S. Mishra Spring Term 2014

: . . ETH Ziirich
L. Scarabosio Numerical Methods for Partial D.MATH

J. Sukys Differential Equations

Homework Problem Sheet 2

Introduction. The first problem of this problem sheet concerns the Finite Difference discretiza-
tion of the Poisson equation on a 2-dimensional domain.

The other two problems address the discretization of one-dimensional problems using the Finite-
Element method.

Problem 2.1 Finite Differences for 2D Poisson Equation

In this problem we consider the Finite Differences discretization of the Poisson problem on the
unit square:

~Au=f inQ:=(0,1)?

2.1.1
u=0 on0df2, ( )
for a bounded and continuous function f € C°(Q).
We consider a regular tensor product grid with meshwidth 4 := (N + 1)~! and we assume a

lexikographic numbering of the interior vertices of the mesh as depicted in Fig.2.1.

We first consider the 5-point stencil finite difference scheme for the operator —A described by
the 5-points stencil shown in Fig. 2.2.
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Figure 2.1: Lexikographic numbering of vertices of the equidistant tensor product mesh.
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Figure 2.2: 5-point stencil for subproblems (2.1a)-(2.1f).

(2.1a)  Write the system
Au =1L (2.1.2)

corresponding to the discretization of (2.1.1) using the stencil in Fig. 2.2, specifying the matrix
A and the vectors L and w.

Solution: We have a block tridiagonal matrix A € RN**N?

B -1 0 ... ... 0

-I B -1 0 ... O
A=

o ... 0 -I B -1

o ... ... 0 —-I B

where I € RY*¥ is the identity matrix, and B € RV*¥ is the tridiagonal matrix

4 -1 0 ... ... O

-1 4 -1 0 ... O
B =

o ... 0 -1 4 -1

0 0 -1 4

The vectors L and w are given by (L); = f(x;) and (u); = up(x;), where j is the node index
according to the lexikographic order of Fig. 2.1 and u;, denotes the discrete solution.

(2.1b)  Write a function
A = PoissonMatrix2D (N)

to construct the matrix A in (2.1.2), where N denotes the number of interior grid points along
one dimension.

Solution: See Listing 2.1.
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Listing 2.1: Implementation for PoissonMatrix2D

1 |function A = PoissonMatrix2D (N)

3 |lel = ones(N"2,1);

4 |e?2 repmat ([ones (N-1,1);0],N,1);

s |e3 = repmat ([0;ones(N-1,1)],N,1);

o |[A = spdiags ([-el -e2 4%el -e3 -el],[-N -1 0 1 N],N"2,N"2);

s | end

(2.1c)  Write a function

L = PoissonRHS2D (FHandle, N)

to build the vector L in (2.1.2). Here FHandle is a function handle to the function f in (2.1.1)
and N the number of interior grid points.

Solution: See Listing 2.2.

Listing 2.2: Implementation for PoissonRHS2D

1 |function 1L = PoissonRHS2D (FHandle, N)

53 |[x = linspace (0,1,N+2);
s |x = x(2:end-1) ;

s | [X,Y] = meshgrid (x) ;

6 [Coords = [Y(:) X(:)];

s |L = 1/ ((N+1) "2)«FHandle (Coords) ;

o |end

(2.1d) Write a function
uh = PoissonSolve2D (FHandle, N)
to solve the system (2.1.2), with FHandle and NV as in the previous subproblems.

Solution: See Listing 2.3.

Listing 2.3: Implementation for PoissonSolve2D

i |function u = PoissonSolve2D (FHandle, N)

3 |u = zeros ((N+2) "2,1);

4 |Dofs = (1:(N+2)72)";

s |[FreeDofs = [];

6 |for i=2:N+1

7 FreeDofs = [FreeDofs;

Dofs ((N+2) * (i—-1)+2: (N+2) * (i—-1) +N+1) ];
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Figure 2.3: Plot for subproblem (2.1e).

s | end

9 |A = PoissonMatrix2D (N) ;

0 | L PoissonRHS2D (FHandle, N) ;
1 |u(FreeDofs) = A\L;

i3 |end

(2.1e) Plot the discrete solution that you get from subproblem (2.1d) for
f(z,y) = 8r?sin(27wz) sin(27y) and N = 50.

Solution: See Fig. 2.3.
(2.1f) Investigate the convergence of the scheme in the L*°-norm for N = 10-2",r =1,...,6.

As right-handside f, consider the function f(z,y) = 87 sin(27z) sin(27y).
Which rate do you observe?

HINT: The exact solution is u(z, y) = sin(27x) sin(27y).

Solution: See Listing 2.4 for the code, and Figure 2.4 for the plots. The convergence is algebraic,
with rate about 2.

Listing 2.4: Error computation for (2.1f)

3 |UHandle = @ (x) in(2*p x(:,1)).xsin (2+«pixx(:,2));
4+ |FHandle = @ (x) .*pi~2.xUHandle (x) ;

o |for i=1:6
10 u = PoissonSolve2D (FHandle, N) ;
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Figure 2.4: Error plot for subproblem (2.1f).
x = linspace (0,1,N+2);

[X,Y] = meshgrid (x);
uex = UHandle ([Y(:) X(:)1]1);

h = [h 1/(N+1)];
err = [err max(abs (u-uex))];
N = (N+1)=*2-1;

10

At this point, we are unsatisfied about the performance of the scheme that we consider, and we
want then to adopt an higher order Finite Difference scheme.
To this aim, we consider the so-called Collatz Merhstellenverfahren, described by the 9-point
stencil depicted in Fig. 2.5.

(2.1g)

Solution: The matrix A, associated to the Mehrstellenverfahren is a banded matrix given by

Describe the matrix A, resulting from the discretization of (2.1.1) using the stencil 2.5.

B, -1 0 ... ... ... 0

B; B, B; By 0 0

B, B; B, B; B, 0
Ay = P T

0 ... By B; B, B; B,

0 ... 0 By B; B, Bj

o ... ... ... 0 —-I B
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Figure 2.5: 5-point stencil for subproblems (2.1g)-(2.1j).

with I € RV*¥ the identity matrix and

4 -1 0 ... ... ... 0
4 -1 0 ... ... 0
4 4 1
-1 4 -1 0 ... 0 DEREE N TR e 0
N T T3 9 T3 1 0
B1: : . : GRNXN .BQ: . .. GRNXN
0 0 -1 4 -1 / i _1§ 2 = %4
0 0 -1 4 X Com o s
0 .0 -1 4
-1 0
4 1
3 12
B3: ERNXN B4: GRNXN
4 1
3 12
-1 0

(2.1h)  Write a function

A = PoissonMehrstellen (N)

to implement the matrix A, from subproblem (2.1g). Here N denotes again the number of
interior grid points along one dimension.

Solution: See Listing 2.5.

Listing 2.5: Implementation for PoissonMehrstellen
i |function A = PoissonMehrstellen (N)
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23

24

25

26

28

29

30

e = ones(N,1);

e2 = [4;5+x0ones (N-2,1),;47;

dl = [4xe;repmat (e2,N-2,1);4xe];
e3 = [0O;ones(N-1,1)];

ed = [0;-1;-4/3xones (N-2,1)1;

d2 = [-e3;repmat (e4,N-2,1);-e3];
e5 = [ones(N-1,1);0];

e6 = [-4/3xones (N-2,1);-1;01;

d3 = [-e5;repmat (e6,N-2,1);-e5];
e7 = [0;ones(N-3,1);0;07;

[

e8 = [0;0;0ones(N-3,1),;07;
[
[

d4d = [zeros (N+2,1);repmat (1/12+e7,N-2,1); zeros (N-2,1)1;
d5 = [zeros (N-2,1);repmat (1/12+e8,N-2,1);zeros (N+2,1)1];
e9 = [-1; -4/3*ones(N-2,1);-11;

dé = [—-e;-e;repmat (e9,N-2,1);1;

d7 = [repmat (e9,N-2,1);-e;-¢el;

el0 = [0;1/12xones (N-2,1);071;

d8 = [zeros (3xN,1); repmat (el0,N-3,1)];

d9 = [repmat (el0,N-3,1);zeros (3%xN,1)];

A = spdiags ([d9 d7 d5 d3 dl d2 d4 d6 d8],[-2«N -N -2 -1 0 1 2
N 2%N],N"2,N"2);

end

(2.1i) Write a function

uh = PoissonSolveMehrstellen (FHandle, N)

to solve the system (2.1.1) using the Mehrstellenverfahren. The arguments are the same as in

subproblem (2.1d).
Solution: See Listing 2.6.

Listing 2.6: Implementation for PoissonSolveMehrstellen

function u = PoissonSolveMehrstellen (FHandle, N)

u = zeros ((N+2)"2,1);

Dofs = (1: (N+2)"2)’;
FreeDofs = [];
for i=2:N+1

FreeDofs = [FreeDofs;

Dofs ((N+2) * (i—-1)+2: (N+2) * (i—-1) +N+1) ];
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Figure 2.6: Error plot for subproblem (2.1j).

end

A PoissonMehrstellen (N) ;

L = PoissonRHS2D (FHandle, N) ;
u(FreeDofs) = A\L;

end

(2.1j) Investigate the convergence of the Mehrstellenverfahren in the L*°-norm for N = 10-2",
r =1,...,6. Consider the same right-handside as in subproblem (2.1f).
Which rate of convergence do you observe?

Solution: See Listing 2.7 for the code, and Figure 2.6 for the plots. The convergence is algebraic,
with rate above 4 (= 4.3757). Indeed, it can be proven theoretically that the Mehrstellenverfahren
is a fourth-order method.

Listing 2.7: Error computation for (2.1f)

UHandle = @ (x) sin (2+«pi*x(:,1)).*sin (2xpi*x(:,2));
FHandle = Q(x) 2. (2*pi) "2.xUHandle (x) ;

h=[];

err=[];

for i=1:6
u = PoissonSolveMehrstellen (FHandle,N) ;
x = linspace (0,1,N+2);
[

X,Y] = meshgrid (x);
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uex = UHandle ([Y(:) X(:)1);
h = [h 1/(N+1)1;
err = [err max (abs (u-uex)) ];
N = (N+1)=*2-1;

end

Listing 2.8: Testcalls for Problem 2.1

UHandle = @ (x) sin (2+«pi*x(:,1)).*sin (2«pi*x(:,2));
FHandle 8.xpi~2.+UHandle (x);

Il
@
X

fprintf (" \n\n##PoissonSolve2D:")
PoissonSolve?2D (FHandle, 5)’

fprintf (' \n\n##PoissonSolveMehrstellen:’)
PoissonSolveMehrstellen (FHandle, 5)’

Listing 2.9: Output for Testcalls for Problem 2.1

>>test_call

##PoissonSolve2D:
ans =

Columns 1 through 15
0.8225 0.8225 0.0000 -0.8225 -0.8225 0.8225
0.8225 0.0000 -0.8225 -0.8225 0.0000 0.0000
-0.0000 -0.0000 -0.0000

Columns 16 through 25

-0.8225 -0.8225 -0.0000 0.8225 0.8225 -0.8225
-0.8225 -0.0000 0.8225 0.8225

##PoissonSolveMehrstellen:
ans =

Columns 1 through 15
0.8177 0.8128 0.0000 -0.8128 -0.8177 0.8128
0.7888 0.0000 -0.7888 -0.8128 0.0000 0.0000
0.0000 -0.0000 -0.0000

Columns 16 through 25

-0.8128 -0.7888 -0.0000 0.7888 0.8128 -0.8177
-0.8128 -0.0000 0.8128 0.8177
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Problem 2.2 Linear Finite Elements in 1D (Core problem)

In class the Galerkin discretization of a 2-point boundary value problem by means of trial and test
spaces of merely continuous piecewise linear functions was discussed. The Galerkin matrix for a
linear variational problem was derived in detail. In this problem we practise the crucial steps for
the slightly modified linear variational problem

we H(a,b]) - / j—;‘@)j—z@) + culz)o(z) de :/ g(@)o(z) dz, Vo € H([a, b)),

(2.2.1)
where ¢ > 0, —0o < a < b < 00, g € C%[a,b]). Please note that both trial and test functions

vanish at the endpoints of the interval, as indicated by the subscript “0” in the symbol for the
function space.

(2.2a) Derive the Galerkin matrix for (2.2.1), when using the trial and test space Sﬁo(/\/l) of
continuous, piecewise linear functions on an equidistant mesh M with N € N interior nodes.
The standard basis of tent functions is to be used.

Solution: Let 2 = [a,b] and M = {(x;_1,2;) |0 < j < N} be an equidistant mesh, meaning
that z; = a + jh with h = 2.

We first write the discretized version of the equation:

/a d;_xN(x)%(x)JrcuN(x)vN(x)—/a g(z)vy(z) dz

which, written in the basis {b%;,1 < ¢ < N} of tent function, becomes

i(/b %(m)%@) dz + c/: by ()b (2) dx)m — /abg(x)b’f\,(x) dz, k€ {1,..,N}

This can be translated to a system of linear equations of the form (A + ¢B)u = @ where

b by dbk,
Ai,k—/a o (ZE)E@?) de,

b
B,r= c/ biy ()b () da,
and
b
(Pk:/ g(x)b(z) dz.

As shown in the lecture notes, A has the following form:

2 -1 0 .. O

1 -1 2 -1
2 -1
0 -1 2
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In an analogous way, the matrix B takes the following form:

2/3 1/6 0 .. 0
1/6 2/3 1/6

B=hn| 0 1/6 .. .. ,
2/3 1/6
0 1/6 2/3

where the coefficients for matrix B have been computed in the following way:

1 Ty 1 Ti+1 N 2
Bii= 3 (x — 2m1)’ do 4+ — (zip1 = 2)*dz = Sh

h? h?
Bui= 5 [ (- o)e—s)de = gh
ii—1 — 75 Ti — )T — T4j— xr = —
Sl ' 6
1
Bi 1= gh
The Galerkin matrix is therefore the following:
%+c§h —%—l—c%h 0 0
—%—l—c%h %—i—c%h —%%—c%h
G = 0 — +cgh
24+ c2h —5 +cgh
0 —3 4 cgh  E+c3h

(2.2b)  To obtain the right-hand side vector of the linear system arising from the Galerkin
discretization of (2.2.1) as described in subproblem (2.2a), one relies on the composite trapezoidal

ruleon M = {z¢g = a,x1,...,TN, N1 = b} for numerical quadrature:
b h al h

dz ~ f(a)= + h : b)—. 222

| t@ae~ s+ > fe)+ 10); 222)

with h the meshsize.

Implement an efficient function
u = linfegalerkinsol (a,b,c,g,N)

that computes the values of the Galerkin solution uy € Sf,o(/\/l) at the nodes of the mesh M and
returns them in the row vector u. The arguments a, b, ¢ supply the domain Q2 = [a, b], and the
coefficient ¢ > 0, whereas g is a function handle to the source function g. The argument N passes
the number of interior nodes of the equidistant mesh.

Solution: Using the trapezoidal rule, one gets

b
(pk:/g( da:NhZ g(x) 5 (2),

where the symbol 2 denotes half weight on the first and last summand. Since b*(x;) # 0 only
for i = k, the sum collapses nicely into @ ~ hg(z;) for1 < k < N — 1 and @} ~ hg(xy)/2
fork=0and k= N.

See Listing 2.10 for the code.
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Listing 2.10: Linear finite elements in 1D (homogeneous Dirichlet)

1 | function u = linfegalerkinsol(a, b, ¢, g, N)

2 | % Computes the values of the discrete Galerkin solution using
as

basis tent functions on the domain [a,b] for the problem
Integral (u’v’ + cuv) = Integral (gv), for the given function

handle g and using a mesh with N internal nodes.

oo oo oo oo

The function 1is constrained by the following boundary
conditions
u(a)=0 and u(b)=0

<
oo

mesh
= (b-a)/(N+1);
linspace (a,b,N+2)’;

©
oo

X o

o
oo

3 compute finite element matrix A and right-hand side phi
4 |vl = (-1/h + 1/6xc+h) *xones (N+1,1);

5 |v2 = [1/h + 1/3%c*h; (2/h + 2/3xcxh)*ones(N,1); 1/h +
1/3%c+*h]l;

6 |[A = gallery ('tridiag’,vl,v2,vl);

7 |phi = h*[0.5%g(x(1)); g(x(2:end-1)); 0.5*g(x(end))];

19 | % Incorporate boundary data
0 |u = zeros (N+2,1);

21
» |% solve the linear system

» (u(2:end-1) = A(2:end-1,2:end-1) \phi(2:end-1);
24

» | return

(2.2¢)  State and justify the asymptotic computational complexity of 1infegalerkinsol
in terms of the problem size parameter N.

Solution: The system matrix is tridiagonal and s.p.d. and, thus, Gaussian elimination without
pivoting/Cholesky factorization can solve it with an asymptotic computational effort of O(NV).

(2.2d)  Plot the Galerkin solution uy for Q := [—m, 7], ¢ = 1, g(x) = sin(z), and N =

50, 100, 200. To validate your code compare u, with the exact analytic solution u(x) = 3 sin(z).

Solution: The resulting graph should look like the following:
(2.2e) Extend your above implementation of 1infegalerkinsol to
u = linfegalerkinsolDirichlet (a,b,c,qg,N,ua,ub),
where the optional arguments ua, ub may be used to specify boundary values for the solution

w of (2.2.1). This means that now we seek to solve (2.2.1) under the constraints u(a) = ug,
u(b) = uy.
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Figure 2.7: Plot for subproblem (2.2d).

HINT: Use the offset function technique to arrive at a modified right-hand side of the linear
system of equations that incorporates the values u, and ;.

Solution: See Listing 2.11 for the code.

Listing 2.11: Linear finite elements in 1D (inhomogeneous Dirichlet)

1 |function u = linfegalerkinsolDirichlet (a, b, ¢, g, N, ua, ub )
2 | % Computes the values of the discrete Galerkin solution using
as

basis tent functions on the domain [a,b] for the problem
Integral (u’v’ + cuv) = Integral (gv), for the given function

handle g and using a mesh with N internal nodes.

oo oo oo oo

The function 1s constrained by the following boundary
conditions
u(a)=ua and u(b)=ub

<
oo

mesh
= (b-a)/(N+1);
linspace (a,b,N+2) " ;

©
oo

X

compute finite element matrix A and right-hand side phi
4 |vl = (-1/h + 1/6xc+h) *xones (N+1,1);

5 |v2 = [1/h + 1/3%c*h; (2/h + 2/3xcxh)*ones(N,1); 1/h +
1/3*xc+h];

6 |[A = gallery ('tridiag’,vl,v2,vl);

7 |phi = h*[0.5%g(x(1)); g(x(2:end-1)); 0.5*g(x(end))];

o
oo

o

19 | % iIncorporate boundary data
» mu = zZeros (N+2,1); mu(l) = ua; mu(end) = ub;
2 |phi = phi - Axmu;
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% solve the linear system

mu(2:end-1) = A(2:end-1,2:end-1)\phi (2:end-1);

u = mu;

return
(2.2f)  Plot the Galerkin solution uy for Q := [—7, 7], ¢ = 1, g(x) = cos(z), ug = up = —3
and N = 50. To validate your code compare ux with the exact analytic solution u(x) = 3 cos(z).

Solution: The resulting graph should look like the following:

= = = u(x)=0.5*cos(x)
10

—25
50

— 100

= 200

Figure 2.8: Plot for subproblem (2.2f).

(2.2g) Investigate the convergence of the finite element discretization developed in (2.2b) in the
L*>-norm using N = 10 - 2" degrees of freedom, for » = 1,2,...,9. This sequence of N-values
should also be used for the following sub-problems. Use the test case discussed in (2.2d).

The exact evaluation of the L°°-norm is hardly ever possible. Thus we have to resign ourselves
to evaluating it only approximately. To do so, we rely on a mesh M obtained by splitting each
cell of the finite element mesh M into four smaller cells of equal size. Then sample the modulus
of the error on all vertices of the finer mesh M and find the maximal value.

HINT: For N = 10, the error should be around 0.016.

(2.2h) Investigate the convergence in the L?-norm

1 3
lell 2 == </0 le(2)? dx)  eec(0,1]). (2.2.3)

To evaluate this norm approximately, use composite Gaussian quadrature on the mesh M with
two points per mesh cell.

HINT: The nodes and weights for 2-point Gaussian quadrature on [—1, 1] are (; = —%\/3, G =

%\/5 wy = 1, wy = 1. This quadrature rule has to be transformed to all mesh cells (z,_1, ;). For
N = 10, the error should be around 0.012.
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(2.21)
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Figure 2.9: Error plots for problem 1.
Investigate the convergence in the energy seminorm
1 1
de 2\ 2 .
[ ’E(x)‘ . weck(0,1). 2.2.4)
0

Again, use composite 2-point Gaussian quadrature on M to approximate the integral.

HINT: For N = 10, the error should be around 0.150.

Solution: See Listing 2.12 for the code, and Figure 2.9 for the plots. The convergence is alge-
braic, with rate about 2 for the L>°- and L?-errors, and rate 1 for the energy error.

Listing 2.12: Error computation for (2.2g) - (2.21)

function

[nvals, linferrs, ltwoerrs, energyerrs] =
errors_pl (nvals)

linferrs = zeros (size (nvals));
ltwoerrs = zeros (size (nvals));
energyerrs = Zeros (size (nvals));
i=1;

for dofs = nvals,

h = 2«pi/ (dofs+1);

% Compute solution

extmesh = linspace (-pi, pi, dofs+2);

extU = linfegalerkinsol (-pi, pi, 1,

¢ L-Inf error
xpts = 2xpix (0:4xdofs)/ (4xdofs)-pi;

@sin, dofs);
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end

err = abs (linterp (extmesh, extU, =xpts) -
0.5*sin (xpts));
linferrs (i) = max(err);

L2 error

oo oo

shift the mesh by h/2 so that we evaluate the error

in the middle of each cell.

xpts = repmat (extmesh (l:length (extmesh)-1)+h/2,2,1);
xpts = xpts(:);

ggpts = repmat ([-1;1]1/sqrt (3),1,dofs+1)*h/2; ggpts =
ggpts (:) + xpts;

ltwoerrs (i) = sqrt(sum((h/2)« (linterp(extmesh, extU,
ggpts) — 0.5xsin (ggpts’))."2));

% Energy error

derivs = repmat (extU(2:end) - extU(l:end-1),1,2);
derivs = derivs’;

derivs = derivs(:)/h - 0.5%cos (ggpts);

energyerrs (i) = sqrt(sum((h/2)+derivs."2));

i = i+1;
end;

clf;

loglog (nvals, linferrs, ’'bo-'); hold on;

p = polyfit (log (nvals), log (linferrs), 1);

disp (sprintf (' L-Inf error algebraic with rate %$f’,
-p(1)));

plot (nvals, ltwoerrs, 'ro-');
p = polyfit (log (nvals), log (ltwoerrs), 1);
disp (sprintf (1.2 error algebraic with rate %f’, -p(1l)));

plot (nvals, energyerrs, 'go-');

p = polyfit (log (nvals), log (energyerrs), 1);

disp (sprintf (' Energy error algebraic with rate %$f’,
-p(1)));

grid on;

xlabel (' Degrees of freedom’);
ylabel ('Error’);

legend (' L-Inf’, "L2’, ’"Energy’);

Listing 2.13: Testcalls for Problem 2.2

Problem Sheet 2 Page 16 Problem 2.2




20

21

22

23

24

25

26

27

28

29

30

31

32

33

a=-pi;
b=pi;
c=1;
N=10;

fprintf (! \n\n##linfegalerkinsol:’)
linfegalerkinsol (a,b, c, @ (x) (sin (x)),N)

fprintf (" \n\n##linfegalerkinsolDirichlet:")
linfegalerkinsolDirichlet (a,b,c, @ (x) (sin (x)),N,-1/2,-1/2)

Listing 2.14: Output for Testcalls for Problem 2.2

>> test_call

##linfegalerkinsol:
ans =

-0.2816
-0.4737
-0.5155
-0.3936
-0.1467
0.1467
0.3936
0.5155
0.4737
0.2816

##linfegalerkinsolDirichlet:
ans =

-0.5000
-0.4264
0.2097
0.0780
0.3434
0.5015
0.5015
0.3434
0.0780
-0.2097
-0.4264
-0.5000
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Problem 2.3 L?(0,1)-Orthogonal Projection onto Linear Finite Element
Space

In this problem we deal with a very simple /inear variational problem that does not even involve
derivatives. For discretization we employ linear finite elements. A careful re-examination of this
section is recommended. You will be asked to implement the method and perform a numerical
study of its convergence.

The variational problem reads: seek u € H' ([0, 1]):

/0 u(z)v(zr)dr = /0 f(x)v(z)de Vv eV :=HY[0,1]). (2.3.1)

Remark: Variational problems of this kind are encountered when computing the L?(0, 1)-ortho-
gonal projection of f onto subspaces.

To begin with, we consider Galerkin discretization with the subspace Vy = SY (M) of piecewise
linear continuous functions on a general (not necessarily uniform) mesh M of [0,1]. In the
following, use tent functions as a basis. Note that the values of the solution in the boundary
points x = 0, x = 1 are not fixed. In fact, this would not make any sense.

(2.3a) What is the Galerkin matrix for this problem? Write a function
A = galmatrix_tent (mesh)

which takes the mesh points (including the boundary points) as input in the row vector mesh,
computes the Galerkin matrix, and returns it in the sparse matrix A.

HINT: The cell sizes h; must be taken into account.

Solution: The Galerkin matrix should have the format

ht h
3 6
h1  hithe ha
6 3 6
ha ho+h3 hs
6 3 6
A= . . :
hn—1  hn—1thy  hy
6 3 6
hn hn
6 3
where hq, ..., hy are the mesh widths.

Listing 2.15: Implementation for galmatrix_tent

i [function A = galmatrix_tent (mesh)
> h = mesh (2:end) - mesh(l:end-1);
s |vl = h./6;

[h;0]1./3 + [0;h]./3;

4 | V2

¢ |A = gallery ('tridiag’,vl,v2,vl);
7 |end

See Listing 2.15.
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(2.3b)  Write a function
L. = rhs_tent (mesh, f)

which takes as input the same me sh vector and a function handle for f, computes the right-hand
side vector, and returns it in the column vector L. Use the composite trapezoidal rule for numerical
quadrature.

HINT: Assume that £ can take vector arguments to compute f at each mesh point quickly.
Solution: See Listing 2.16.

Listing 2.16: Implementation for rhs_tent

1 |function rhs = rhs_tent (mesh, f)

2

3 fvals = f (mesh);

4 hvals = mesh(2:end) - mesh (l:end-1);

5

6 rhs = ([hvals;0].xfvals + [0;hvals].xfvals)/2;
;

s |end

(2.3¢) Write a function
U = 12proj-tent (mesh, )

that solves (2.3.1) approximately based on linear finite element Galerkin discretization. The
arguments mesh and f are the same as before. The column vector U should contain the value of
the solution at each mesh point.

Solution: See Listing 2.17.

Listing 2.17: Implementation for 12proj_tent

i |function U = 12proj_tent (mesh, f)
2

3 A = galmatrix_tent (mesh) ;

4 L = rhs_tent (mesh, f);

5 U = A\L;

6

7 |end

(2.3d) Investigate the convergence of the method from Problem 2.3 with equidistant mesh
points for f(x) = y/x in the L*>°- and L?-norms. Compute these norms by sampling on a finer
mesh or using composite 2-point Gauss quadrature on M, as in (2.3a) and (2.3b). Use N = 10-2"
degrees of freedom, for » = 1,2,...,9. Which is the rate of convergence? Give an explanation
about the result that you get.

HINT: The exact solution is u(x) = y/z. For N = 10, the L*°-error should be around 0.222, and
the L?-error should be around 0.059.
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HINT: Note that f’(z) is large for x close to zero and even singular at x = 0, for a different f you
would observe other results.

Solution:

Listing 2.18: Implementation for 12proj_tent_eq

1 |exact = Q@(x) sqrt(x);
2 [Nvals = 10x2.7(1:9);

3 |12errors = zeros (1,9);
4 |lierrors = zeros (1,9);

¢ |[for i = 1:9

7 mesh = linspace (0,1,Nvals(i))’;

8 h = 1/(Nvals(i)-1);

9

10 U = 12proj_tent (mesh, exact);

11

12 gqpts = sort([mesh(l:end-1) + h/2 - h/(2xsqrt(3));
mesh (1:end-1) + h/2 + h/(2xsqrt(3))1);

13 appr = linterp (mesh, U, gpts);

14 ex = exact (gpts);

15

16 12errors (i) = sqrt (sum( (appr-ex’) . 2)*(h/2));

17 lierrors (i) = max (abs (appr-ex’));

s |end

19

20 le;

a |loglog (Nvals, l2errors, 'ro-');

» |hold on;

» | loglog (Nvals, lierrors, ’'bo-');
» | xlabel (" Degrees of freedom’);

» |ylabel ("Error’);

26
» |lp = polyfit (log (Nvals), log (1l2errors), 1);
3 [—p (1)
» |p = polyfit (log (Nvals), log(lierrors), 1);
o |[—p (1)

See Listing 2.18 and Figure 2.10. The convergence is algebraic, with rate about 1/2 for the L>-
error and rate about 1 for the L?-error.
Listing 2.19: Testcalls for Problem 2.3

fprintf (" \n\n##galmatrix_tent:’)
full (galmatrix_tent ([0; 0.1; 0.7; 11))

fprintf (! \n\n##rhs_tent:’)
rhs_tent ([0; 0.1; 0.7; 11, @Q(x) x)’

[ S T T N
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Figure 2.10: Error plots for problem (2.3d).

fprintf (! \n\n##12proj_tent:’)
12proj_tent ([0; 0.1; 0.7; 1], @(x) x)'

Listing 2.20: Output for Testcalls for Problem 2.3

>> test_call

##galmatrix_tent:

ans =
0.0333 0.0167 0 0
0.0167 0.2333 0.1000 0
0 0.1000 0.3000 0.0500
0 0 0.0500 0.1000
##rhs_tent:
ans =
0 0.0350 0.3150 0.1500

##12proj_tent:
ans =

0.1386 -0.2771 0.9735 1.0133

Published on March 17.
To be submitted on March 31.
Last modified on March 19, 2014
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