
S. Mishra
L. Scarabosio
J. Sukys

Spring Term 2014

Numerical Methods for Partial
Differential Equations

ETH Zürich
D-MATH

Homework Problem Sheet 3

Introduction.

This assignment if fully devoted to the Finite Element Method in 2D.
The first problem concerns the implementation of Linear Finite Elements for the diffusion equa-
tion with Dirichlet boundary conditions. The implementation will be developed step by step under
the perspective of “finite element assembly” of the Galerkin matrix and the right-handside error.
The second problem is aimed to discretize the same Dirichlet problem but this time by means of
quadratic finite elements.
Particular attention is given in the problems to the convergence properties of the solution.

In the online handout you can find the mesh data structures that you need to test your routines
and perform the convergence studies.
Every file *.mat refers to a mesh and contains a struct. For the convergence studies, the meshes
are ordered in increasing order for number of degrees of freedom.
Each struct, let’s call it Mesh, contains the following fields:

• Mesh.Coordinates: NV × 2 array, with NV the number of vertices, containing the
vertex coordinates;

• Mesh.Edges: NE × 2 array, with NE the number of edges; the i-th row contains the
indices of the two vertices connected by the edge i;

• Mesh.Elements: NEl× 3 array, with NEl the number of elements; the i-th row contains
the indices of the three vertices of the element i;

• Mesh.BdFlags: NE×2 array, with NE the number of edges, containing the edge bound-
ary flags; the convention is that the boundary flag is 0 is the edge is an interior edge, it is
negative for boundary condition flags;

• Mesh.Vert2Edge: NV×NV array, with NV the number of vertices; Mesh.Vert2Edge(i,j)
contains the index of the edge connecting the vertices i and j.

To load the mesh data structures, in MATLAB you can use the command load, in Python the
code would be

from scipy.io import loadmat
Mesh = loadmat(path to file)
print Mesh[’Coordinates’]
print Mesh[’Edges’]

Problem Sheet 3 Page 1



1 2

3

h

h

K

Figure 3.1: Reference element for 2D linear finite elements (h = 1).

Problem 3.1 2D Linear Finite Elements (Core problem)
We consider the problem

− div(D(x)gradu(x)) = f(x) in Ω ⊂ R2 (3.1.1)
u(x) = g(x) on ∂Ω (3.1.2)

where D is uniformly positive and bounded in Ω, g is a continuous function of ∂Ω and f ∈ L2(Ω).

We solve (3.1.1)-(3.1.2) by means of Galerkin discretization based on piecewise linear finite
elements on triangular meshes of Ω.

(3.1a) Write the variational formulation for (3.1.1)-(3.1.2), specifying the bilinear form and
the linear form.

(3.1b) Show that the solution to the variational formulation in subproblem (3.1a) exists and is
unique when g = 0.

(3.1c) Implement the function

shap = shap LFE(x)

which computes the the value of the three local shape functions λi(x), i = 1, 2, 3, on the refer-
ence element depicted in Fig.3.1 at the points x (a N × 2 matrix, where each rows contains the
coordinates of a point), and returns the values in the N×3 matrix shap (each row corresponding
to the evaluation of the basis functions in a point).

(3.1d) Implement the function

shap = grad shap LFE(x)

which returns the values of the derivatives of local shape functions λi(x), i = 1, 2, 3. The input
argument x follows the same convention as in shap LFE(x), while the output shap is a N × 6
matrix containing the gradients of the shape functions evaluated at the N points (the first two
columns contain the gradient of λ1, and so on).

Problem Sheet 3 Page 2 Problem 3.1



(3.1e) Implement the routine STIMA Heat LFE to compute the element (stiffness) matrices.
The function header is

Aloc = STIMA Heat LFE(Vertices, QuadRule, FHandle)

Here, Vertices is a 3× 2-vector providing the coordinates of the element vertices, QuadRule.w
is a vector with quadrature weights and QuadRule.x is a vector with quadrature points relative
to K̂. The function should return a 3 × 3 matrix Aloc containing the element stiffness matrix.
FHandle is a handle to the function D.

HINT: Use grad shap LFE to compute the gradients of the shape functions.

(3.1f) Implement the routine LOAD LFE to compute the element vector. The function header
is

Lloc = LOAD LFE(Vertices, QuadRule, FHandle)

and follows the same convention as STIMA Heat LFE.

(3.1g) Implement a function

A = assemMat LFE(Mesh,EHandle,varargin)

that assembles the Galerkin matrix A given the mesh structure Mesh and a routine EHandle
to assemble the element matrix. In your implementation make a call EHandle(Vertices,
varargin{:}), where Vertices are the coordinates of an element Ki. Here for EHandle
= STIMA Heat LFE the variable argument list varargin should carry the parameters QuadRule,
FHandle.

HINT: Use the sparse format to store the matrix A.

(3.1h) Implement a function

L = assemLoad LFE(Mesh,QuadRule,FHandle)

to compute the right-hand side vector L given the mesh structure Mesh, the quadrature rule via
QuadRule and a handle to the function f via FHandle.

HINT: Proceed as for assemMat LFE and use LOAD LFE.

(3.1i) Implement a routine

[U,FreeDofs] = assemDir LFE(Mesh,BdFlag,GHandle)

which accepts in input the mesh, the flag BdFlag associated to the Dirichlet boundary and the
function handle GHandle to the boundary data g(x). As output, this function should return the
degrees of freedom which are not on the Dirichlet boundary, and initialize the solution vector
U incoporating the Dirichlet boundary conditions for the entries of U associated to nodes on the
Dirichlet boundary.
In this problem the convention is that the boundary flag is −1 if the edge is on the Dirichlet
boundary.

Problem Sheet 3 Page 3 Problem 3.1



(3.1j) Implement a function

plot LFE(U,Mesh)

to plot the FE solution given the vector of coefficients U and the structure Mesh containing the
field Mesh.Coordinates.

(3.1k) Implement a function

err = L2Err LFE(Mesh,u,QuadRule,FHandle)

that computes the L2-error of the FEM function given by the coefficient vector u and the mesh
Coordinates to the exact solution given as the function handle FHandle.

HINT: Proceed computing the local contributions element-wise and then summing them up to get
the total error.

(3.1l) Implement a function

err = H1SErr LFE(Mesh,u,QuadRule,FHandle)

that computes the H1-seminorm error of the FEM function given by the coefficient vector u and
the mesh Coordinates to the exact solution gradient given as the function handle FHandle.

HINT: Proceed element-wise as in subproblem subproblem (3.1k).

(3.1m) Implement a function

[N,l2,h1s] = main LFE(Mesh)

to compute the FE solution U to (3.1.1) with coefficient D(x) = 1 and exact solution uex =
cos(2πx) cos(2πy) on the square Ω = (0, 1)2. The function should return the number N of degrees
of freedom (in this case the nodes which are not on the boundary) and the L2-norm and H1-
seminorm errors.
Inside the function, use the routine implemented in task (3.1j) to plot the solution.
As quadrature rule, use the sixth-order quadrature rule P7O6() given in the handout.

(3.1n) Run the routine implementated in task (3.1m) to produce a plot of the solution. For the
mesh, load the mesh Square5.mat given in the handout.

(3.1o) Consider again the case uex = cos(2πx) cos(2πy) and D(x) = 1 on the unit square.
Implement a script called cvg LFE to perform the convergence study for the error in the L2-norm
and H1-seminorm.
Produce loglog plots of the errors versus the number of degrees of freedom.
Use the meshes contained in the file Square.zip given in the handout.
Which rates of convergence do you observe?

HINT: You may use the function main LFE implemented in task (3.1m).

We are now going to solve (3.1.1)-(3.1.2) on the L-shaped domain Ω = (−1, 1)2 \ ((0, 1) ×
(−1, 0)), as depicted in Fig.3.2.

Problem Sheet 3 Page 4 Problem 3.1



Figure 3.2: Domain for subproblems (3.1p)-(3.1r)

We consider the case that the exact solution is, in polar coordinates, u = r
2
3 sin(2

3
φ), for (r, φ) ∈

[0, 1)× [0, 2π). The right-handside is then f = 0 and the boundary data g = u|∂Ω.

(3.1p) Implement a function

uex = uex LShap L2(x)

to compute the exact solution u = r
2
3 sin(2

3
φ) given the N × 2 vector of point coordinates x, and

store the values in the column vector uex.

(3.1q) Implement a function

uex = uex LShapH1S(x)

to compute the gradient of the exact solution u = r
2
3 sin(2

3
φ) given the N × 2 vector of point

coordinates x, and store the values in the N × 2 vector uex.

(3.1r) Modify the routine main LFE implemented in subproblem (3.1m) and the script cvg LFE
implemented in subproblem (3.1o) to perform the convergence study for the L-shaped domain.
Use the meshes contained in the zip file Lshape.zip given in the handout. Which rates of
convergence to you observe?
Give a motivation for your results.

Listing 3.1: Testcalls for Problem 3.1
1 Mesh = load([’Square’ num2str(1) ’.mat’]);
2 DHandle = @(x) 1;
3 FHandle = @(x) 8*piˆ2*cos(2*pi.*x(:,1)).*cos(2*pi.*x(:,2));
4 Uex = @(x) cos(2*pi.*x(:,1)).*cos(2*pi.*x(:,2));
5

Problem Sheet 3 Page 5 Problem 3.1



6 f p r i n t f(’\n\n##shap_LFE:’)
7 shap_LFE([0.3 0.6])
8

9 f p r i n t f(’\n\n##grad_shap_LFE:’)
10 grad_shap_LFE([0.4 0.4])
11

12 f p r i n t f(’\n\n##STIMA_Heat_LFE:’)
13 STIMA_Heat_LFE([0 0; 1 1/4; 1/8 1],P7O6(),DHandle)
14

15 f p r i n t f(’\n\n##LOAD_LFE:’)
16 LOAD_LFE([0 0; 1 1/4; 1/8 1],P7O6(),FHandle)
17

18 f p r i n t f(’\n\n##assemMat_LFE:’)
19 A = assemMat_LFE(Mesh, @STIMA_Heat_LFE, P7O6(),DHandle);
20 A = f u l l (A);
21 A(1:6,1:6)
22 A(20:25,20:25)
23

24 f p r i n t f(’\n\n##assemLoad_LFE:’)
25 L = assemLoad_LFE(Mesh,P7O6(),FHandle);
26 L(1:3)
27

28 f p r i n t f(’\n\n##assemDir_LFE:’)
29 [U,FreeDofs]=assemDir_LFE(Mesh,-1,Uex);
30 FreeDofs

Listing 3.2: Output for Testcalls for Problem 3.1
1 >> test_call
2

3 ##shap_LFE:
4 ans =
5

6 0.1000 0.3000 0.6000
7

8 ##grad_shap_LFE:
9 ans =

10

11 -1 -1 1 0 0 1
12

13 ##STIMA_Heat_LFE:
14 ans =
15

16 0.6855 -0.3306 -0.3548
17 -0.3306 0.5242 -0.1935
18 -0.3548 -0.1935 0.5484
19

20 ##LOAD_LFE:
21 ans =
22

Problem Sheet 3 Page 6 Problem 3.1



23 1.2638
24 2.3698
25 2.5917
26

27 ##assemMat_LFE:
28 ans =
29

30 1 0 0 0 0 0
31 0 1 0 0 0 0
32 0 0 1 0 0 0
33 0 0 0 1 0 0
34 0 0 0 0 2 0
35 0 0 0 0 0 2
36

37 ans =
38

39 4 -1 -1 0 0 0
40 -1 4 0 0 0 0
41 -1 0 4 0 0 0
42 0 0 0 4 0 -1
43 0 0 0 0 4 -1
44 0 0 0 -1 -1 4
45

46 ##assemLoad_LFE:
47 ans =
48

49 0.6366
50 0.9995
51 0.6366
52

53 ##assemDir_LFE:
54 FreeDofs =
55

56 7 12 18 20 21 22 23 24 25

Problem 3.2 2D Quadratic Finite Elements
We consider the problem

− div(D(x)gradu(x)) = f(x) in Ω ⊂ R2 (3.2.1)
u(x) = g(x) on ∂Ω (3.2.2)

where D is uniformly positive and bounded in Ω, g is a continuous function of ∂Ω and f ∈ L2(Ω).

We solve (3.2.1)-(3.2.2) by means of Galerkin discretization based on piecewise quadratic finite
elements on triangular meshes of Ω.

For quadratic finite elements with affine element mapping a specific choice of element shape
functions is given by

Problem Sheet 3 Page 7 Problem 3.2



b1

b3

b2

b4

b5

b6

b1(x) := −λ1(x)(1− 2λ1(x)),

b2(x) := −λ2(x)(1− 2λ2(x)),

b3(x) := −λ3(x)(1− 2λ3(x)),

b4(x) := 4λ1(x)λ2(x),

b5(x) := 4λ2(x)λ3(x),

b6(x) := 4λ3(x)λ1(x).

(3.2a) Implement the function

shap = shap QFE(x)

which computes the the value of the six local shape functions λi(x), i = 1, . . . , 6, on the reference
element at the points x (a N × 2 matrix, where each rows contains the coordinates of a point),
and returns the values in the N ×6 matrix shap (each row corresponding to the evaluation of the
basis functions in a point).

(3.2b) Implement the function

shap = grad shap QFE(x)

to compute the gradients of the shape functions, following the same convention as in grad shap LFE.

(3.2c) Implement the routine STIMA Heat QFE to compute the element (stiffness) matrices.
The function header is

Aloc = STIMA Heat QFE(Vertices, QuadRule, FHandle)

and the conventions are the same as in STIMA Heat LFE.

(3.2d) Implement the routine LOAD QFE

Lloc = LOAD QFE(Vertices, QuadRule, FHandle)

to compute the element vector, which follows the same convention as LOAD LFE.

We now consider the assembly part.
The global order of basis function for quadratic finite elements is the following:

• first the basis functions associated to the vertices are stored; the basis function associated
to the vertex with index i is biN(x);

• then, the basis functions associated to the midpoints, i.e. to the edges, are considered: the
basis function associated to the edge i is bNV +i

N (x), with NV the number of vertices.

Problem Sheet 3 Page 8 Problem 3.2



(3.2e) Implement a function

A = assemMat QFE(Mesh,EHandle,varargin)

that assembles the Galerkin matrix A and follows the same convention as assem Mat LFE.

HINT: Use the sparse format to store the matrix A.
The field Mesh.Vert2Edge may be useful.

(3.2f) Implement a function

L = assemLoad QFE(Mesh,QuadRule,FHandle)

to compute the right-hand side vector L, following the same conventions as in assemLoad LFE.

(3.2g) Implement a routine

[U,FreeDofs] = assemDir QFE(Mesh,BdFlag,GHandle)

following the same principles as assemDir LFE.

(3.2h) Implement a function

err = L2Err QFE(Mesh,u,QuadRule,FHandle)

that computes the L2-error of the FEM function given by the coefficient vector u and the mesh
Mesh to the exact solution given as the function handle FHandle.

(3.2i) Implement a function

err = H1SErr QFE(Mesh,u,QuadRule,FHandle)

that computes the H1-seminorm error of the FEM function given by the coefficient vector u and
the mesh Mesh to the exact solution gradient given as the function handle FHandle.

(3.2j) Implement a function

[N,l2,h1s] = main QFE(Mesh)

to compute the FE solution U to (3.2.1) with coefficient D(x) = 1 and exact solution uex =
cos(2πx) cos(2πy) on the square Ω = (0, 1)2. The routine follows the same conventions as
main LFE, but this time you don’t need to plot the solution.
Again, as quadrature rule, use the sixth-order quadrature rule P7O6() given in the handout.

Problem Sheet 3 Page 9 Problem 3.2



(3.2k) Consider again the case uex = cos(2πx) cos(2πy) and D(x) = 1 on the unit square.
Implement a script called cvg QFE to perform the convergence study for the error in the L2-norm
and H1-seminorm.
Produce loglog plots of the errors versus the number of degrees of freedom.
Use the meshes contained in the file Square.zip given in the handout.
Which rates of convergence do you observe?

HINT: Use the function main QFE implemented in task (3.2j).

Now we consider again (3.2.1)-(3.2.2) on the L-shaped domain Ω = (−1, 1)2 \ ((0, 1)× (−10)).
We take again the case that the exact solution is, in polar coordinates, u = r

2
3 sin(2

3
φ), for (r, φ) ∈

[0, 1)× [0, 2π).

(3.2l) Modify the routine main QFE implemented in subproblem (3.2j) and the script cvg QFE
implemented in subproblem (3.2k) to perform the convergence study for the L-shaped domain.
Use the meshes contained in the zip file Lshape.zip given in the handout. Which rates of
convergence to you observe?
Compare your results with the case of Linear Finite Elements and give a motivation for the be-
havior that you observe.

HINT: You may use the routines uex LShap L2(x) and uex LShapH1S(x) implemented
for the previous problem for the computation of the exact solution and its gradient.

Listing 3.3: Testcalls for Problem 3.2
1 Mesh = load([’Square’ num2str(1) ’.mat’]);
2 DHandle = @(x) 1;
3 FHandle = @(x) 8*piˆ2*cos(2*pi.*x(:,1)).*cos(2*pi.*x(:,2));
4 Uex = @(x) cos(2*pi.*x(:,1)).*cos(2*pi.*x(:,2));
5

6 f p r i n t f(’\n\n##shap_QFE:’)
7 shap_QFE([0.3 0.6])
8

9 f p r i n t f(’\n\n##grad_shap_QFE:’)
10 grad_shap_QFE([0.4 0.8])
11

12 f p r i n t f(’\n\n##STIMA_Heat_QFE:’)
13 STIMA_Heat_QFE([0 0; 1 0; 0 1],P7O6(),DHandle)
14

15 f p r i n t f(’\n\n##LOAD_QFE:’)
16 LOAD_QFE([0 0; 1 0; 0 1],P7O6(),FHandle)
17

18 f p r i n t f(’\n\n##assemMat_QFE:’)
19 A = assemMat_QFE(Mesh, @STIMA_Heat_QFE, P7O6(),DHandle);
20 A = f u l l (A);
21 A(1:3,1:3)
22 A(26:28,26:28)
23

24 f p r i n t f(’\n\n##assemLoad_QFE:’)
25 L = assemLoad_QFE(Mesh,P7O6(),FHandle);
26 L(1:3)

Problem Sheet 3 Page 10 Problem 3.2



27 L(26:28)
28

29 f p r i n t f(’\n\n##assemDir_QFE:’)
30 [U,FreeDofs]=assemDir_QFE(Mesh,-1,Uex);
31 FreeDofs

Listing 3.4: Output for Testcalls for Problem 3.2
1 test_call
2

3 ##shap_QFE:
4 ans =
5

6 -0.0800 -0.1200 0.1200 0.1200 0.7200 0.2400
7

8 ##grad_shap_QFE:
9 ans =

10

11 1.8000 1.8000 0.6000 0 0 2.2000
-2.4000 -1.6000 3.2000 1.6000 -3.2000 -4.0000

12

13 ##STIMA_Heat_QFE:
14 ans =
15

16 1.0000 0.1667 0.1667 -0.6667 -0.0000 -0.6667
17 0.1667 0.5000 0 -0.6667 -0.0000 0.0000
18 0.1667 0 0.5000 0.0000 -0.0000 -0.6667
19 -0.6667 -0.6667 0.0000 2.6667 -1.3333 -0.0000
20 -0.0000 -0.0000 -0.0000 -1.3333 2.6667 -1.3333
21 -0.6667 0.0000 -0.6667 -0.0000 -1.3333 2.6667
22

23 ##LOAD_QFE:
24 ans =
25

26 1.0920
27 0.1993
28 0.1993
29 -1.7408
30 5.2648
31 -1.7408
32

33 ##assemMat_QFE:
34 ans =
35

36 1.0000 0 0
37 0 1.0000 0
38 0 0 1.0000
39

40 ans =
41

Problem Sheet 3 Page 11 Problem 3.2



42 2.6667 -0.0000 0
43 -0.0000 2.6667 0
44 0 0 5.3333
45

46 ##assemLoad_QFE:
47 ans =
48

49 0.0590
50 0.1889
51 0.0590
52

53 ans =
54

55 0.5776
56 0.5776
57 0.7577
58

59 ##assemDir_QFE:
60 FreeDofs =
61

62 Columns 1 through 20
63

64 7 12 18 20 21 22 23 24 25 28 34
36 39 41 42 44 45 46 47 48

65

66 Columns 21 through 40
67

68 49 50 53 54 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72

69

70 Columns 41 through 49
71

72 73 74 75 76 77 78 79 80 81

Published on March 31.
To be submitted on April 14.
Last modified on April 11, 2014

Problem Sheet 3 Page 12 Problem 3.2


