0, 1) (1.3.1)
u(0) = u(1) = 0.

for f ∈ C([0, 1]).

In applications the exact source term f(x) is not available. What is available is some perturbation
of it

f̃(x) = f(x) + η(x), (1.3.2)

Problem Sheet 1 Page 12 Problem 1.3

where η(x) is some noise introduced, for example, by some measurement error.
Then, what can be actually computed is the solution ũ to the perturbed system

−ũ′′(x) = f̃(x), ∀x ∈ Ω = (0, 1) (1.3.3)
ũ(0) = ũ(1) = 0.

(1.3a) Show that

∥u− ũ∥∞ ≤ 1

8
∥f − f̃∥∞ (1.3.4)

Solution: We know from the lecture that any solution v to the Poisson equation (1.3.1) with
right-handside g satisfies the estimate

∥v∥∞ ≤ 1

8
∥g∥∞.

Subtracting (1.3.3) to (1.3.1), we get that u− ũ satisfies the equation

−(u− ũ)′′(x) = f(x)− f̃(x), ∀x ∈ Ω = (0, 1)

(u− ũ)(0) = (u− ũ)(1) = 0.

Thus, taking v = u− ũ and g = f − f̃ , we get (1.3.4).

(1.3b) Consider now that we want to compute the solution to (1.3.3) numerically and denote
by ũh the discrete solution. We are interested in estimating how well ũh approximates the exact
solution u to the unperturbed problem (1.3.3).
Show that the following estimate holds:

∥u− ũh∥∞ ≤ 1

8
∥η∥∞ + ∥ũ− ũh∥∞. (1.3.5)

Note that here we are not making any assumption on the discretization scheme.

Solution: Applying the triangle inequality we have:

∥u− ũh∥∞ ≤ ∥u− ũ∥∞ + ∥ũ− ũh∥∞.

The result then follows from equation (1.3.4) and remembering that f − f̃ = η.

(1.3c) Suppose that η(x) = δ sin(2πx), for some δ > 0, so that

f̃ = f + δ sin(20πx). (1.3.6)

Let us consider δ = 10−1, 10−2, 10−3 and suppose that for each of this values we made a conver-
gence study for ũh considering the error ∥u− ũh∥∞. The convergence plots are shown in Fig. 1.5
Observe and compare the plots and comment on them:

• Why, for meshsize h small there is a plateau?

• How does the plateau change with δ? Why?

Problem Sheet 1 Page 13 Problem 1.3

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

log(h)

lo
g(

er
ro

r
in

 ∞
−

no
rm

)

δ = 10−1

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

log(h)

lo
g(

er
ro

r
in

 ∞
−

no
rm

)

δ = 10−2

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

log(h)

lo
g(

er
ro

r
in

 ∞
−

no
rm

)

δ = 10−3

Figure 1.5: Plots for subproblem (1.3c).

Solution: From (1.3.5) we see that the first addend on the left-handside goes to zero as ∥η∥∞
does, while, assuming a convergent discretization scheme, the second addend goes to zero as the
mesh is refined.
Here we have ∥η∥∞ = δ.
In the region that the discretization error dominates over the error introduced by the noise, we can
observe convergence.
On the contrary, when the error introduced by the noise dominates over the discretization error,
the total error ∥u− ũh∥∞ does not go to zero anymore although the discretization error does. This
is the reason why we see a plateau in the first two plots.
The plateau happens at a smaller error as the noise norm δ gets smaller, till the last plot where we
don’t see it for the meshsizes considered for the convergence study.

Published on March 3.
To be submitted on March 17.
Last modified on March 18, 2014

Problem Sheet 1 Page 14 Problem 1.3

